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Abstract

Background: Few studies have developed risk models for dyslipidaemia, especially for rural populations.
Furthermore, the performance of genetic factors in predicting dyslipidaemia has not been explored. The purpose of
this study is to develop and evaluate prediction models with and without genetic factors for dyslipidaemia in rural
populations.

Methods: A total of 3596 individuals from the Henan Rural Cohort Study were included in this study. According to
the ratio of 7:3, all individuals were divided into a training set and a testing set. The conventional models and
conventional+GRS (genetic risk score) models were developed with Cox regression, artificial neural network (ANN),
random forest (RF), and gradient boosting machine (GBM) classifiers in the training set. The area under the receiver
operating characteristic curve (AUC), net reclassification index (NRI), and integrated discrimination index (IDI) were
used to assess the discrimination ability of the models, and the calibration curve was used to show calibration
ability in the testing set.

Results: Compared to the lowest quartile of GRS, the hazard ratio (HR) (95% confidence interval (CI)) of individuals
in the highest quartile of GRS was 1.23(1.07, 1.41) in the total population. Age, family history of diabetes, physical
activity, body mass index (BMI), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) were used to develop the conventional models, and the AUCs of the Cox, ANN, RF,
and GBM classifiers were 0.702(0.673, 0.729), 0.736(0.708, 0.762), 0.787 (0.762, 0.811), and 0.816(0.792, 0.839),
respectively. After adding GRS, the AUCs increased by 0.005, 0.018, 0.023, and 0.015 with the Cox, ANN, RF, and
GBM classifiers, respectively. The corresponding NRI and IDI were 25.6, 7.8, 14.1, and 18.1% and 2.3, 1.0, 2.5, and
1.8%, respectively.

Conclusion: Genetic factors could improve the predictive ability of the dyslipidaemia risk model, suggesting that
genetic information could be provided as a potential predictor to screen for clinical dyslipidaemia.
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Background
Dyslipidaemia is an important risk factor for cardiovas-
cular disease (CVD) development [1]. Studies have
shown that approximately 20% of atherosclerosis pa-
tients have either high triglyceride (TG) or low high-
density lipoprotein cholesterol (HDL-C) lipid levels [2],
while the incidence of heart disease and ischaemic stroke
decreases accordingly with lower low-density lipoprotein
cholesterol (LDL-C) levels [3]. Furthermore, numerous
studies have demonstrated that elevated serum total
cholesterol (TC), TG and LDL-C levels are closely re-
lated to the development of CVD and therefore could be
used as an independent predictor of CVD [1, 4, 5]. In
the past decade, the prevalence of dyslipidaemia has de-
clined in developed countries [6], but that in China, the
largest developing country, remains at a high level and
continues to increase [7]. Reports have shown that a
total of 9.2 million cardiovascular events will occur due
to serum cholesterol levels in the Chinese population
between 2010 and 2030 [8]. In addition, the age-
standardized prevalence of adult dyslipidaemia was
32.21% in rural areas, with relatively low rates of aware-
ness, treatment, and control (15.07, 7.23, and 3.25%, re-
spectively) [9]. The above data indicated that the
prevention of dyslipidaemia remains a huge public
health problem in China, especially in rural areas. To
date, the establishment of disease risk prediction models
has received extensive attention globally in preventing
diseases. Previously, validated disease prediction models
for CVD and diabetes were developed based on the
Framingham study [10, 11]. Moreover, some researchers
have also focused on effective risk models for other dis-
eases to help diagnosis and prevention [12–15]. How-
ever, few studies involved the prediction model for
dyslipidaemia [16–19], and most of them were limited to
specific populations such as children and adolescents to
a certain extent.
Currently, there are different types of model building

methods. Among them, the traditional statistical method
suitable for survival data is Cox regression analysis [20].
Compared with traditional data processing methods, ma-
chine learning approaches in processing fuzzy data, ran-
dom data, and nonlinear data have obvious advantages,
especially for large-scale, complex, ambiguous informa-
tion [21–23]. Given the known character of machine
learning methods, a growing use of this burgeoning tool
was reported especially with prediction issues.

