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SUMMARY

The nucleoside analogue ribavirin has antiviral activity against many distinct viruses both in vitro and in vivo. Five
distinct mechanisms have been proposed to explain the antiviral properties of ribavirin. These include both indirect
mechanisms (inosine monophosphate dehydrogenase inhibition, immunomodulatory effects) and direct mechanisms
(interference with RNA capping, polymerase inhibition, lethal mutagenesis). Recent concerns about bioterrorism have
renewed interest in exploring the antiviral activity of ribavirin against unique viruses. In this paper, we review the
proposed mechanisms of action with emphasis on recent discoveries, as well as the implications of ribavirin resis-
tance. Evidence exists to support each of the five proposed mechanisms of action, and distinct virus/host combina-
tions may preferentially favour one or more of these mechanisms during antiviral therapy. Copyright # 2005 John

Wiley & Sons, Ltd.
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INTRODUCTION
Ribavirin (1-�-D-ribofuranosyl-1,2,4-triazole-3-
carboxamide, also known as Virazole) is a syn-
thetic purine nucleoside analogue first synthesised
by Sidwell and colleagues in 1972 (Figure 1) [1,2].
It is of particular interest because it was the first
synthetic nucleoside to exhibit broad-spectrum
antiviral activity, and is one of few antiviral drugs
in clinical use effective against agents other than
HIV and herpesviruses. X-ray crystallography
indicated that the carboxamide moiety of the pseu-
dobase causes ribavirin to resemble guanosine (or
inosine) [3].

Ribavirin exhibits antiviral activity against a
broad range of both DNA and RNA viruses in

vitro. The initial report indicated activity against
16 DNA and RNA viruses in cell culture and in
mice [2]. In some cases, this inhibition has trans-
ferred into clinical applications. Most notably,
ribavirin is used in combination with interferon-�
for treatment of HCV infection, although the suc-
cess rate of this therapy is limited [4–6] but
improved in non-genotype 1 HCV infection with
pegylated interferon [7]. Ribavirin aerosol is used
for treatment of paediatric infection by respiratory
syncytial virus [8]. Ribavirin has also been used
experimentally against a number of other viral
infections, including Lassa fever virus infection
[9] and other haemorrhagic fever virus infections
[10].

More than 30 years since its discovery, the
mechanism of action of ribavirin still remains con-
troversial. A number of distinct mechanisms have
been suggested depending on the particular virus
being studied. Broadly, there are five primary
mechanisms of action proposed for ribavirin.
Indirect mechanisms include reduction in cellular
guanosine triphosphate (GTP) pools via inosine
monophosphate dehydrogenase (IMPDH) inhibi-
tion, and an immunomodulatory effect in which
a T-helper type 1 (antiviral) immune response
is maintained. Direct mechanisms include inhibi-
tion of RNA capping activity, direct inhibition of
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viral polymerases, and increased mutation fre-
quency via incorporation of ribavirin into newly
synthesised genomes leading to error catastrophe.
Here, we review the proposed mechanisms of
action for ribavirin and the evidence for each
from a variety of studies with distinct viruses,
with an emphasis on recent discoveries.

METABOLISM AND CELLULAR EFFECTS
OF RIBAVIRIN
Ribavirin is clinically administered as the nucleo-
side. Adenosine kinase is the cellular enzyme
responsible for conversion to ribavirin monopho-
sphate (RMP). Cells deficient in adenosine kinase
activity accumulate only small amounts of the
phosphorylated forms of ribavirin [11,12]. Subse-
quent phosphorylation of RMP yields the di- and
triphosphorylated nucleotides [12,13]. Phosphory-
lation is rapid, with half-maximal levels of meta-
bolites being reached within a few hours of
exposure to cultured cells [12]. Although the rela-
tive concentration of the mono-, di- and tripho-
sphorylated forms varies by cell type, ribavirin
triphosphate (RTP) is generally the predominant
metabolite [12]. GTP pools are reduced approxi-
mately two-fold by ribavirin treatment, with a con-
current increase in cellular CTP and UTP [13,14].
These changes in nucleotide pools are due to the
ability of RMP to act as an inhibitor of IMPDH
(see following section). Deoxynucleotide forms of
ribavirin have not been detected intracellularly,
suggesting that ribavirin diphosphate is not a
substrate for cellular ribonucleotide reductase.
However, cellular deoxynucleotide pools are gen-
erally much smaller than ribonucleotide pools.
Thus, ribavirin deoxynucleotides may be present
in very low concentrations that have not been
detected.

