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Abstract: A novel quasi-3D hyperbolic shear deformation theory (QHSDT) with five unknowns
is here employed, together with the Hamilton’s principle and the modified couple stress theory
(MCST) to analyze the vibrational behavior of rectangular micro-scale sandwich plates resting on a
visco-Pasternak foundation. The sandwich structure features a Nomex or Glass phenolic honeycomb
core, and two composite face sheets reinforced with graphene nanoplatelets (GPLs). The effective
properties of both face sheets are evaluated by means of the Halpin-Tsai and extended rule of mixture
(ERM) micromechanical schemes. The governing equations of the problem are derived by applying
the Hamilton’s principle, whose solutions are determined theoretically according to a classical
Navier-type procedure. A parametric study checks for the effect of different material properties,
length-scale parameters, foundation parameters and geometrical properties of the honeycomb cells,
and the reinforcing GPLs, on the vibration response of the layered structure, which can be of great
interest for many modern engineering applications and their optimization design.

Keywords: graphene nanoplatelets; honeycomb structures; modified couple stress theory; quasi-3d
hyperbolic shear deformation theory; sandwich structures; vibration analysis

1. Introduction

In the last decades, lightweight mechanical components and layered structures have increased
the attention of many researchers and scientists, due to the increased demand in modern engineering,
together with a possible reduction in their production cost. Among them, sandwich structures can be
regarded as subset of multilayered composite structures consisting of outer facings and a soft core
in-between, including foam, honeycomb, corrugated core, various bio-inspired cores, etc. The choice of
sandwich materials depends on the structural functionality as well as on the lifetime loading, availability
and cost. For example, Graphite-epoxy and carbon-epoxy multilayered facings are typically used in
aerospace applications, whereas glass-epoxy or glass-vinyl ester are adopted in civil and marine layered
structures. At the same time, the core of sandwich aerospace structures is often made of aluminum or
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Nomex honeycomb, whereas, a closed-cell or open-cell foam represents the typical core choice in civil
engineering, instead of a balsa core, usually applied in ship sandwich structures. As far as the honeycomb
sandwich-type plate is concerned, the adhesive bonding between the honeycomb core and face sheets is
the responsible for the load transferring among the sandwich constitutive parts. In such a context, one of
the pioneering works on the topic is represented by Ref. [1], where the authors studied the vibrational
behavior of sandwich beams with a honeycomb core [1]. In 2004, different vibration tests were performed
experimentally by Yanfeng and Jinghui [2] to study the vibration transmissibility and shock-absorbing
properties of the honeycomb thin plates, while computing their damping ratios and highest frequencies of
vibration. From a theoretical and numerical perspective, a comprehensive review of studies on sandwich
structures is mentioned in the following, covering the more recent developments on the topic. Li and
Jin [3] applied a third-order shear deformation plate theory (TSDT) and classical plate theory (CPT) to
examine the free vibration of rectangular plates with a honeycomb structure, whereas a semi-analytical
approach was suggested in [4] for the bending, buckling and free vibration analysis of sandwich panels
with square-honeycomb cores. At the same time, the influence of the skin/core debonding phenomena
on the overall vibrational behavior of sandwich plates was analyzed by Burlayenko and Sadowski [5],
whose results helped to address sandwich plates non-destructive damages. In line with this work, a
wavelet analysis has been recently applied by Katunin [6], to detect and identify possible damages in
sandwich structures and their effect on the global vibrational structural response. The sensitivity of the
vibration response of a honeycomb core structure to random geometrical or mechanical irregularities
was also outlined theoretically by Mukhopadhyay and Adhikari [7]. A novel method was proposed
by Duc et al. [8] to study the vibrational response of sandwich cylindrical panels with a honeycomb
core, based on the first-order shear deformation theory (FSDT), fourth-order Runge-Kutta method and
Galerkin method. Among the most recent solutions of increasing the intrinsic damping properties of
sandwich structures, Piollet et al. [9] proposed the use of entangled cross-linked fibers as core materials
within sandwich beams and performed different steady-state tests for different excitation levels to study
their high-damping and nonlinear vibration response. Moreover, Kumar and Renji [10] studied the
acceleration response and natural modes of sandwich panels with a honeycomb core subjected a diffused
acoustic field, developing a methodology to estimate their strain field in low frequency modes, based
on the acceleration response. A novel model based on the differential quadrature method (DQM) was
successfully proposed by Sobhy [11] to study the coupled hygrothermal bending response of functionally
graded (FG) graphene platelets/aluminum sandwich-curved beams equipped by a honeycomb core.
A numerical and experimental investigation based on a classical finite element approach and imaging
correlation method was also performed by Li et al. [12] for the study of the dynamic response of shallow
sandwich arches with aluminum face sheets and auxetic reentrant hexagonal metallic honeycomb
core under a localized impulsive loading, providing useful data and results for the honeycomb cells
deformation [12]. In 2017, Chen et al. [13] examined the nonlinear mechanical behavior of a sandwich
structure. Their model was made of FG porous layer reinforced by graphene nanoplatelets (GPLs).
Moreover, Karimiasl et al. [14] studied the nonlinear vibration behavior of multiscale nanocomposites
nanoshells, resting on an elastic foundation, and subjecting to a hygrothermal environment. Furthermore,
in 2019, the instability characteristics of a magnetorheological (MR) fluid core patched to two piezoelectric
FG-GPLRC face sheets were investigated by Eyvazian et al. [15], while proving the positive effect of
magnetic field on the system’s mechanical behavior. More recently in 2020, Torabi and Ansari [16] hired
the Mindlin’s plate model and the phase-field approach to have a throughout comprehension of the
vibration response for cracked FG GPL-RC plates with stationary cracks.