As reported, the genetic risk score, which consists of
multiple single nucleotide polymorphisms (SNPs), con-
fers a strong prediction of cardiovascular risk, but each
SNP alone does not contribute much [24]. Although the
role of SNPs in dyslipidaemia were well known [25–27],
no study has interpreted how polygenetic genetic risk
scores (GRSs) affect dyslipidaemia when it is necessary
to predict the risk of dyslipidaemia, especially in
resource-limited areas. To that end, this study was con-
structed to set up a dyslipidaemia prediction model
using different classifiers and to reveal the prediction
performance of the model incorporating genetic factors
in predicting the occurrence of dyslipidaemia in Chinese
rural adults.

Methods
Study population
The study recruited participants from a cohort study in
rural areas of Henan, called the Henan Rural Cohort
Study, which has been registered in the Chinese clinical
trials registry. The baseline examination and follow-up
information have been previously described in detail
[28]. In brief, the baseline investigation included a ques-
tionnaire interview, anthropometry measurements, and
blood tests. The subjects were then asked about the oc-
currence of chronic diseases, including the type and dur-
ation of the disease, as well as the status of treatment
and medication at the follow-up survey.
In this study, a total of 8268 subjects committed to

genetic factors, and all subjects were tested for SNPs. In
summary, 3596 individuals were finally analysed after
excluding participants who 1) had dyslipidaemia at base-
line; 2) were using lipid-lowering drugs; and 3) were
missing important information about the key variables.
Details can be found in the study population section of
the flowchart of Fig. S1, which can be found in Supple-
mentary Information.

Data set
The 3596 study subjects were randomly divided into two
sets of data, called the training set and the testing set, re-
spectively. At a ratio of 7:3, 2517 study subjects were
randomly selected for the training set, while 1079 study
subjects were randomly selected for the testing set.
Model building was performed in the training set, and
the performance of the model was evaluated in the
testing set.
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Definition of dyslipidaemia
As reported by the Guidelines for Dyslipidaemia in
China [7], dyslipidaemia is defined as having greater
than or equal to 1 of the following conditions: TC ≥ 6.2
mmol/L (240mg/dL); TG ≥ 2.3 mmol/L (200 mg/dL);
HDL-C ≤ 1.0 mmol/L (40 mg/dL); LDL-C ≥ 4.1 mmol/L
(160 mg/dL); use of lipid-lowering drugs in the last two
weeks. Notably, in this study, dyslipidaemia was deter-
mined using measured lipid levels. Because participants
did not stop taking lipid-lowering drugs, those who used
lipid-lowering drugs in the last two weeks were also con-
sidered dyslipidaemia patients, which was also used in a
previously published article [9].

Calculation of weighted genetic risk score (GRS)
Among tens of SNPs related to dyslipidaemia, 21 SNPs
(rs10889353, rs11207995, rs7518497, rs780092,
rs10045497, rs11216126, rs1160985, rs17119975,
rs183786, rs328, rs3764261, rs3943077, rs4417316,
rs507666, rs603446, rs651007, rs651821, rs6589566,
rs662799, rs7396835, rs964184) were selected to calcu-
late the weighted GRS (shown in Table S1). SNP geno-
typing was performed using a custom SNPscan™ kit
(Genesky Biotechnologies Inc., Shanghai, China) [29].
Given the target population in this study, SNPs were
selected based on the previously reported large GWAS
for lipid profiles in East Asia, and then replicated in this
cohort study.
The genotype of each SNP was assigned 0, 1, and 2 in

ascending order of the number of alleles, and then Cox
regression analysis was performed to obtain the effect
value for each SNP (i.e., the β value in Table S1). The
weighted GRS was the sum of the effect size of each
SNP multiplied by the number of risk alleles. The mean
value and standard deviation of the GRS were 1.329 and
0.337, respectively, ranging from 0.195 to 2.451.