The metabolism of ribavirin is cell-specific. Smee
and colleagues demonstrated a reduction in ribavir-
in metabolites in Vero 76 cells as compared to 3T3

cells, with approximately 13-fold less RMP accumu-
lating in these cells [15]. The half-life of ribavirin
metabolites is relatively short in cultured fibroblasts
and lymphoblasts, although the nucleotides are
much more stable in erythrocytes [12]. This accu-
mulation of ribavirin in erythrocytes is responsible
for the reversible haemolytic anaemia that is a side
effect of clinical ribavirin therapy [16].

Ribavirin has profound effects upon treated
cells. It is a cytostatic agent and causes a reduction
in synthesis of DNA, RNA and proteins in
exposed cells [14]. Although ribavirin triphosphate
accumulates to significant levels in treated cells,
ribavirin has not been detected in cellular RNA
or DNA [17]. However, this may be due to a low
rate of incorporation that is below the limit of
detection for cell-based assays.

RIBAVIRIN IS AN INHIBITOR OF INOSINE
MONOPHOSPHATE DEHYDROGENASE
The first unique step in the de novo cellular synthesis
of guanine nucleotides is catalysed by the enzyme
IMPDH (Figure 2). This reaction is NADþ-depen-
dent and converts inosine monophosphate (IMP)
to xanthosine monophosphate (XMP). XMP can
then be aminated to guanosine monophosphate
(GMP) by the enzyme GMP synthase. GMP is
further converted to guanine metabolites such as
GTP and dGTP, which are essential as precursors
for RNA and DNA synthesis, respectively. Addi-
tionally, GTP plays important roles in energy
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Figure 1. Ribavirin is a synthetic nucleoside analogue with a

structure similar to guanosine
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Figure 2. Schematic of the de novo pathway of guanine nucleo-

tide biosynthesis. Conversion to XMP is the first committed
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storage, intracellular signalling, translation by ribo-
somes and glycoprotein synthesis.

Due to its structural similarity to GMP, RMP
is a potent competitive inhibitor of IMPDH [18].
RMP inhibits type I and type II isoforms of human
IMPDH with a Ki of 650 nM and 390 nM, respec-
tively [19]. An X-ray crystal structure of RMP in
complex with the core domain from human
IMPDH type II has been solved [20]. This structure
revealed that RMP binds in the active site sub-
strate pocket of IMPDH and is an excellent mimic
of the natural substrate IMP.

Inhibition of IMPDH has been suggested as a
possible mechanism for the antiviral properties of
ribavirin. GTP pools have been demonstrated to
be reduced approximately two-fold in ribavirin-
treated cells [13]. GTP and dGTP are essential for
translation, transcription and RNA and DNA repli-
cation. As such, reduction in available GTP was
hypothesised to inhibit these integral processes of
the viral life cycle, thus explaining the antiviral
properties of ribavirn. Since this is a non-specific,
cellular effect, IMPDH inhibition could also explain
the broad-spectrum activity of ribavirin.

The antiviral activities of ribavirin, 5-ethynyl-
1-beta-D-ribofuranosylimidazole-4-carboxamide
(EICAR), and mycophenolic acid (MPA) have been
compared using a flavivirus (yellow fever virus)
and paramyxoviruses (human parainfluenza virus
3, respiratory syncytial virus) [21]. EICAR is a
structural analogue of ribavirin, and the 50-mono-
phosphate is also a potent inhibitor of IMPDH [22].
MPA is a potent uncompetitive inhibitor of
IMPDH and does not need to be metabolically acti-
vated (reviewed in [23]). The effects of these three
IMPDH inhibitors on Vero and HeLa cell GTP
pools were analysed. For all three compounds, a
linear correlation was noted between GTP pool
inhibition and antiviral activity as measured by
viral RNA synthesis, as well as antiviral effect
measured by reduction in CPE, suggesting that
IMPDH inhibition is the primary mechanism of
antiviral activity for all three compounds. How-
ever, the measured GTP pool reduction in this
case was much more dramatic than that pre-
viously reported by other researchers.