The large benefits of sandwich structures and their mechanical performances, have increased the
interest of the scientific community to develop even more accurate theories for their study. For example,
an improper definition of a mechanical parameter, even at small scales, can cause a meaningful variation
in the acquisition of results, with deleterious effects on the overall performance of sensitive systems, as
aircraft and space vehicles. This makes extremely important the use of accurate theories, where the
proper definition of the mechanical parameters is mandatory to obtain reliable results. In such a context,
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many works from the literature have applied CPTs, FSDTs, or higher-order-theories (HSDTs) for the
study of plate and shell structures even with complicated materials and geometries. For example,
Khoa et al. [17] applied a HSDT to examine the vibration response of FG carbon nanotubes (CNTs)
reinforced composites cylindrical shells in thermal environment. The same problem was also studied
by Ibrahim et al. [18], according to FSDT, and coupled with thermal conditions. Li et al. [19] used CPT
to model clamped honeycomb sandwich panels to study the nonlinear forced vibrational response.
Many further applications of the HSDT to coupled problems of sandwich panels and shell structures
can be found in [20–28]. A valid theoretical alternative to handle the plate structures is represented by
the quasi-3D hyperbolic shear deformation theory (QHSDT) which accounts for both transverse shear
and normal deformations and satisfies the zero traction boundary conditions on the plate surfaces
without using any shear correction factor. In QHSDT the number of unknown functions involved in
displacement field is only equal to five, instead of six or more unknowns required by the other shear
and normal deformation theories. The computational efficiency of this method was recently verified
in Refs. [29–31]. Inspired by these few pioneering works from the literature, in the present paper we
propose a QHSDT to study the free vibration response of sandwich structures with a honeycomb core
resting on a visco-Pasternak foundation. The governing equations of the problem are derived from the
Hamilton’s principle and solved in closed form via the Navier’s method. The analytical solutions from
our formulation are verified with those reported in literature, where a parametric investigations aims at
determining the effect of the material variation, GPLs gradient index and dispersion patterns, geometry,
internal cells angle, or thickness of layers on the natural frequencies for the selected sandwich structure.

2. Theoretical Formulation

Consider a rectangular sandwich plate with thickness h, length a, width b, as illustrated in Figure 1,
together with the reference coordinate system (x, y, z). The sandwich structure is immersed within
a visco-Pasternak elastic foundation, and it is made of a honeycomb core with thickness hc and two
composite face sheets with thickness ht and hb at the top and bottom side, respectively. This means
that the total thickness of the structure is h = hc + ht + hb.Molecules 2020, 25, x FOR PEER REVIEW 4 of 25 
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Figure 1. Geometrical model of sandwich structure.

In the current study, a QHSDT is adopted to define the position of an arbitrary point in the
micro-model. The major advantage of using such a displacement field is that the problem is not limited
to plane-strain conditions (i.e., εzz , 0), as typically occurs in the other 2-D theories such as FSDT,
that could cause possible discrepancies between the theoretical and experimental results. Based on a
QHSDT, the displacement field is defined as [32]
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U(x, y, z, t) = u(x, y, t) − z ∂
∂x wb(x, y, t) − f (z) ∂∂x ws(x, y, t),

V(x, y, z, t) = v(x, y, t) − z ∂
∂y wb(x, y, t) − f (z) ∂∂y ws(x, y, t),

W(x, y, z, t) = wb(x, y, t) −ws(x, y, t) −wst(x, y, z, t)
(1)

where u and v stand for the displacement components along the x and y directions, respectively; ws,
wb and wst are the transverse displacement components due to bending, shear and stretching effects,
respectively, with

wst(x, y, z, t) = g(z)ϕ(x, y, t) (2)

In the last relation, ϕ is an additional displacement variable that accounts for the effect of normal
stress; g(z) and f (z) are expressed by the following functions [29]

f (z) = ((h/π)sinh(πz/h) − z)/(cosh(π/2) − 1), (3)

g(z) = 1− f ′(z) (4)

where f ’(z) denotes the first derivative of function f with respect to z. The strain-displacement relations
follow the von-Karman’s assumptions [31]

εxx =
∂u(x,y,t)

∂x − z∂
2wb(x,y,t)
∂x2 − f (z) ∂

2ws(x,y,t)
∂x2 ,

εyy =
∂v(x,y,t)
∂y − z∂

2wb(x,y,t)
∂y2 − f (z) ∂

2ws(x,y,t)
∂y2 ,

εzz = −
∂2( f (z)ϕ(x,y,t))

∂z2 ,

γxy =
∂v(x,y,t)
∂x − 2z∂

2wb(x,y,t)
∂x∂y − 2 f (z) ∂

2ws(x,y,t)
∂x∂y +

∂u(x,y,t)
∂y ,

γxz =
∂ws(x,y,t)

∂x + (1− f ′(z)) ∂ϕ(x,y,t)
∂x − f ′(z) ∂ws(x,y,t)

∂x ,

γyz =
∂ws(x,y,t)

∂y + (1− f ′(z)) ∂ϕ(x,y,t)
∂y − f ′(z) ∂ws(x,y,t)

∂y ,

(5)
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εyy

εzz
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(6)

where Cij are the elastic constants for each part of the sandwich structure. More specifically, for the
honeycomb core, the elastic constants read as follows [29]

C11c =
E11(−ν23ν32+1)

δ , C22c =
E22(−ν13ν31+1)