Statistical analysis
Statistical significance was inferred at a two-tailed value
of P < 0.05. Differences in the characteristics of the
dyslipidaemia and non-dyslipidaemia populations were
compared using t-tests and chi-square tests. All subjects
were divided into quartiles according to GRS. Taking Q1
as the reference group, the hazard ratios (HRs) of the
remaining three GRS groups of subjects were calculated
in the total population, as well as in the training and
testing sets.
Cox regression was used to filter the predictors of the

model. In the training set, all variables that have been re-
ported as predictors were analysed using simple Cox re-
gression (shown in Table S2). Then, those variables
presenting a significant impact on dyslipidaemia entered
the conventional models. The GRS mentioned above
was then incorporated into the conventional models to

constitute the conventional+GRS models. Cox regression
also served as a traditional statistical classifier, which
was performed as follows: in the training set, a multiple
Cox analysis was performed to obtain effect values (β)
for each predictor (i.e., the β values in Table 3), and then
these β values were used to construct a Cox regression
predictive probability model for the onset of dyslipidae-
mia in combination with the general formula of the Cox
regression model. In the testing set, the Cox prediction
model equation established in the training set was used
to predict the risk of dyslipidaemia for each individual.
In addition, artificial neural network (ANN), random
forest (RF), and gradient boosting machine (GBM) were
also employed to construct models, and the prediction
model was trained and tested by 10-fold cross-validation
with 100 repetitions during the iterative process.
The discrimination of models was assessed using the

area under the receiver operating characteristic curve
(AUC). The net reclassification index (NRI) and inte-
grated discrimination index (IDI) were used to evaluate
the improvement of predictive ability of the conventional
models when adding GRS. The calibration of the models
was assessed by calibration curves (See the model consti-
tution and evaluation section in Fig. S1). Statistical ana-
lyses were performed with R 3.6.2 and Python 3.8.

Results
Baseline characteristics
The baseline characteristics of the dyslipidaemia and
non-dyslipidaemia populations are shown in Table 1.
The average age of all subjects was 50.49 ± 12.16 years.
The incidence of dyslipidaemia was 44.38%. The differ-
ences in family history of diabetes, BMI, and lipid levels
were statistically significant between dyslipidaemia and
non-dyslipidaemia populations (all P < 0.05).

Association between GRS and dyslipidaemia
The mean value of GRS in all participants was 1.33 (SD:
0.34). The overall association was significant between
GRS and dyslipidaemia, with a crude HR (95% CI) of
1.366 (1.187, 1.572) and an adjusted HR (95% CI) of
1.353 (1.172, 1.561) (Table 2). Then, the GRS was di-
vided into quartiles. Compared with Q1, subjects in the
Q2, Q3, and Q4 groups had adjusted HRs (95% CI) of
1.043 (0.900, 1.210), 1.188 (1.028, 1.374), and 1.229
(1.069, 1.412), respectively, when adjusted for age, family
history of diabetes, physical activity, BMI, and blood
lipid indicators. The significant association suggested
that the risk of developing dyslipidaemia steadily in-
creased as the GRS increased. By the same token, ad-
justed and crude HRs showed the same constant
increment in the training set and testing set.
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Development and evaluation of the conventional models
In the training set, the 14 reported predictors were ana-
lysed using simple Cox regression, and 8 variables (age,
family history of diabetes, physical activity, WC, BMI,
TGs, HDL-C, and LDL-C) were statistically significantly
related to dyslipidaemia. Eventually, the conventional
models were composed of age, family history of diabetes,
physical activity, BMI, TGs, HDL-C, and LDL-C (Table
3, above), considering the collinearity between WC and
BMI. It is worth noting that there was no collinearity
among TG, HDL-C, and LDL-C. The AUCs and their
differences of the 4 conventional models with different
classifiers are shown in Fig. 1 and Table 4. In the testing
set, the AUCs of the conventional models with the Cox,
ANN, RF, and GBM classifiers were 0.702(0.673, 0.729),
0.736(0.708, 0.762), 0.787 (0.762, 0.811), and 0.816(0.792,
0.839), respectively, indicating that the conventional
models showed quite high performance in predicting
dyslipidaemia, especially the model with the GBM classi-
fier. In addition, concerning that it may be not practical
to use blood lipid indicators to predict dyslipidaemia.
The AUCs of the prediction model without the blood
lipid index were calculated for the conventional and
conventional+GRS model, and the AUCs were 0.553
(0.523, 0.583) and 0.569 (0.539, 0.598), respectively,
when using the Cox classifier. The prediction model
using machine learning methods showed the similar
poor performance (see Table S4).