In contrast, there are many instances in which
IMPDH inhibition alone has not been sufficient to
explain the antiviral activity of ribavirin. In a study
of the antiviral effect of ribavirin against influenza
virus, it was found that the reduction in intracellu-

lar GTP pools was saturated at a relatively low
concentration (25 mM) of ribavirin [24]. However,
ribavirin had a more potent antiviral effect at high-
er concentrations, although cellular GTP pools
were not diminished further. Studies with polio-
virus (PV) have shown that the potent antiviral
effect induced by ribavirin was accompanied by
only small reductions in translation and RNA
synthesis [25]. Furthermore, not all IMPDH inhibi-
tors have antiviral activity [25,26]. Thus, IMPDH
inhibition may not be the primary mechanism of
antiviral activity in most cases.

Nevertheless, IMPDH inhibition can be an
important contributor to the antiviral activity of
ribavirin. By reducing levels of competing GTP,
ribavirin can be more effective as a polymerase
inhibitor, capping inhibitor or lethal mutagen
(described below). Ribavirin has also been used as
an IMPDH inhibitor to increase the potency of other
antiviral nucleosides used to treat HIV [27–30],
hepatitis B virus [31] and herpes simplex virus
type 1 [32]. Yet, ribavirin has also demonstrated
antagonism in combination with some nucleoside
drugs [27,33].

RIBAVIRIN IS AN IMMUNOMODULATORY
AGENT
Ribavirin has also been postulated to act via
another indirect antiviral mechanism, by enhancing
the host T-cell response. This conclusion stems
from observations in HCV-infected patients that
ribavirin can reduce serum alanine aminotransfer-
ase (ALT) levels (a marker of liver damage) without
significantly reducing levels of circulating HCV
RNA as determined via PCR [34]. Ribavirin has
been suggested to act in combination therapy by
maintaining the response to interferon treatment.

Ribavirin is thought to induce a switch in
T-helper cell phenotype from type 2 to type 1
[35]. The T-helper type 1 response is associated
with cellular immunity and is associated with
expression of IL-2, gamma-interferon, and tumour
necrosis factor-alpha [36,37]. The T-helper 2
response promotes humoural immunity and is
associated with expression of IL-4, IL-5 and IL-
10. It has been suggested that an ineffective host
immune response is an important factor in chronic
infections. A T-helper 2 response has been asso-
ciated with the development of chronic disease
in HCV infection [38]. Ribavirin has indeed been
shown to modulate cytokine expression in human
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T-cells [39]. Low levels (5–10 mM) of ribavirin
inhibited a Type-2 response and promoted a
Type-1 response in both CD4þ and CD8þ
human T-cells in vitro.

Data obtained for the L-enantiomer of ribavirin
(ICN 17261, also known as levovirin) support this
hypothesis. This compound had similar efficiency
in inducing Type-1 cytokine responses and redu-
cing serum ALT levels in a murine model [40].
However, levovirin did not exhibit direct antiviral
activity in vitro against viruses sensitive to ribavir-
in. As stereochemical differences likely preclude
intracellular phosphorylation [41], this molecule
should not be able to be converted to the phos-
phorylated metabolites, which are necessary for
the direct antiviral effects of ribavirin. Clinical
trials with levovirin in HCV patients were unsuc-
cessful, suggesting that the immunomodulation
observed in vitro is insufficient to produce clinical
effects [42]. However, the mechanism by which
ribavirin stimulates the immune response is not
understood. Interestingly, recent results have sug-
gested that ribvavirin monotherapy may indeed
have an antiviral effect [43]. Furthermore, monitor-
ing viral load by PCR-based methods may over-
look antiviral activities that result in production
of non-infectious genomes.

Mathematical modelling has been used to
approximate the contribution of immunomodula-
tory effects towards ribavirin antiviral activity.
The effect of interferon-� and ribavirin therapy
on viral load decay has been modelled [44]. For
this model, the assumption was used that ribavirin
is able to reduce the specific infectivity of new vir-
ions (via lethal mutagenesis, see below). The mod-
el predicted that, in patients with high interferon
effectiveness, ribavirin has little impact on viral
load decay. However, in cases of low interferon
effectiveness, ribavirin should make an important
contribution to viral load reduction. Thus, this
model was able to reconcile conflicting data about
ribavirin effectiveness, by suggesting that a
patient’s responsiveness to interferon may be criti-
cal. Furthermore, this model ruled out an immu-
nomodulatory effect of ribavirin.

This model was applied to clinical data from 17
patients and provided excellent fits to viral load
data. Patients with high interferon effectiveness
agreed with a model in which ribavirin has little
influence. However, for patients with low interfer-
on effectiveness, the observed loss rate of infected

cells during combination therapy was lower than
that predicted by interferon alone, indicating that
an additional antiviral effect is likely provided
by ribavirin.