δ ,

C33c =
E33(−ν12ν21+1)

δ , C12c = C21c =
E11(ν23ν31+ν21)

δ ,

C13c = C31c =
E11(ν21ν32+ν31)

δ , C23c = C32c =
E22(ν12ν31+ν32)

δ ,
C44c = G23, C55c = G13, C66c = G12

(7)

where
δ = 1− 2ν12ν13ν32 − ν12ν21 − ν13ν31 − ν23ν32 (8)

and

E11 = Eh
cosθ0(1− γ2

0 cot2 θ0)

sin2 θ0(φ0 + sinθ0)
γ3

0, (9)

E22 = Eh
(1− γ2

0(φ0 sec2 θ0 + tan2 θ0))(φ0 + sinθ0)

cos3 θ0
γ3

0, (10)
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E33 = Eh
2 + φ0

2 cosθ0(φ0 + sinθ0)
γ0, (11)

G12 = Eh
(φ0 + sinθ0)

φ2
0(1 + 2φ0) cosθ0

γ3
0, (12)

G13 = Gh
cosθ0

(φ0 + sinθ0)
γ0, (13)

G23 = Gh

(
(φ0 + sinθ0)

(1 + 2φ0) cosθ0
+

(φ0 + 2 sin2 θ0)

2(φ0 + sinθ0)

)
γ0

2 cosθ0
, (14)

ρc = ρh
2 + φ0

2 cosθ0(φ0 + sinθ0)
γ0, (15)

ν12 =
cos2 θ0(1− γ2

0 csc2 θ0)

sinθ0(φ0 + sinθ0)
, (16)

ν21 =
(1 + φ0)(1− γ2

0 sec2 θ0) cos2 θ0

sinθ0(φ0 + sinθ0)
, (17)

ν31 = ν32 = νh (18)

In the relations above, the Young’s modulus, shear modulus, density, and Poisson’s ratio are
defined in a homogenized form by means of the mechanical properties Eh, Gh, ρh and vh of the
honeycomb material [34]. Besides, φ0 is the internal cells angle of the honeycomb structure; ϕ0 =

h0/l0 and γ0 = t0/l0 stand for the internal aspect ratio and dimensionless cells thickness, respectively,
in which h0, l0 and t0 are the geometrical parameters defining the hexagonal cells as represented in
Figure 1. For FG-GPLs reinforced face sheets, the elastic constants Cijf are given by

C11 f = C22 f = C33 f =
(1−ν(z))E(z)

(1+ν(z))(1−2ν(z)) ,

C12 f = C13 f = C23 f =
ν(z)E(z)

(1+ν(z))(1−2ν(z)) ,

C44 f = C55 f = C66 f =
E(z)

2(1+ν(z))

(19)

The mechanical properties for both face sheets vary throughout the thickness, and they are
clearly function of the effective material properties, defined, in turn, by means of the Halpin-Tsai
micromechanical model, as follows [35]

E(z) =
3
8

1 + ζLηLVGPL

1− ηLVGPL
EM +

5
8

1 + ζWηWVGPL

1− ηWVGPL
EM (20)

In the last relation, EM denotes the Young’s modulus of the matrix; VGPL refers to the volume
fraction of GPLs; ζL, ζW, ηL and ηW are the geometrical properties of GPLs, i.e.,

ζL = 2 LGPL
hGPL

, ηW = (EGPL/EM − 1)/(EGPL/EM + ζW),
ζW = 2 wGPL

hGPL
, ηL = (EGPL/EM − 1)/(EGPL/EM + ζL),

(21)

LGPL, hGPL, wGPL and EGPL being the length, thickness, width and Young’s modulus of GPLs, respectively.
It is noteworthy that the summation of GPLs and matrix volume fractions equals one, where the GPLs
volume fraction is determined as

VGPL =
gGPL(z)

gGPL(z) + (
ρGPL
ρM

)(1− gGPL(z))
(22)
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where ρGPL and ρM refer to the density of the reinforcement phase and matrix, respectively. Moreover,
gGPL is the weight fraction of GPLs that obey the following relations for three different dispersion
patterns though the face sheets thicknesses [36]

For a parabolic pattern

gGPL(z) =
4
h2

f

λPWGPLz2 (23)

For a linear pattern

gGPL(z) = λLWGPL(
1
2
±

z
h f

) (24)

in which the positive and negative signs are related to the top and bottom face sheets, respectively.
For a uniform pattern

gGPL(z) = λUWGPL (25)

In Equations (23)–(25), λP, λL and λU are the gradient index of GPLs for their parabolic, linear,
and uniform dispersion patterns, referred to the total GPLs content, as reported in Table 1.

Table 1. Graphene nanoplatelets (GPLs) gradient index for different values of their total content [36].