Development and evaluation of conventional models with
GRS
The conventional+GRS model combined conventional
factors and the GRS (Table 3, below). Table 4 shows the
differences in discrimination between the conventional
model and conventional+GRS model. In the case of
using the Cox classifier, the addition of GRS improved

the predictive ability of the conventional model in a lim-
ited way. The conventional model showed moderate dis-
crimination, and the AUC increased slightly with the
addition of GRS to 0.707 (0.679, 0.734); the difference in
AUC was 0.0049 but was not statistically significant at
P = 0.0549. Notwithstanding, the addition of GRS re-
sulted in a statistically significant continuous NRI of
25.6% (13.8, 35.8%) and IDI of 2.3% (1.1, 3.7%). For the
ANN classifier, the addition of GRS increased the AUC
to 0.754 (0.727, 0.779); the difference in the AUC was
0.0183 (P = 0.0031). Nevertheless, the continuous NRI
and IDI were 7.8% (− 2.7, 18.5%) and 1.0% (− 0.3, 2.4%),
respectively, presenting no statistical significance. Add-
itionally, the conventional+GRS model with the RF and
GBM classifier resulted in significant improvements
(NRI for RF: 14.1% (1.1, 26.1%); IDI for RF: 2.5% (0.5,
4.2%); NRI for GBM: 18.1% (4.4, 27.2%); IDI for GBM:
1.8% (0.1, 3.5%)), demonstrating the competent progress
of GRS in predicting dyslipidaemia. The discrimination
of the prediction model with RF classifier showed signifi-
cant improvements better than the GBM classifier when
adding GRS into the conventional model. Figure 2 pro-
vides the receiver operating characteristic curves (ROCs)
for the conventional and conventional+GRS models with
different classifiers. The results suggested that the
addition of GRS could improve the prediction perform-
ance of the conventional models in some aspects in most
classifiers. In addition, the GBM classifier presented the
best performance with an AUC of 0.831 (0.808, 0.853) of
all the models.
Figure 3 demonstrates the calibrations of the conven-

tional and conventional+GRS models. The calibration
curves of the conventional+GRS models were closer to
the reference line (dotted grey line) than those of the
conventional models. The Brier scores, which can be
considered a “calibration” measure of a set of

Table 1 Baseline characteristics of subjects with dyslipidaemia and without dyslipidaemia

Characteristic Total
(n = 3596)

Dyslipidaemia (n = 1596) Non-Dyslipidaemia (n = 2000) P-value

Age 50.49 ± 12.16 50.64 ± 12.09 50.38 ± 12.22 0.528

Family history of diabetes, n (%) 186(5.17) 100(6.27) 86(4.30) 0.008

Physical activity, n (%) 0.747

Low 1656(46.05) 724(45.36) 932(46.60)

Moderate 810(22.53) 362(22.68) 448(22.40)

High 1130(31.42) 510(31.95) 620(31.00)

Body mass index (BMI), kg/m2 23.91 ± 3.36 24.58 ± 3.38 23.38 ± 3.24 < 0.001

Triglyceride (TG), mmol/L 1.18 ± 0.44 1.29 ± 0.46 1.09 ± 0.41 < 0.001

Low density lipoprotein (LDL-C), mmol/L 2.61 ± 0.63 2.67 ± 0.64 2.56 ± 0.61 < 0.001

High density lipoprotein (HDL-C), mmol/L 1.31 ± 0.21 1.23 ± 0.16 1.37 ± 0.22 < 0.001

Note: Age, BMI, TGs, LDL-C, and HDL-C are continuous variables and are presented as the mean ± standard error. Family history of diabetes and physical activity
are categorical variables and are presented as numbers (percentages)
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probabilistic predictions, also declined with the addition
of GRS (Cox declined 0.048, ANN classifier slightly de-
clined 0.005, and GBM declined 0.006), indicating con-
ventional models were provided with better calibration
when incorporating GRS (The lower the Brier score
value, the better the prediction calibration). Other statis-
tics, such as sensitivity and specificity, were provided in
Table S3. These metrics provided further evidence that
the predictive ability of the models was improved by
adding GRS.