However, the assumptions made in design of this
model can be challenged. First, evidence demon-
strating a reduction of HCV infectivity during
clinical ribavirin treatment is lacking. Furthermore,
the authors assume a progressive effect of ribavirin,
with a plateau at 28 days, due to the slow accumu-
lation of ribavirin in plasma, although this is not
universally accepted. Finally, it would be informa-
tive to compare these predictions to larger samples
of clinical data.

Nevertheless, Dixit et al. [43] have provided an
interesting hypothesis which should be investi-
gated further. Their conclusions suggest that riba-
virin therapy can be targeted to those patients in
which it will have a beneficial effect, and avoided
in those who will have little benefit, reducing the
side effects associated with combination therapy.

RIBAVIRIN IS AN INHIBITOR OF RNA
CAPPING
The 50-end of most cellular RNAs and some viral
RNAs contains a 7-methylguanosine cap structure
essential for RNA stability and translation. As a
guanosine nucleotide analogue, ribavirin has the
potential to interact with enzymes responsible for
‘capping’ cellular mRNAs and viral genomic
RNAs. Generally, the cap structure is synthesised
via three enzymatic reactions (Figure 3): (1) an

pppNpN …

ppNpN…

RNA triphosphatase

+ Gppp

GpppNpN…

RNA guanylyltransferase

m7GpppNpN…

+ S-Ado-Met RNA methyltransferase

Figure 3. The 50 7-methylguanosine cap structure of RNA is pro-

duced by three enzymatic reactions. First, an RNA triphosphatase

cleaves the 50 end of the RNA, leaving a diphosphate. Next, GMP

is added to the end of the RNA via a 50-to-50 linkage by an RNA

guanylyltransferase. Finally, the terminal guanosine is methy-

lated at the N-7 position by an RNA methyltransferase, utilising

S-adenosylmethionine. Additional methylation can occur on the

nucleotides located 30 to the phosphate bridge of the cap
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RNA triphosphatase cleaves the 50 triphosphate of
the RNA to a diphosphate; (2) an RNA guanylyl-
transferase catalyses the addition of GMP to this
50 terminus via a unique 50-to-50 linkage; (3) an
RNA (guanine-7-) methyltransferase catalyses the
addition of a methyl group from S-adenosyl-
methionine to the terminal guanosine at the N-7
position (reviewed in [45]).

The translation initiation factor eIF4E is an onco-
gene whose overexpression is implicated in a vari-
ety of human tumours [46,47]. eIF4E interaction
with the 50 7-methylguanosine cap of cellular
mRNAs is essential for initiation of cap-dependent
translation. Overexpression of eIF4E increases
translation of a subset of sensitive transcripts,
which can lead to malignancy.

Kentsis and colleagues investigated the ability of
ribavirin to mimic the 7-methylguanosine cap [48].
Ribavirin triphosphate was shown to bind at the
7-methylguanosine cap binding site of eIF4E with
the same affinity as 7-methylguanosine. Ribavirin
was also shown to disrupt eIF4E nuclear bodies
and to inhibit transport and translation of eIF4E-
regulated mRNAs. Furthermore, low micromolar
concentrations of ribavirin were able to suppress
eIF4E-mediated transformation and tumour growth
in vitro and in vivo. Beyond the cellular implications,
these findings also suggest a mechanism of action
against viruses which utilise cellular eIF4E or
7-methylguanosine, such as Lassa fever virus [49]
and SARS coronavirus [50]. However, recent
biochemical data suggest that RTP may not interfere
with the interaction between eIF4E and 7-methyl-
guanosine [51].

Some RNA viruses employ a 7-methylguanosine
cap structure on the 50 end of the genomic RNA
[45]. Because eukaryotic mRNA capping occurs
in the nucleus, virus-encoded enzymes are needed
to catalyse the capping reaction for viruses repli-
cating in the cytoplasm. As a guanosine analogue,
ribavirin may have the capacity to inhibit the
enzymes involved in this pathway.