Total GPLs Content (Percentage) λU λL λP

0 0 0 0
1/3 1/3 2/3 1
1 1 2 3

The further properties for the face sheets are the Poisson’s ratio and density, which are determined
via the ERM as [37]

ρ(z) = ρGPLVGPL + ρMVM, (26)

ν(z) = νGPLVGPL + νMVM (27)

3. Governing Equations of the Problem

The Hamilton’s principle is here applied to gain the governing equations of the problem [38]

t2∫
t1

δ(Λ −K −Π)dt = 0 (28)

where Π, Λ and K denote the applied external work, the strain energy, and the kinetic energy for the
sandwich structure, respectively. The strain energy of the system consists of two parts: the classical
strain energy and the energy component from the MCST. The following relation is used to define the
total strain energy for the selected sandwich structure [39]

Λ =
1
2


∫
x

∫
y

∫
core

(
σc

i jεi j + mc
i jχi j

)
dz dy dx

+
∫
x

∫
y

∫
f aces

(
σ

f
i jεi j + m f

i jχi j

)
dz dy dx

; i, j = x, y, z (29)

where mij andχij stand for the higher-order stresses and symmetric rotation gradient tensor, respectively,
defined in the following

mi j = 2l2mµχi j; (i, j = x, y, z) (30)

where lm is the MCST material length scale parameter, and µ is the Lame’s parameter. Moreover, the
components of the symmetric rotation gradient tensor can be determined using the following compact
relation
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χi j =
1
2

(
Θi, j + Θ j,i

)
(31)

This means that

χxx = ∂
∂x Θx, χyy = ∂

∂y Θy, χzz =
∂
∂z Θz,

χxy = 1
2

(
∂
∂y Θx +

∂
∂x Θy

)
, χyz =

1
2

(
∂
∂z Θy +

∂
∂y Θz

)
, χxz =

1
2

(
∂
∂z Θx +

∂
∂x Θz

) (32)

in which, the infinitesimal rotation vector Θ is defined as

Θi =
1
2
(curl(u)),i (33)

which means
Θx = 1

2

(
∂
∂y W(x, y, z, t) − ∂

∂z V(x, y, z, t)
)
,

Θy = 1
2

(
∂
∂z U(x, y, z, t) − ∂

∂x W(x, y, z, t)
)
,

Θz =
1
2

(
∂
∂x V(x, y, z, t) − ∂

∂y U(x, y, z, t)
) (34)

In addition, the kinetic energy for the whole microstructure can be defined as [40].

K =
1
2

∫
x

∫
y

+h/2∫
−h/2

ρc, f (z)

(∂U
∂t

)2

+

(
∂V
∂t

)2

+

(
∂W
∂t

)2dzdydx (35)

where U, V and W refer to the displacement components introduced in Equation (1).
For a structure resting on a visco-Pasternak elastic foundation, the external work due to the

substrate can be defined as follows [41]

Π =

∫
x

∫
y

1
2


KW(wb + ws)

2
−KG(wb + ws)

∂2(wb+ws)

∂x2 −

KG(wb + ws)
∂2(wb+ws)

∂y2 +

Cd(wb + ws)
∂(wb+ws)

∂t

dxdy (36)

where KW is the Winkler parameter, KG is the shear layer parameter, and Cd denotes the damping
parameter, respectively. By substitution of Equations (29), (35), (36) into the Hamilton’s principle (28),
after a mathematical manipulation we get the following governing equations of motion in terms of
displacement field

δu :

−C110
∂2u(x,y,t)

∂x2 + C111
∂3wb(x,y,t)

∂x3 + F110
∂3ws(x,y,t)

∂x3 +

+C121
∂3wb(x,y,t)
∂x∂y2 + F120

∂3ws(x,y,t)
∂x∂y2 − E130

∂ϕ(x,y,t)
∂x +

−C440
∂2v(x,y,t)
∂x∂y −

1
4 K ∂4v(x,y,t)

∂x∂y3 −C120
∂2v(x,y,t)
∂x∂y +

+2C441
∂3wb(x,y,t)
∂x∂y2 + 2F440

∂3ws(x,y,t)
∂x∂y2 −C440

∂2u(x,y,t)
∂y2 +

+ 1
4 K ∂4u(x,y,t)

∂y4 −
1
4 K ∂4v(x,y,t)

∂x3∂y + 1
4 K ∂4u(x,y,t)

∂x2∂y2 +

−I0
∂2u(x,y,t)

∂t2 + I1
∂3wb(x,y,t)
∂t2∂x + I3

∂3ws(x,y,t)
∂t2∂x = 0

(37)
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δv :

−C120
∂2u(x,y,t)
∂x∂y + C121

∂3wb(x,y,t)
∂x2∂y + F120

∂3ws(x,y,t)
∂x2∂y −C220

∂2v(x,y,t)
∂y2 +

+C221
∂3wb(x,y,t)

∂y3 + F220
∂3ws(x,y,t)

∂y3 − E230
∂ϕ(x,y,t)

∂y −C440
∂2v(x,y,t)
∂x2 +

+2C441
∂3wb(x,y,t)
∂x2∂y + 2F440

∂3ws(x,y,t)
∂x2∂y −C440

∂2u(x,y,t)
∂y∂x + 1

4 K ∂4v(x,y,t)
∂x4 +

−
1
4 K ∂4u(x,y,t)

∂x3∂y + 1
4 K ∂4v(x,y,t)

∂x2∂y2 −
1
4 K ∂4u(x,y,t)

∂x∂y3 +

−I0
∂2v(x,y,t)

∂t2 + I1
∂3wb(x,y,t)
∂t2∂y + I3

∂3ws(x,y,t)
∂t2∂y = 0

(38)

δwb :

−C121
∂3u(x,y,t)
∂x∂y2 + C122

∂4wb(x,y,t)
∂x2∂y2 + F121

∂4ws(x,y,t)
∂x2∂y2 −C221

∂3v(x,y,t)
∂y3 +

+C222
∂4wb(x,y,t)

∂y4 + F221
∂4ws(x,y,t)

∂y4 − E231
∂2ϕ(x,y,t)

∂y2 − 2C441
∂3v(x,y,t)
∂x2∂y +

+4C442
∂4wb(x,y,t)
∂x2∂y2 + 4F441

∂4ws(x,y,t)
∂x2∂y2 − 2C441

∂3u(x,y,t)
∂y2∂x +

−C111
∂3u(x,y,t)

