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ABSTRACT Since 2014, acute flaccid myelitis (AFM), a long-recognized condition as-
sociated with polioviruses, nonpolio enteroviruses, and various other viral and nonvi-
ral causes, has been reemerging globally in epidemic form. This unanticipated re-
emergence is ironic, given that polioviruses, once the major causes of AFM, are now
at the very threshold of global eradication and cannot therefore explain any aspect
of AFM reemergence. Instead, the new AFM epidemic has been temporally associ-
ated with reemergences of nonpolio enteroviruses such as EV-D68, until recently
thought to be an obscure virus of extremely low endemicity. This perspective re-
views the enigmatic epidemiologic, virologic, and diagnostic aspects of epidemic
AFM reemergence; examines current options for clinical management; discusses fu-
ture research needs; and suggests that the AFM epidemic offers important clues to
mechanisms of viral disease emergence.
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In recent decades, new human infectious diseases such as HIV/AIDS, severe acute
respiratory syndrome (SARS), and Nipah virus infection, among others have emerged.

Well-known diseases also have reemerged because of human movement, crowding,
and other population factors (e.g., dengue and dengue hemorrhagic fever), warfare and
natural disasters (e.g., cholera), and viral evolution (e.g., poultry-adapted influenza A
H5N1 and H7N9) (1). Joining this list is epidemic acute flaccid myelitis (AFM), charac-
terized by sudden denervation-associated muscle paralysis of healthy children (and
occasionally adults) in one or more limbs that mimics poliomyelitis but which is not
caused by polioviruses (2). AFM was first recognized around 2010 as a seemingly novel
condition (3, 4) and quickly grew into an alarming and important disease threat, with
the first large outbreak occurring in 2014 (5). Since then, seasonal waves have occurred
every other year in the United States, the largest occurring in 2018 (Fig. 1) (6–8)).
Because of its uncertain cause and pathogenesis, enigmatic epidemiology, and limited
treatment options, the disease captured national attention and triggered considerable
concern among parents of young children.

Background. AFM actually is a newly coined term for a subset of cases of the
long-recognized syndrome of acute flaccid paralysis (AFP) (9, 10), in which cord myelitis
is documented, typically by magnetic resonance imaging (MRI) visualization (3, 11). The
term AFP subsumes additional causes of flaccid paralysis such as trauma, tumors, and
immunopathologic disorders. Clinical descriptions of AFP appeared in medical text-
books in 1789. Clusters of cases began to be recognized in 1840, with larger epidemics
documented in Sweden in 1881 and in the United States in 1894. Early, widespread
epidemics came to be referred to as “poliomyelitis” (“polio” for short, derived from the
Greek words for inflammation of the neural gray matter). In the late 1940s, the
breakthrough (and Nobel Prize-winning) technology of viral cultivation in tissue culture
led to the isolation of three infectious agents of epidemic polio (poliovirus types 1, 2,
and 3), to further clinical and epidemiologic characterization of poliomyelitis, to effec-
tive polio vaccines, and to global polio eradication efforts, now in their final stages.
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Multiple broadly pathogenic nonpolio enteroviruses. Poliovirus isolation tech-
niques also led to discovery and characterization of a large, ubiquitous group of
picornaviruses termed “enteroviruses,” containing not only the three polioviruses but
also at least 110 “nonpolio enteroviruses” (NPEVs) (12). Unlike classical fecal-oral
transmission of polioviruses, some NPEVs are more commonly transmitted by the
respiratory route. NPEVs can cause a wide array of disease syndromes, including
respiratory infections, conjunctivitis, myositis, pleurodynia, myocarditis, maculopapular
and vesicular rashes, hand-foot-and-mouth disease, herpangina, meningitis, encepha-
litis, so-called “neonatal viral sepsis,” possibly type 1 diabetes, and— occasionally—
sporadic AFM (9, 10). Indeed, the very first NPEV discovered (coxsackievirus A1, in 1947)
was isolated from a child with AFM (13). In temperate climates, NPEVs circulate together
endemically and epidemically every late summer/fall, causing localized outbreaks of
aseptic meningitis and other conditions. Although immunity to NPEVs is near-universal
by early childhood (10), infections continure to occur because there are many different
NPEV types, some evolving rapidly (10).