Scheidel and Stollar isolated a Sindbis virus var-
iant which showed resistance to both ribavirin and
the noncompetitive IMPDH inhibitor MPA [52].
The cross-resistance implicates reduction in GTP
pools to be at least partially responsible for ribavir-
in’s mechanism of action against this virus. Further
investigation indicated that resistance mapped to
nsP1, the virus-encoded enzyme that mediates
guanylyltransferase activity [53]. Although direct

biochemical evidence was not obtained, this find-
ing suggested that ribavirin inhibits the capping
of RNA genomes, either by interfering with the
guanylyltransferase or methyltransferase activities
(both of which are thought to be encoded by nsP1)
or potentially by being incorporated as a cap
analogue, which may impact translation of the
RNA.

It has been suggested that the mechanism of
action of ribavirin against vaccinia virus is due to
inhibition of the capping reaction [54]. RTP was
found to be a potent inhibitor of the vaccinia virus
mRNA guanylyltransferase, suggesting that riba-
virin acts by producing mRNAs that are not com-
petent for translation. Bougie and Bisallion
investigated the interaction of ribavirin with the
N-terminal fragment of the vaccinia virus D1 pro-
tein, which has both triphosphatase and guanylyl-
transeferase activity [55]. RTP was found to serve
as a substrate for this enzyme, and formation of a
covalent RMP-enzyme complex was demon-
strated. Transfer of RMP to RNA was also shown
biochemically. RNAs capped with ribavirin were
more stable to degradation than uncapped
RNAs. However, the 7-methyl group found on
the normal cap structure is necessary for transla-
tion by interaction with eIF4E. The vaccinia virus
capping machinery was unable to add 7-methyl
group to ribavin; thus, RNAs capped by ribavirin
were not efficiently translated. Although ribavirin
was an inefficient competitor to GTP in a guanylyl-
transferase assay, IMPDH inhibition by ribavirin
may potentiate this effect in vivo.

Benarroch and colleagues investigated the inter-
action of ribavirin triphosphate with the Dengue
virus NS5 RNA 20-O-methyltransferase domain
(NS5MTaseDV) [56]. RTP inhibited the RNA 20-O-
methyltransferase activity in vitro with an IC50 of
100 mM. Furthermore, RTP was shown to compete
for the GTP-binding site of NS5MTaseDV, with an
apparent Kd in the range of 50 mM. An X-ray crystal
structure of RTP bound to the enzyme revealed that
RTP was located in the GTP-binding site but with an
unexpected orientation. RTP mimics GTP in this
case by a rotation that superimposes the NH2 group
of ribavirin with the NH2 group at the 2-position of
GTP. This orientation is unique relative to previous
models that suggest ribavirin mimics the 1- and
6-position of guanosine (for instance, the crystal
structure of ribavirin complexed with IMPDH or
models of base-pairing with cytidine).
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The observations discussed above suggest that
ribavirin may exert its antiviral activity by interac-
tion with RNA capping machinery. The activity
may derive from either inhibition of the enzymes
involved in adding a 7-methylguanosine cap to
viral RNA, or by incorporation of ribavirin as the
50cap, causing the molecule to be non-functional
for translation. This mechanism may function
against viruses utilising capped transcripts or
genomes. However, it fails to explain the broad-
spectrum activity of ribavirin, as many viruses
sensitive to ribavirin do not utilise a cap structure
during infection.

RIBAVIRIN IS A POLYMERASE INHIBITOR
The primary intracellular metabolite of ribavirin is
RTP. It is possible that this nucleotide can interact
with viral polymerases and inhibit nucleic acid
synthesis. Accumulation of RTP in cells may allow
efficient competition with essential GTP or ATP
pools. Eriksson and coworkers demonstrated inhi-
bition of the influenza virus RNA polymerase in
vitro with RTP [57]. Neither ribavirin nor RMP
showed any inhibitory activity. RTP was shown
to act as a competitive inhibitor with respect to
both ATP and GTP. RTP has also been suggested
to specifically inhibit RNA synthesis by reovirus
[17]. Inhibition was apparently independent of
the concentration of the natural nucleotides
included in an in vitro assay, suggesting inhibition
was not by a competitive mechanism. The authors
suggested that RTP might bind at a site close to the
active site, changing the conformation.

There has also been demonstration of reduced
elongation activity by the HCV polymerase in vitro
when ribavirin was present in the template [58,59].
Polymerase inhibition has also been noted with
vesicular stomatitis virus [60,61].

Ribavirin was also investigated as an inhibitor of
HIV-1 reverse transcriptase [30]. RTP and RDP
both inhibited elongation by HIV-RT in an in vitro
extension assay, although RDP caused about 40%
greater inhibition than RTP in this assay. No chain
termination was detected. It is worth noting that
this is a measure of DNA synthesis inhibition by
a ribonucleotide.