∂x3 + C112
∂4wb(x,y,t)

∂x4 + F111
∂4ws(x,y,t)

∂x4 −C121
∂3v(x,y,t)
∂x2∂y +

+C122
∂4wb(x,y,t)
∂x2∂y2 + 2K ∂4wb(x,y,t)

∂x2∂y2 + K ∂4ws(x,y,t)
∂x2∂y2 +

+K0
∂4ϕ(x,y,t)
∂x2∂y2 −K1

∂4ws(x,y,t)
∂x2∂y2 + K ∂4wb(x,y,t)

∂y4 + 1
2 K ∂4ws(x,y,t)

∂y4 +

+ 1
2 K0

∂4ϕ(x,y,t)
∂y4 + 1

2 K1
∂4ws(x,y,t)

∂y4 + K ∂4wb(x,y,t)
∂y4 + 1

2 K1
∂4ws(x,y,t)

∂x4 +

+ 1
2 K ∂4ws(x,y,t)

∂x4 + 1
2 K0

∂4ϕ(x,y,t)
∂x4 + F121

∂4ws(x,y,t)
∂x2∂y2 − E131

∂4ϕ(x,y,t)
∂x2 +

−Cd
∂wb(x,y,t)

∂t −Cd
∂ws(x,y,t)

∂t + KG
∂2wb(x,y,t)

∂x2 + KG
∂2ws(x,y,t)

∂x2 +

+KGg∂
2ϕ(x,y,t)
∂x2 + KG

∂2wb(x,y,t)
∂y2 + KG

∂2ws(x,y,t)
∂y2 + KGg∂

2ϕ(x,y,t)
∂y2 +

−Cdg∂ϕ(x,y,t)
∂t −KW gϕ(x, y, t) −KWws(x, y, t) −KWwb(x, y, t) − I1

∂3u(x,y,t)
∂t2∂x +

+I2
∂4wb(x,y,t)
∂t2∂x2 + I5

∂4ws(x,y,t)
∂t2∂x2 − I1

∂3v(x,y,t)
∂t2∂y + I2

∂4wb(x,y,t)
∂t2∂y2 +

+I5
∂4ws(x,y,t)
∂t2∂y2 − I0

∂2wb(x,y,t)
∂t2 − I0

∂2ws(x,y,t)
∂t2 − I4

∂2ϕ(x,y,t)
∂t2 = 0

(39)
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δws :

1
2 K1

∂4wb(x,y,t)
∂x4 + 1

4 K3
∂4ws(x,y,t)

∂x4 + 1
4 K2

∂4ϕ(x,y,t)
∂x4 − F111

∂4wb(x,y,t)
∂x4 +

+ 1
2 K1

∂4wb(x,y,t)
∂y4 + 1

4 K3
∂4ws(x,y,t)

∂x4 + 1
4 K2

∂4ϕ(x,y,t)
∂x4 −

1
4 K5

∂2ws(x,y,t)
∂x2 +

−
1
4 K5

∂2ws(x,y,t)
∂y2 −

1
4 K4

∂2ϕ(x,y,t)
∂x2 −

1
4 K4

∂2ϕ(x,y,t)
∂y2 − F110

∂3u(x,y,t)
∂x3 +

−F120
∂3v(x,y,t)
∂x2∂y + F121

∂4wb(x,y,t)
∂y2∂x2 + F122

∂4ws(x,y,t)
∂y2∂x2 − E132

∂2ϕ(x,y,t)
∂x2 +

−F120
∂3u(x,y,t)
∂y2∂x + F121

∂4wb(x,y,t)
∂x2∂y2 + F112

∂4ws(x,y,t)
∂x4 + F122

∂4ws(x,y,t)
∂x2∂y2 +

−F220
∂3v(x,y,t)
∂y3 + F221

∂4wb(x,y,t)
∂y4 + F222

∂4ws(x,y,t)
∂y4 − E232

∂2ϕ(x,y,t)
∂y2 +

−G550
∂2ws(x,y,t)

∂x2 −G550
∂2ϕ(x,y,t)

∂x2 + G551
∂2ws(x,y,t)

∂x2 + G551
∂2ϕ(x,y,t)

∂x2 +

+G661
∂2ws(x,y,t)

∂y2 + G661
∂2ϕ(x,y,t)

∂y2 + K1
∂4wb(x,y,t)
∂x2∂y2 + 1

2 K2
∂4ϕ(x,y,t)
∂x2∂y2 +

+ 1
2 K3

∂4ws(x,y,t)
∂x2∂y2 + 1

2 K1
∂4ws(x,y,t)

∂y4 + 1
2 K ∂4wb(x,y,t)

∂x4 + 1
2 K1

∂4ws(x,y,t)
∂x4 +

+ 1
4 K ∂4ws(x,y,t)

∂x4 + 1
4 K0

∂4ϕ(x,y,t)
∂x4 + K ∂4wb(x,y,t)

∂x2∂y2 + 1
2 K ∂4ws(x,y,t)

∂x2∂y2 +

+K1
∂4ws(x,y,t)
∂x2∂y2 + 1

2 K0
∂4ϕ(x,y,t)
∂x2∂y2 + 1

2 K ∂4wb(x,y,t)
∂y4 + 1

4 K ∂4ws(x,y,t)
∂y4 +

1
4 K0

∂4ϕ(x,y,t)
∂y4 − 2F440

∂3v(x,y,t)
∂x2∂y + 4F441

∂4wb(x,y,t)
∂x2∂y2 + 4F442

∂4ws(x,y,t)
∂x2∂y2 +

−2F440
∂3u(x,y,t)
∂x∂y2 −Cd

∂wb(x,y,t)
∂t −Cd

∂ws(x,y,t)
∂t −Cdg∂ϕ(x,y,t)