Discussion
To our knowledge, this is the first study to explore the
utility of genetic factors in the prediction of dyslipidae-
mia in resource-limited areas based on a prospective
study. The results of this study suggested that individ-
uals in higher GRS quartiles displayed an increased risk
of dyslipidaemia onset compared to those with the low-
est quartile of GRS. The conventional models were con-
structed with Cox, ANN, RF, and GBM classifiers. The
model with the GBM classifier significantly outper-
formed the other classifiers. More importantly, the ac-
cession of GRS convincingly improved the capability of
conventional models in predicting dyslipidaemia,

implying that genetic factors play a meaningful role in
predicting the occurrence of dyslipidaemia.
This study elaborated the correlation between genetic

factors (GRS) and dyslipidaemia by dividing the GRS
into quartiles. A previous study divided all participants
into 3 groups according to GRSs of LDL-C, HDL-C, and
TG, and showed that the group with the highest GRS in
HDL-C, LDL-C, and TG all presented higher lipid levels
than the group with the lowest GRS [27]. Similarly, in
this study, the results suggested that the higher the GRS
was, the higher the risk of developing dyslipidaemia,
regardless of age, family history of diabetes, physical ac-
tivity, BMI, and blood lipid indicators. Although not
every HR was statistically significant, dyslipidaemia risk
increased within each quartile of GRS, and a similar
trend was observed in the training set and testing set.
The above demonstrated statistical results of the signifi-
cantly enhanced incidence of dyslipidaemia risk in rural
populations with incremental GRS.
The results showed that the conventional model con-

sisting of seven variables presented the best predictive
performance when the GBM classifier was used. Previ-
ous studies revealed a dozen variables as predictors of
dyslipidaemia [16, 18]. However, 8 variables showed

Table 2 Association between GRS and incidence of dyslipidaemia

Subjects Crude HRs (95%CI) Adjusted HRs (95%CI)

Total population

Q1 900 1.00 (reference) 1.00 (reference)

Q2 898 1.110 (0.958, 1.287) 1.043 (0.900, 1.210)

Q3 900 1.244 (1.077, 1.437) 1.188 (1.028, 1.374)

Q4 898 1.276 (1.111, 1.466) 1.229 (1.069, 1.412)

Continuous GRS 3596 1.366 (1.187, 1.572) 1.353 (1.172, 1.561)

P for trend < 0.001 0.001

Training set

Q1 633 1.00 (reference) 1.00 (reference)

Q2 638 0.996 (0.834, 1.188) 1.023 (0.855, 1.223)

Q3 624 1.182 (0.995, 1.404) 1.166 (0.979, 1.388)

Q4 622 1.207 (1.023, 1.424) 1.213 (1.028, 1.433)

Continuous GRS 2517 1.337 (1.129, 1.584) 1.318 (1.110, 1.565)

P for trend 0.006 0.008

Testing set

Q1 267 1.00 (reference) 1.00 (reference)

Q2 260 1.456 (1.112, 1.907) 1.081 (0.820, 1.425)

Q3 276 1.405 (1.080, 1.827) 1.225 (0.940, 1.596)

Q4 276 1.454 (1.129, 1.874) 1.273 (0.986, 1.643)

Continuous GRS 1079 1.432 (1.113, 1.843) 1.466 (1.127, 1.907)

P for trend 0.009 0.040

Note: GRS is divided into four groups. Q1, Q2, Q3, Q4 represent the first, second, third, fourth quartile of GRS, respectively. Adjusted HRs adjust for the following
covariates: age, family history of diabetes, physical activity, BMI, TG, HDL-C, LDL-C
Abbrevations: HR hazard ratio, GRS genetic risk score
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statistical significance in the simple Cox regression ana-
lysis, and 7 of them were finally included in the conven-
tional model. Based on the results, simple Cox
regression tagged baseline lipoproteins including TG,
HDL-C, and LDL-C as predictors, which was a reason-
able result because plasma lipoproteins currently lead to
abnormal future blood lipids. In addition, the HRs of
these predictors were comparable to those of other asso-
ciation studies [9, 30–34]. Correspondingly, the HRs of
these 7 variables were also consistent with those in early
published studies of dyslipidaemia prediction models
[16, 18, 19]. Notably, the three serum lipid parameters
showed no collinearity. The findings indicated that the
GBM classifier could predict the incidence of dyslipidae-
mia better, which was confirmed in our previous study
[35]. This might be because the GBM classifier could ad-
dress the intricate relationship between predictors and
dyslipidaemia.
Considering the moderate but strong association be-