RIBAVIRIN IS A LETHAL MUTAGEN
OF RNA VIRUS GENOMES
The finding that RTP was the primary intracellular
metabolite of ribavirin caused speculation as to

whether the activity of ribavirin could be due to
incorporation of the nucleotide into RNA by cellu-
lar or viral RNA polymerases. However, early
experiments using radiolabelled ribavirin failed
to detect any significant ribavirin incorporation
into RNA molecules [17].

In 2000, Crotty and colleagues were able to pro-
vide strong evidence for ribavirin incorporation
into RNA during virus replication [25]. An in vitro
primer-extension assay was used to measure the
kinetics of incorporation of ribavirin triphosphate
by the poliovirus RNA-dependent RNA polymer-
ase (RdRp). Ribavirin was incorporated slowly, at
approximately the rate of an incorrect nucleotide,
which should result in an average of one or two
molecules incorporated per 7500-nucleotide RNA
genome. Of greater importance was the discovery
that ribavirin was templated by either uridine or
cytidine with equal efficiency. Furthermore, the
presence of ribavirin in the RNA template was
able to direct incorporation of either CMP or
UMP. Thus, ribavirin is capable of ambiguous
basepairing, mimicking either of the natural pur-
ines (guanosine normally base-pairs with cytidine
while adenosine normally base-pairs with thymi-
dine [or uracil]). This ambiguous basepairing capa-
city is likely due to rotation of the carboxamide
moiety of the pseudobase, generating hydrogen
bond acceptor/donor sites favourable for interac-
tion with either of the pyrimidine bases (Figure 4).

Figure 4. Ribavirin is an ambiguously hydrogen-bonding purine

mimic. Rotation of the carboxamide moiety of the pseudobase can

result in two distinct basepairing orientations, allowing incor-

poration opposite either of the naturally occurring pyrimidines
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The fact that ribavirin can act as an ambiguous
purine base analogue suggested that it has the
potential to be mutagenic to RNAs into which it
is incorporated. The in vitro incorporation studies
suggested that ribavirin should induce transition
mutations (A-to-G and C-to-U). To investigate
this possibility, Crotty and colleagues sequenced
the capsid-coding regions of poliovirus grown
in the presence of varying concentrations of
ribavirin. Sequencing revealed an increase in
mutations, particularly the predicted transition
mutations. Furthermore, ribavirin treatment
resulted in only a minimal decrease in the levels
of translation and RNA synthesis. Thus, the anti-
viral effect of ribavirin seemed to be mediated
primarily by inducing mutations into the RNA
genome.

RNA viruses have an extraordinarily high muta-
tion frequency (10�3 to 10�5 per replication cycle),
thought to be due to lack of a polymerase proofread-
ing activity [62,63]. As a result, RNA viruses have
been hypothesised to exist as a quasispecies, a
heterogeneous population which hovers around a
consensus or master sequence [64,65]. The genome
variability present in such a population may be
beneficial in allowing more rapid adaptation to
environmental changes, including tropism, immune
response or antiviral therapy. However, quasispe-
cies theory predicts the existence of an upper limit
to genome variability, known as the error threshold,
beyond which additional mutations would be dele-
terious to the population. The term lethal mutagen-
esis has been coined to describe an antiviral strategy
in which the population would be forced beyond
the error threshold [66].

Crotty and colleagues demonstrated the existence
of an error threshold by investigating the effect of
mutation frequency on poliovirus viability [67].
Poliovirus was grown in the presence of a range
of ribavirin concentrations, and the purified RNA
was sequenced and assayed for infectivity. The spe-
cific infectivity of poliovirus RNA was found to
decrease precipitously when the number of muta-
tions per genome was increased only modestly
beyond that of untreated viral RNA (Figure 5).
Natural poliovirus populations have an average
of approximately 1.5 mutations per genome.
When this was increased to two mutations per
genome, RNA specific infectivity was reduced to
50%. A four-fold increase resulted in only 5% gen-
ome infectivity. Furthermore, the antiviral effect of

ribavirin was fully explainable by only the reduc-
tion in specific infectivity and a mild decrease in
RNA synthesis.