∂t +

+KG
∂2ws(x,y,t)

∂x2 + KG
∂2wb(x,y,t)

∂x2 + KGg∂
2ϕ(x,y,t)
∂x2 + KG

∂2ws(x,y,t)
∂y2 +

+KG
∂2wb(x,y,t)

∂y2 + KGg∂
2ϕ(x,y,t)
∂y2 −KW gϕ(x, y, t) −KWws(x, y, t) −KWwb(x, y, t)+

−I3
∂3u(x,y,t)
∂t2∂x + I5

∂4wb(x,y,t)
∂t2∂x2 + I6

∂4ws(x,y,t)
∂t2∂x2 − I3

∂3v(x,y,t)
∂t2∂y +

+I5
∂4wb(x,y,t)
∂t2∂y2 + I6

∂4ws(x,y,t)
∂t2∂y2 − I0

∂2wb(x,y,t)
∂t2 − I0

∂2ws(x,y,t)
∂t2 +

−I4
∂2ϕ(x,y,t)

∂t2 = 0

(40)

δϕ :

−
1
2 K1

∂4wb(x,y,t)
∂y4 −

1
4 K2

∂4ϕ(x,y,t)
∂y4 −

1
4 K3

∂4ws(x,y,t)
∂y4 −

1
2 K1

∂4wb(x,y,t)
∂x4 +

+ 1
4 K3

∂4ws(x,y,t)
∂x4 + 1

4 K2
∂4ϕ(x,y,t)

∂x4 + 1
4 K4

∂2ϕ(x,y,t)
∂y2 + 1

4 K5
∂2ws(x,y,t)

∂y2 +

+ 1
4 K5

∂2ws(x,y,t)
∂x2 + 1

4 K4
∂2ϕ(x,y,t)

∂x2 −G550
∂2ws(x,y,t)

∂x2 −G550
∂2ϕ(x,y,t)

∂x2 +

+G551
∂2ws(x,y,t)

∂x2 + G551
∂2ϕ(x,y,t)

∂x2 + G661
∂2ws(x,y,t)

∂y2 + G661
∂2ϕ(x,y,t)

∂y2 +

−K1
∂4wb(x,y,t)
∂x2∂y2 −

1
2 K2

∂4ϕ(x,y,t)
∂y2∂x2 −

1
2 K3

∂4ws(x,y,t)
∂y2∂x2 +

+ 1
4 K0

∂4ϕ(x,y,t)
∂x4 −

1
4 K ∂4ws(x,y,t)

∂x4 −
1
2 K ∂4wb(x,y,t)

∂x4 + 1
4 K0

∂4ϕ(x,y,t)
∂y4 +

+K ∂4wb(x,y,t)
∂y2∂x2 + 1

2 K ∂4ws(x,y,t)
∂y2∂x2 + 1

2 K0
∂4ϕ(x,y,t)
∂y2∂x2 + 1

4 K ∂4wb(x,y,t)
∂y4 +

+ 1
4 K ∂4ws(x,y,t)

∂y4 + E330ϕ(x, y, t) + E230
∂v(x,y,t)
∂y − E131

∂2wb(x,y,t)
∂x2 − E132

∂2ws(x,y,t)
∂x2 +

−E232
∂2ws(x,y,t)

∂y2 − E231
∂2wb(x,y,t)

∂y2 −G660
∂2ϕ(x,y,t)

∂y2 −G660
∂2ws(x,y,t)

∂y2 +

−Cd
∂wb(x,y,t)

∂t −Cd
∂ws(x,y,t)

∂t −Cdg2 ∂ϕ(x,y,t)
∂t −KW gwb(x, y, t) −KW gws(x, y, t)+

−KW g2ϕ(x, y, t) + KGg∂
2ws(x,y,t)
∂x2 + KGg∂

2wb(x,y,t)
∂x2 + KGg2 ∂

2ϕ(x,y,t)
∂x2 +

+KGg∂
2ws(x,y,t)
∂y2 + KGg∂

2wb(x,y,t)
∂y2 + KGg2 ∂

2ϕ(x,y,t)
∂y2 +

−I4
∂2wb(x,y,t)

∂t2 + I4
∂2ws(x,y,t)

∂t2 + I4
∂2ϕ(x,y,t)

∂t2 = 0

(41)

More details about the coefficients in Equations (37)–(41), are reported in the Appendix A.
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4. Analytical Solution Procedure

The differential equations of the Equations (37)–(41) are solved analytically according to the
Navier’s procedure in this section. Therefore, for a simply supported structure, we consider the
following theoretical expressions for the displacement components [42]

u(x, y, t) = U cos(αx) sin(βy)eiωt,
v(x, y, t) = V sin(αx) cos(βy)eiωt,
wb(x, y, t) = Wb sin(αx) sin(βy)eiωt,
ws(x, y, t) = Ws sin(αx) sin(βy)eiωt,
ϕ(x, y, t) = Φ sin(αx) sin(βy)eiωt

(42)

in which U, V, Ws, Wb and Φ are the unknown coefficients. In addition, α and β are defined as mπ/a
and nπ/b, respectively, where m and n are the mode numbers along the length and width direction,
respectively. After substituting Equation (42) into Equations (37)–(41), the equations of motion gain
the following compact form (

[K]5×5 + iω[C]5×5 −ω
2[M]5×5

)
{d} = 0 (43)

where [K], [C], and [M] refer to the stiffness matrix, damping matrix, and mass matrix, respectively,
whereas {d} is the displacement vector. The natural frequencies of the structure are then obtained by
solving the classical eigenvalue problem (43).