FIG 1 Epidemic curve of 551 confirmed cases of AFM reported to the U.S. Centers for Disease Control
and Prevention by month of onset, 14 August 2014 to 31 January 2019 (6). The epidemic curves of
summer/fall AFM correspond closely to typical seasonal peaks of most NPEVs, including EV-D68 (7, 8).
Note that the U.S. epidemics have occurred in 2-year cycles, with peak case onsets in the middle week
of September in 2014, 2016, and 2018 but with few cases during any season of the intervening years
2015 and 2017.
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Circulating NPEVs usually are replaced, in part or in whole, by other NPEVs in
subsequent seasons (9, 10); however, some NPEVs may reappear at intervals of 2 or
more years (8–10, 14, 15). For example, in Southeast Asia (but not in the rest of the
world), EV-A71 has occurred in 2- to 3-year cycles (8); in previous decades, 5-year cycles
were noted for EVA9 and EVB5; and various other cyclic patterns have been noted for
different NPEVs (9, 14). The cycles presumably reflect factors such as viral transmissi-
bility, population immunity, and possibly NPEV elicitation of cross-reactive immunity to
shared epitopes. Short-interval cyclicity is consistent with viral hypertransmissibility,
which leads to high population herd immunity that prevents further spread until such
time as new annual birth cohorts of susceptible persons can sufficiently dilute it. Such
patterns were well described for measles and other childhood diseases in the prevac-
cine era.

NPEVs, AFM, and AFP. Sporadic AFM inevitably appears at low incidence during
widespread seasonal circulation of almost any NPEV. Some NPEVs, e.g., EV-A70 and
EV-A71, have been historically more frequent causes of AFM than have others (8–10).
Beginning in 1988, polio eradication efforts further clarified NPEV epidemiology via the
global establishment of national surveillance systems to identify all cases of AFP. As
many as 60,000 documented cases of nonpolio AFP are reported annually (16); cases
are predominantly associated with NPEVs or Guillain-Barré syndrome, the latter of
which is itself often associated with NPEVs (17, 18). Thus, multiple NPEVs have been
closely linked to thousands of AFP and AFM cases for more than 3 decades.

The global emergence of epidemic AFM. Although sporadic AFM is not rare, its
sudden appearance in epidemic form is unprecedented. Beginning in the summer and
fall of 2012, California and other locales began to detect small, unexpected upticks in
AFM cases featuring influenza-like respiratory prodromes and associated with various
NPEVs. These AFM-associated NPEVs prominently included EV-D68 (19, 20), an histor-
ically obscure NPEV that had been reemerging globally since 2008 to cause pandemic
respiratory disease (16, 21). The reemergence of EV-D68 was itself unprecedented.
Although acute hemorrhagic conjunctivitis associated with EVA24v and with EV-D70
had caused global tropical air hub-to-air hub spread (9, 22), and hand-foot-and-mouth
disease-associated EV-A71 had in recent decades caused Southeast Asian regional
epidemics (8), no NPEV previously had been documented to reemerge from viral
obscurity to spread pandemically.

By 2014 to 2015, large AFM epidemics began to appear across the United States and
globally (Fig. 1); again, such outbreaks typically occurred in temporal association with
EV-D68 epidemics (3, 4, 5, 19, 20). The EV-D68/AFM epidemiological association has
since become unmistakable. Two unprecedented epidemics have been recurring in the
same places at the same times: beginning in 2014, AFM epidemics in the United States
have recurred in 2-year cycles of increasing magnitude, usually during seasonal EV-D68
circulation (Fig. 1). However, despite coclustering of AFM and EV-D68, viruses are often
not identified from AFM cases and are almost never isolated from the cerebrospinal
fluid (CSF). Confusion and doubt about the causes of AFM mounted in 2018.

A hit-and-run infection? There is an obvious paradox in temporal-geographic
association between AFM and EV-D68, on the one hand, and difficulty detecting EV-D68
in AFM cases, on the other. In this regard, a precipitating EV-D68 infection, often with
low-level viral replication (20), may well have run its course by the time of onset and
diagnosis of AFM, several days to a week or more later. Early transient viremia during
the respiratory prodrome might also have resolved by the time of AFM onset. Alter-
natively, local virus may cross the blood-brain barrier to extend proximally up nerve
axons to the cord; this is believed to be the mechanism of ipsilateral trauma-associated
“provocation poliomyelitis” (23). In addition, some NPEVs that spread by the respiratory
route, including EV-D68, have low gastrointestinal tropism, hindering stool isolation
(the standard poliovirus diagnostic technique).

It is noteworthy that while enterotropic polioviruses, and some other NPEVs that
cause AFM, often can be isolated from stool for weeks, they, too, like nonenterotropic
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EV-D68, are uncommonly isolated from the CSF of paralytic cases (24). Similarly to
epidemic polio, the AFM epidemic has been associated with cases of cranial nerve
paralysis, bulbar paralysis, and meningoencephalitis (3, 20). Once viral damage to gray
matter has occurred—via viral cytopathicity or a pathogenic immune response—
intracellular virus may not be released into the (anatomically distant) spinal fluid and
thus detected by lumbar puncture. Furthermore, although easily visible on MRI (3, 11),
involved cord and bulbar gray matter cannot safely be biopsied to allow for direct virus
isolation. For these reasons, EV-D68-induced pathogenic processes associated with
early brief low-level viral replication and early transient viremia, or with direct axonal
extension to internal cord gray matter, might well lead to AFM without providing good
opportunity for viral detection.