The question as to whether ribavirin acts as a
mutagen during clinical treatment of HCV has
been difficult to answer due to the lack of a suitable
cell culture system. Although recent advances have
made the investigation of HCV infection in cell cul-
ture possible [68–70], all evidence to date has relied
upon the use of in vitro systems. Biochemical analy-
sis of an HCV NS5B derivative indicated that this
polymerase can incorporate ribavirin opposite
either of the natural pyrimidines [58]. Mutagenesis
induced by ribavirin was shown in a full-length
HCV replication system [71]. Ribavirin was also
shown to increase mutation frequency and reduce
viability of HCV replicons [72, 73]. Ribavirin-
induced mutagenesis of GB virus B (GBV-B), a
surrogate model for HCV, was observed in tamarin
hepatocytes [26]. Ribavirin had a potent antiviral
effect on GBV-B, while MPA had no demonstrable
antiviral effect. Furthermore, replication in the pre-
sence of ribavirin caused a reduction in the specific
infectivity of GBV-B virions, suggesting induction of
error-prone replication. However, ribavirin mono-
therapy had no effect in vivo against GBV-B-infec-
tion in tamarins, possibly because critical levels of
ribavirin could not be reached in infected cells.

Recent work has implicated lethal mutagenesis
as the mechanism for the antiviral effect of ribavir-
in against Hantaan virus. Although there are no

Figure 5. Poliovirus exists at the edge of error catastrophe. Polio-

virus replication results in an average of 1.5 mutations per gen-

ome. Genome specific infectivity declines rapidly with only

mild increase in mutagenesis. The LI50 (50% loss of specific infec-

tivity) is the mutation frequency at which 50% of genomes are

non-viable. Figure reproduced by permission of PNAS [67]
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FDA-approved therapies for Hantaan virus infec-
tion, ribavirin has been shown to reduce the sever-
ity of haemorrhagic fever with renal syndrome in
experimental use [74]. Severson and colleagues
have shown that ribavirin can increase the muta-
tion frequency of Hantaan virus [75]. It was subse-
quently suggested that ribavirin incorporation
might reduce the stability of viral mRNA species
as well [76].

Ribavirin also acts as a lethal mutagen against
foot-and-mouth disease virus (FMDV) [77]. BHK-
21 cells could be ‘cured’ of persistent FMDV infec-
tion by treatment with ribavirin. Ribavirin had a
greater antiviral effect than MPA at concentrations
causing an equivalent reduction in GTP pools, sug-
gesting that IMPDH inhibition was not the sole anti-
viral mechanism. Ribavirin was found to be
mutagenic to FMDV based on sequence analysis,
and this effect was detectable even in the presence
of added guanosine. The IMPDH inhibitor MPA
was also found to induce an increase in mutation
rate (although less than ribavirin), but this effect
was abolished by the addition of exogenous guano-
sine, suggesting that this mutagenesis was the result
of alteration of cellular nucleotide pool balance
through IMPDH inhibition.

Ribavirin has also been shown to induce muta-
genesis in West Nile virus (WNV) during infection
of HeLa cells [78]. WNV was driven to extinction
after four to five passages in the presence of less
than 200 mM ribavirin, with a concurrent effect
on genome infectivity. Sequence data indicated
an increase in transition mutations. G!A transi-
tions were the most common mutation, followed
by C!U. The authors suggest that the particular
observed mutations are due to ribavirin acting pri-
marily as a GTP analogue during replication, and
that there is a bias towards incorporation into the
genome itself. Ribavirin incorporation as a GTP
analogue would be expected to produce G!A
transitions if incorporated into genomic RNA
and C!U if incorporated into the antisense repli-
cation intermediate. Preferential incorporation as a
GTP analogue could be explained by the reduced
intracellular GTP pools caused by RMP inhibition
of IMPDH.

VIRUS-ACQUIRED RESISTANCE
TO RIBAVIRIN
A clinical concern in the development of antivirals
is whether the target virus can develop resistance

to the antiviral agent in question, and what impact
that resistance will have on disease progression
and pathogenicity of the virus population. The
recent discovery of ribavirin-resistant virus popu-
lations has begun to shed light on these issues and
provides some insight into the mechanism of
action of ribavirin.

Ribavirin-resistant viruses were isolated from
Sindbis virus populations grown in the presence
of MPA[52]. This virus was shown to be cross-resis-
tant to ribavirin treatment, and genetic analysis
mapped resistance to the virus-encoded nsP1,
presumed to mediate guanylyltransferase (capping)
activity.