5. Numerical Results

In this section we illustrate the numerical results, in terms of vibration response, for a microsandwich
plate with a honeycomb core made of Nomex or Glass phenolic, and Epoxy-reinforced GPLs as face
sheets. The Nomex has the following properties: Es = 3.2 GPa, ρ = 48 kg/m3, and ν = 0.4. For the Glass
phenolic, the same properties of Ref. [43] are assumed herein. The Epoxy matrix and GPLs reinforcement
phase for the face sheets have the following properties [44]

EGPL = 1.01 TPa, ρGPL = 1062.5 kg/m3, νGPL = 0.186,
LGPL = 2.5µm, wGPL = 1.5µm, hGPL = 1.5 nm,
EM = 130 GPa, ρM = 8960 kg/m3, νM = 0.34

The microplate has a total height equal to 150 µm, 80% of whose total height corresponds to the
core, and the rest is equally divided between the two face sheets. The length of the square plate is
ten-fold of its thickness. The internal cell angle, aspect ratio, and dimensionless cells thickness are
assumed to be π/6, 1, and 0.1, respectively. Moreover, the material length-scale parameter is kept as
15 µm according to Ref. [36].

To check for the reliability of our formulation, we compare the results for a single-layer
FG-GPL-reinforced square microplate with predictions by Thai et al. [45]. The comparative results are
summarized in Table 2, in terms of dimensionless natural frequencies defined as Ω =

(
ωa2/h

)√
ρM/EM,

for various mode numbers, while considering the effect of the aspect ratio (a/h) and length-scale
parameter-to-total thickness (lm/h). Based on Table 2, a very good agreement is observable between
the results from our formulation and those ones from Ref. [45], where some negligible differences are
related to the different kinematic assumptions, and/or different solution techniques.

In Table 3, we also summarize the natural frequencies for different mode numbers, as computed
according to a MCST or a classical elasticity theory (CET), for a varying internal cell angle from 30◦ up
to 60◦. Based on results in Table 3, note that the mode number and internal cell angle yield a reverse
effect on the natural frequency of the sandwich microplate, whereby an increasing mode number
and a decreasing internal cell angle get higher values of the natural frequencies. It seems also that
CET-based predictions are always more conservative than those once based on a MCST, in agreement
with findings in Refs. [46–50] from the literature.
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Table 2. Comparative evaluation between our results and those ones of Ref. [45] for a square microplate
and different mode numbers.

a/h lm/h

0.0 0.2 0.4 0.6 0.8 1.0

5
Epoxy Present 0.2145 0.2322 0.2786 0.3319 0.4143 0.4815

Ref. [45] 0.2148 0.2301 0.2708 0.3271 0.3920 0.4615

Uniform
Present 0.4460 0.4820 0.5794 0.7114 0.8622 1.0220
Ref. [45] 0.4468 0.4789 0.5639 0.6813 0.8164 0.9613

10
Epoxy Present 0.0586 0.0632 0.0752 0.0918 0.1109 0.1315

Ref. [45] 0.0586 0.0629 0.0745 0.0905 0.1091 0.1290

Uniform
Present 0.1219 0.1314 0.1564 0.1910 0.2308 0.2736
Ref. [45] 0.1219 0.1310 0.1551 0.1885 0.2271 0.2686

Table 3. Effect of the internal cells angle of the honeycomb core on the structural response, as predicted
by modified couple stress theory (MCST) and classical elasticity theory (CET).

ω (MHz)

(m, n) θ=30◦ θ=45◦ θ=60◦

MCST
(1, 1) 0.1789 0.1762 0.1728
(2, 1) 0.3821 0.3691 0.3542
(2, 2) 0.5113 0.4940 0.4758

CET
(1, 1) 0.1678 0.1633 0.1577
(2, 1) 0.3555 0.3376 0.3166
(2, 2) 0.4545 0.4310 0.4064

Another key aspect of the problem can be the sensitivity of the response to various GPLs
dispersions in the Epoxy matrix over a wide range of mode numbers, as listed in Table 4. It is worth
noticing that the sandwich structure becomes stiffer for an increased quantity of GPLs as reinforcing
phase, and the natural frequency enhances dramatically in each mode number.

Table 4. Effect of the GPLs dispersion patterns on the natural frequencies of the micro structure, for
different mode numbers.

ω (MHz)

(m, n) Uniform (λU = 1) Parabolic (λP = 1) Linear (λL = 2) Epoxy

(1, 1) 0.1745 0.1637 0.2115 0.1044
(2, 1) 0.3584 0.3368 0.4246 0.2192
(2, 2) 0.4832 0.4521 0.5670 0.2950
(3, 1) 0.5849 0.5505 0.6799 0.3656
(3, 2) 0.6794 0.6378 0.7860 0.4287
(3, 3) 0.8131 0.7606 0.9387 0.5016

It seems also that a linear dispersion of GPLs in the Epoxy matrix with λL = 2 is more effective
than other types of distribution with λP = λU = 1 for an overall increase in the structural stiffness. This
shows that the GPLs dispersion coefficient plays a crucial role, more than the type of GPLs dispersion,
for an increase in the natural frequency.