Although EV-D68 appears to be good at covering its tracks, the epidemiologic
evidence that EV-D68 is a major cause of epidemic AFM, while circumstantial, is
nonetheless strong. Since historically many or even most cases of nonpolio AFP/AFM
have been caused by circulating NPEVs (18, 24, 25), it is logical to suspect that during
explosive EV-D68 epidemicity, many or most AFM cases would be caused by EV-D68 as
well, even as AFM cases associated with other NPEVs continue to occur at lower
background rates.

Unanticipated plot twists. As it unfolds, the AFM story seems to be getting more
complicated. Preliminary U.S. data show that not only was epidemic AFM associated
with EV-D68 in 2018, but also with EV-A71 (26), a well-known cause of both hand-foot-
and-mouth disease and AFM that has been problematic in other regions of the world,
but historically less so in the United States. Could we be entering some kind of new
epidemic era, in which fundamental but unappreciated determinants of enterovirus
evolution and spread are changing? In this context, it is also appropriate to consider
whether epidemic AFM results only from high-level epidemic circulation of viruses such
as EV-D68 and EV-A71 or, as some data suggest, from rapid viral evolution via mutation
and recombination that leads to increased viral pathogenicity (20, 21, 24, 27–32). This
is an extremely important question, and additional evidence will be crucial.

A related question is how to explain the paradox of EV-D68 epidemics in popula-
tions with virtually 100% preexisting neutralizing antibody to EV-D68, e.g., 2012–2013
preepidemic data from Kansas City, Missouri (33). Medical record reviews might identify
missed or misclassified prior cases. More likely, perhaps, is that complex cross-reactive
and cross-protective immunity of circulating enteroviruses drives viral evolution. It is of
note that large epidemics of EV-A71 have in the past been associated with clade and
subclade replacement (8). Furthermore, as is observed with other human viruses
adapted to superficial mucosal infection, e.g., respiratory syncytial virus (RSV), norovi-
ruses, and many others, the correlates of protective immunity to viruses such as EV-D68
may include mucosal immune factors such as IgA and local tissue-resident immune
cells.

Clinical conundrums. As important as determining the cause of AFM is the estab-
lishment of optimal interventions to prevent, limit, or reverse neurologic damage that
is often advanced at the time of clinical presentation. Attempts at treatment with
interventions such as intravenous immunoglobulin, glucocorticoids, plasma exchange,
and antiviral drugs such as pleconaril have been largely unsuccessful (34). Experimental
nerve transfer to adjacent unaffected segments of the cord may offer improvement to
some patients (35). Of greater promise is mounting evidence that early intensive
physical therapy (36, 37), the value of which has been well documented for polio (37),
may benefit nonpolio AFM patients as well. Therapy for polio was developed to be
aggressive and comprehensive in addressing each of the three conceptual stages of
acute, convalescent, and chronic polio paralytic disease (36, 37). Specific therapeutic
goals targeted loss of flexibility, loss of muscle power, decreased vital capacity, poten-
tial for residual deformity, loss of skill, and loss of functional stamina. In recent decades,
recognition of the postpolio syndrome, usually developing decades after initial paral-
ysis, and with potential future implications for AFM patients, has led to additional
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physical therapy approaches (38). Physicians should consider physical therapy consul-
tation at the earliest possible time after AFM onset.

Research challenges. A major challenge in the study of this disease is that AFM is
an uncommon, sporadically occurring complication of a common infection that is
difficult to diagnose with viral specificity. Moreover, one cannot predict where or when
it will strike next, and the site of devastating tissue damage is inaccessible to direct
study. Research progress is greatly impeded by lack of understanding of the natural
history and pathogenesis of AFM disease, including viral pathogenesis, and by lack of
understanding of AFM epidemiology, including aspects of cross-reactive immunity
associated with the many and rapidly evolving NPEVs, especially EV-D68 and EV-A71.
Perhaps, as has long been predicted, there is a “poliovirus niche” into which one or
more NPEVs will evolve as we approach the eradication of polio (24, 39). It is conceiv-
able that we may be seeing the early stages of such an evolution.

Until such time as the causes of the AFM epidemic are better understood, devel-
opment of preventive vaccines will remain challenging. NPEV virus-specific diagnostics
are needed, as are virus-specific serologic tests to support epidemiologic studies. Also
needed are experimental animal models to study viral neurovirulence and neuroinva-
siveness properties (32), genetic markers, and drug therapies (40). These and other
research challenges are daunting because the NPEVs have been neglected for decades.
Watching healthy children become permanently paralyzed virtually overnight by a
seemingly random, lightning-strike disease is as heartbreaking today as it was in the
polio era. The trajectory of AFM over the past 5 years suggests that the problem is
getting worse, and so it is critical that we galvanize our efforts to learn more about, and
respond adequately to, this ubiquitous, often crippling, continually reemerging group
of viruses.
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