Young and coworkers isolated the first clinical
ribavirin-resistant variant of HCV from patients
treated with ribavirin monotherapy [79]. An ami-
no acid substitution in the NS5B RdRp (F415Y in
NS5B) was detected in all treated patients. After
cessation of treatment, reversion of this residue
to phenylalanine was observed in some patients.
An HCV replicon containing the 415F variation
was more susceptible to ribavirin in cell culture
than 415Y. However, this resistance did not
emerge in the replicon during cell culture pas-
sage. Importantly, while 415F is the consensus
residue for genotype 1a, 415Y is found in all
other genotypes. This observation suggests that
ribavirin treatment may be more effective for
patients infected with only genotype 1a. Further-
more, resistance occurring in the polymerase is
consistent with ribavirin acting as a lethal muta-
gen, although sequencing of clinical isolates
revealed only a moderate increase in genomic
mutation frequency. The biochemical mechanism
by which ribavirin resistance is derived should
be investigated further, especially in light of
recent data suggesting that resistance conferred
by 415Y may not be robust [80]. Additionally,
mutations in NS5A have been shown to confer
resistance to ribavirin in HCV replicons propa-
gated in cell culture [80].

Recently, ribavirin-resistant poliovirus was iso-
lated by two independent groups [81,82]. Interest-
ingly, resistance in each case was due to an
identical glycine to serine mutation in the RdRp
(G64S), indicating that there may be a limited
number of solutions to overcoming lethal muta-
genesis induced by ribavirin treatment. Resistance
was mediated by increased fidelity of the PV poly-
merase. Presumably, an increase in replication
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fidelity would restrict the breadth of the virus qua-
sispecies and distance of the population from the
error threshold, thus reducing the possibility of
lethal mutagenesis. G64S PV was much less fit
than wild-type PV as shown by competition
experiments [81]. Interestingly, this virus popula-
tion was more susceptible to inhibitors of uncoat-
ing, demonstrating the utility of the quasispecies
in evasion of antiviral therapy [81].

RNA virus populations have likely evolved to
exist as quasispecies in order to exploit the
increased adaptability available to diverse popula-
tions. Thus, restricting the quasispecies through
increased fidelity may have detrimental effects
on the replicative ability or pathogenesis of high-
fidelity viruses in vivo.

The fitness and pathogenicity of G64S PV has
been investigated (M. Vignuzzi, J.K. Stone, J.J.
Arnold, C.E. Cameron and R. Andino, in submis-
sion). The higher-fidelity polymerase of this virus
resulted in fewer average mutations per genome,
but with significant consequences. The resistant
variant was less fit than wild-type virus in a com-
petition assay in the absence of ribavirin, and was
less able to adapt to adverse growth conditions.
Infection of susceptible mice revealed that G64S
has an attenuated phenotype and restricted tissue
tropism. Furthermore, diversifying the population
through chemical mutagenesis was able to restore
tropism and pathogenesis. These observations
suggest that quasispecies diversity is integral
to pathogenesis and spread to distinct tissues
in vivo.

CONCLUSIONS
The broad-spectrum antiviral activity of ribavirin
can potentially be attributed to its multiple
mechanisms of action. As a purine analogue, it
can function in multiple cellular and viral pro-
cesses. An important aspect of the antiviral activity
of ribavirin may stem from the ability to act via
multiple mechanisms simultaneously. Ribavirin
can potentially act on numerous steps of the virus
life cycle: inhibition of translation due to reduction
in cellular GTP pools or incorporation as a cap
analogue which inhibits translation; inhibition of
genome or transcript capping, by suppression of
GTP synthesis or direct competition; inhibition of
RNA synthesis directly via active-site binding or
reduction of GTP synthesis; ambiguous incorpora-
tion into RNA causing increased mutation and

production of non-viable genomes; or enhance-
ment of the antiviral immune response, preventing
spread and pathogenesis. Furthermore, inhibition
of IMPDH can also potentiate the direct effects of
ribavirin by reducing the concentration of intracel-
lular competitors, that is GTP.

The recent characterisation of ribavirin-resistant
viruses suggests that ribavirin may be especially
potent in an antiviral ‘cocktail’ in cases where riba-
virin is presumed to act via lethal mutagenesis.
Ribavirin-induced mutagenesis should select for
high-fidelity replication, reducing the number of
variants in the virus population. This should
reduce the ability of the population to adapt to
simultaneous antiviral therapy targeting an unre-
lated mechanism.
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