Figure 2 shows the variation of the natural frequency for the sandwich microplate against the
lm/h ratio, for different dispersions of GPLs. By increasing lm/h rational value, and keeping constant
the total thickness of the sandwich model, the natural frequency increases monotonically, for each
fixed value of λL, λP, λU. This behavior is due to a reduced flexibility of the sandwich microplate
which corresponds to a stiffness and stability enhancement. For each type of GPLs dispersion, a higher
distribution coefficient obtains higher natural frequencies.
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Figure 2. Size and GPLs amount effects on the fundamental natural frequency.

Figure 3 plots the effect of the aspect ratio, a/b, on the natural frequency of the microstructure
for different GPLs dispersion coefficients. For each fixed GPLs dispersion coefficient and type, an
increased aspect ratio up to one clearly reduces the natural frequency reaching the minimum value for
a cubic sandwich structure. Once this minimum value is passed, the aspect ratio rolling up causes a
monotonic increase in the natural frequency for each selected GPLs dispersion coefficient and type.
A further systematic analysis is also performed to check for the sensitivity of the natural frequency
alternation with the lm/h ratio, under different assumptions for the honeycomb core material in Figure 4.
Based the plots in this figure, it is worth observing that the most rigid sandwich microstructure is
obtained for a uniform Nomex honeycomb core material, where the most flexible one is reached for an
Epoxy/Glass Phenolic core material. All the other results based on an Epoxy/Nomex honeycomb or
Uniform/Glass Phenolic core material assumption are very close to each other, and fall always within
the previous two cases. As also plotted in Figure 5, the natural frequency decreases monotonically
for an increasing geometrical ratio hGPL/LGPL of the reinforcing phase, as predicted by a CET or a
MCST, respectively, while assuming three different rational values for LGPL/WGPL, namely, LGPL/WGPL
= 1; 5/3; 2. This means that the GPLs length variations (reduction or enhancement) have a direct
relationship with the natural frequency, stiffness and rigidity. For each selected theory, an increased
value of LGPL/WGPL reduces gradually the natural frequency for each fixed value of hGPL/LGPL. Based
on a comparative evaluation of the curves in Figure 5, it can be noted that MCST provides always a
higher natural frequency compared to the CET.
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In Figure 6 we analyze the effect of the viscoelastic foundation on the vibration response, while
providing the 3D plot of the natural frequency for different combinations of KW, KG under three different
assumptions for the damping parameter Cd = 500; 1000; 1500 (N·s/m) is provided. By increasing the
Winkler and Pasternak parameters (KW, KG) the structural stiffness increases together with the natural
frequency for each fixed value of Cd. Based on the three plots, it is worth mentioning the great damping
effect on the frequency response, where a decreased value of Cd obtains higher frequencies for each
fixed combination of KW, KG.
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The effect of the internal aspect ratio φ0 and dimensionless cell thickness γ0 on the first natural
frequency of the sandwich microplate is plotted in Figure 7. Based on the results in this figure, larger
magnitudes of γ0 lead to an increased system stability. On the other hand, a clear reduction in the
structural stiffness and frequency is gained by internal aspect ratio enhancement and honeycomb core
thickness reduction in the case of fixed internal cells angle equal to 30◦. This means that, for a constant
value of total thickness, a lower face sheet thickness to core thickness ratio results in a higher stiffness
and weaker flexibility.
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Figure 7. Effect of the honeycomb cells’ geometrical parameters on the first natural frequency of
the structure.

Moreover, based on the curvatures plotted in Figures 8 and 9 which represent the first natural
frequency versus the honeycomb core internal cell angle φ0 for different internal aspect ratios ϕ0,
it seems that an enhancement of both parameters gets a natural frequency reduction. In addition,
Figure 9 illustrates that the thicker honeycomb core provides higher structural stiffness and natural
frequency. As a final parametric investigation, we check for the variation of the first natural frequency
with the lm/h, based on the MCST or CET, under the assumption of three different core thicknesses.
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Based on the plots in Figure 10, it should be noted that the natural frequency increases significantly
for higher values of lm/h ratio, when the problem is tackled by a MCST, whereas it remains almost
unaffected by lm/h according to a CET. This confirms, once again, the great importance of adopting a
size-dependent approach instead of classical formulations.
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6. Conclusions

In this work, a QHSDT is employed to investigate the vibrational behavior of sandwich honeycomb
microplates with two GPLs’ composite face sheets, resting on elastic foundations. The equations
of motion are obtained by applying the Hamilton’s principle, where the Navier-type solutions are
determined in analytical form. Based on a large systematic investigation, it is noted that an Epoxy/Nomex
honeycomb core makes the sandwich structure less flexible than Epoxy/Glass phenolic and uniform glass
phenolic core materials, whereby a uniform Nomex honeycomb core provides the highest structural
stiffness. Moreover, a larger dimensionless cell thickness (γ0) yields an increased stability in the system,
whereas internal aspect ratio elevation provides structural stability reduction along with the system’s
stiffness and natural frequency. The results based on a MCST are compared to predictions from CET to
provide a clear understanding about vibrational responses’ sensitivity to size-dependent parameters.
In agreement with findings from the literature, a CET always produces more conservative results
compared to an MCST, which justifies the necessity of adopting non classical approaches instead of the
classical ones. The proposed model together with our numerical results could be very useful for the
design and manufacturing of many aerospace, automotive or shipbuilding engineering applications,
where honeycomb structures are recommended for their great capability to tolerate high pressures and
stresses despite their light structure.
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Appendix A Appendix

The coefficients in Equations (37)–(41) are defined as in the following
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