tween GRS and dyslipidaemia, the increased benefit of
GRS was then determined in predicting the occurrence

of dyslipidaemia. The performance of the conventional
model improved significantly when using RF and GBM
classifiers, both in terms of discrimination and net im-
provement metrics. In contrast, the model using the
ANN classifier showed less obvious improvement with
the inclusion of GRS, with slightly incremental but insig-
nificant NRI and IDI (P > 0.05). Nevertheless, improve-
ments in AUC were observed in the Cox, RF, and GBM
classifiers, both numerically and statistically. As was
shown in an earlier study [26], in the transition from
childhood to adulthood, the predictive power of GRSs
on HDL-C, LDL-C, and TG is valuable in predicting
adulthood lipid levels. Individuals with any abnormal
lipid index can be defined as having dyslipidaemia; thus,
GRS might have a predictive effect on dyslipidaemia,
and the results partially confirm this. Furthermore, the
results also suggested that the application of the ma-
chine learning technique might perform better in disease
prediction than the statistical method, which was con-
sistent with the results of previous studies [36, 37]. Simi-
larly, the elevation of other statistical (Table S3) values

Table 3 Multiple Cox regression analysis on significant factors of developing dyslipidaemia in training set

Variables β S.E. Wald P HR (95%CI)

Conventional model

Age 0.005 0.003 3.017 0.082 1.005(0.999, 1.010)

Family history of diabetes 0.194 0.125 2.429 0.119 1.215(0.951, 1.551)

Physical activity

Low Reference

Moderate 0.793 0.080 99.087 < 0.001 2.210(1.890, 2.583)

High 0.324 0.071 20.810 < 0.001 1.383(1.203, 1.590)

BMI 0.016 0.010 2.777 0.096 1.016(0.997, 1.036)

TG 0.292 0.074 15.609 < 0.001 1.339(1.158, 1.548)

HDL-C −2.103 0.196 114.907 < 0.001 0.122(0.083, 0.179)

LDL-C 0.284 0.052 29.792 < 0.001 1.329(1.200, 1.472)

Conventional + GRS model

Age 0.005 0.003 2.887 0.089 1.005(0.999, 1.010)

Family history of diabetes 0.198 0.125 2.517 0.113 1.219(0.954, 1.557)

Physical activity

Low Reference

Moderate 0.802 0.080 101.097 < 0.001 2.230(1.907, 2.607)

High 0.328 0.071 21.347 < 0.001 1.389(1.208, 1.596)

BMI 0.017 0.010 2.998 0.083 1.017(0.998, 1.037)

TG 0.281 0.074 14.410 < 0.001 1.325(1.146, 1.532)

HDL-C −2.095 0.195 114.889 < 0.001 0.123(0.084, 0.180

LDL-C 0.286 0.052 29.968 < 0.001 1.330(1.201, 1.474)

Weighted GRS 0.276 0.088 9.925 0.002 1.318(1.110, 1.565)

Note: The predictors of the conventional model are variables that are significantly associated with dyslipidaemia in simple Cox regression analysis. GRS is added to
the conventional model to construct the conventional+GRS model
Abbreviations: BMI body mass index, TG triglyceride, HDL-C high density lipoprotein, LDL-C low density lipoprotein, GRS genetic risk score
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Fig. 1 Receiver-operating characteristic curves of conventional models with four classifiers. Abbreviations: ANN: artificial neural network; RF:
random forest; GBM: gradient boosting machine

Table 4 Performance of the conventional and conventional+GRS models in predicting dyslipidaemia

AUC △AUC Continuous NRI, % IDI, %

Cox

Conventional model 0.702(0.673, 0.729)

Conventional+GRS model 0.707(0.679, 0.734) 0.0049(P = 0.0549) 25.6 (13.8, 35.8)* 2.3 (1.1, 3.7)*

ANN

Conventional model 0.736(0.708, 0.762)

Conventional+GRS model 0.754(0.727, 0.779) 0.0183(P = 0.0031)* 7.8 (−2.7, 18.5) 1.0 (−0.3, 2.4)

RF

Conventional model 0.787 (0.762, 0.811)

Conventional+GRS model 0.810 (0.762, 0.811) 0.0230(P = 0.023)* 14.1 (1.1, 26.1)* 2.5 (0.5, 4.2)*

GBM

Conventional model 0.816(0.792, 0.839)

Conventional+GRS model 0.831(0.808, 0.853) 0.0151(P = 0.0135)* 18.1 (4.4, 27.2)* 1.8 (0.1, 3.5)*

Abbreviations: AUC area under receiver operating characteristic curve, △AUC difference between AUC of conventional model and conventional+GRS model, NRI net
reclassification improvement, IDI integrated discrimination improvement, ANN artificial neural network, RF random forest, GBM gradient boosting machine
*Statistically significant values, P < 0.05
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showed that GRS played a relatively important role in
dyslipidaemia prediction. Principally, the results of this
study revealed that GRS could be a possible predictor of
the occurrence of dyslipidaemia.
As was demonstrated in a previous study [38], the dis-

closure of coronary heart disease risk estimates indicated
that the inclusion of genetic risk information could re-
duce the levels of LDL-C compared to the disclosure
based on conventional risk factors only. Genetic risk in-
formation for common diseases could be incorporated
into the conventional predictive model and used to
guide treatment. Considering how lipid levels influence
CVD [39, 40], it is reasonable to infer that the addition
of the GRS into the prediction model of dyslipidaemia
might help individuals prevent abnormal blood lipid
levels and thus contribute to the prevention of cardio-
vascular events.

Study strength and limitations
This research clarified the crucial impact of genetic in-
formation in predicting dyslipidaemia in rural areas,

signifying a certain guiding role of gene information in
the prevention and treatment of clinical dyslipidaemia.
To some extent, the research indicated that the machine
learning method might have certain advantages in the
construction of the disease prediction model. Addition-
ally, a cohort study was used to construct and validate
the conventional model and to analyse the relationship
between genetic factors and dyslipidaemia, making the
results more convincing.
However, several limitations need to be addressed.

First, the integration of the four lipid measurements
(TC, TG, LDL-C, and HDL-C) into dyslipidaemia might
gloss over the ability of genetic information in each lipid
index. However, better performances of the GRS-
integrated-model demonstrated that genetic information
was impressive in blood lipids, providing a foundation
for follow-up studies about genetic factors and lipid
levels. Another limitation is that the Brier score failed to
test statistically in assessing the calibration of models, al-
though the value had declined. Third, there were also
limitations in screening out predictors with the Cox

Fig. 2 Receiver-operating characteristic curves of conventional model and conventional+GRS model with four classifiers. Note: Age, family history
of diabetes, physical activity, BMI, TG, HDL-C, and LDL-C are included in the conventional model; the conventional+GRS model includes age,
family history of diabetes, physical activity, BMI, TG, HDL-C, LDL-C and GRS. Abbreviations:ANN: artificial neural network; RF: random forest; GBM:
gradient boosting machine; BMI: body mass index; TG: triglyceride; HDL-C: high density lipoprotein; LDL-C: low density lipoprotein; GRS: genetic
risk score
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regression model. The Cox model was restricted by its
very strict application conditions, such as proportional
hazard assumptions. Only those variables that meet the
strict conditions would be considered for screening with
the Cox model, and thus some possible predictors might
be ignored before being filtered. Last, the representation
might be limited because the recruited subjects only
came from rural areas in China, so the extrapolation of
the conclusions was restricted by the lack of external
validation. However, 30% of subjects were randomly se-
lected to conduct internal verification to increase the
credibility of the study.

Conclusion
Based on the prospective cohort study, eight dyslipidae-
mia prediction models with and without the genetic
factor (GRS) were developed and evaluated. The conven-
tional models included age, family history of diabetes,
physical activity, BMI, TGs, HDL-C, and LDL-C, which
showed better performance in predicting dyslipidaemia,
especially with the GBM classifier. After adding genetic
factors, the prediction performance of the conventional
models was effectively enhanced. This study provided an

alternative plan for the screening of dyslipidaemia, which
might help in the diagnosis and prevention of clinical
dyslipidaemia, allow us to screen for genetic risk early in
life and help individuals prevent dyslipidaemia in
advance.
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