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Suml[rlary 
CD22 is a B cell-restricted member of the immunoglobulin (Ig) superfamily that functions as 
an adhesion receptor for leukocytes and erythrocytes. CD22 is unique among members of the 
Ig superfamily in that it has been suggested to bind a series of sialic acid-dependent ligands, 
potentially through different functional domains expressed by different splice variants of CD22. 
In this study, the epitopes identified by a large panel of function-blocking and non-function- 
blocking CD22 monoclonal antibodies were localized to specific Ig-like domains, revealing that 
all function-blocking monoclonal antibodies bound to the first and/or second Ig-like domains. 
Consistent with a single ligand-binding region, the two amino-terminal domains were the func- 
tional unit that mediated CD22 adhesion with lymphocytes, neutrophils, monocytes, and erythro- 
cytes. The predominant cell surface species of CD22 was a full length 140,000 relative molecular 
mass seven Ig-like domain glycoprotein and a minor 130,000 relative molecular mass form lacking 
the fourth domain. While the two amino-terminal Ig-like domains of CD22 are structurally 
similar to those found in other members of the Ig superfamily involved in cell adhesion and 
containing an amino acid sequence motif associated with integrin recognition, site-directed muta- 
genesis of critical residues surrounding this motif did not disrupt CD22-mediated adhesion. These 
results demonstrate that the unique ligand-binding properties of CD22 are distinct from those 
of other members of the Ig superfamily involved in integrin-mediated cell adhesion. 

I g superfamily members most commonly interact with 
other members of the Ig superfamily or members of the 

integrin family through protein-protein interactions. In con- 
trast, the CD22 adhesion molecule is a member of the Ig 
superfamily that binds cell surface ligands through a sialic 
acid-dependent mechanism (1-4). CD45RO and CDw75 
were initially proposed to be specific ligands for CD22 (1). 
However, subsequent studies have not confirmed these findings 
(2, 5, 6). A soluble fusion protein composed of the extracel- 
lular domain of CD22 and Ig has been reported to bind to 
multiple glycoproteins, including all isoforms of CD45, gener- 
ating the conclusion that CD22 may have multiple ligands 
(3, 7). Nonetheless, all studies have confirmed that sialic acid 
is an essential component of the CD22 ligand, as neuramini- 
dase treatment of target cells eliminates CD22-mediated adhe- 
sion (1-4). Therefore, the ligand-binding activity of CD22 
is unprecedented among members of the of Ig superfamily, 
leading to the notion that CD22 represents a new class of 
Ig superfamily members which function as mammalian lec- 
tins (3, 4). 

CD22 is a B lineage-restricted phosphoglycoprotein ex- 
pressed in the cytoplasm of pre-B cells and on the surface 

of mature B lymphocytes (8, 9). The binding of antibodies 
to CD22 in vitro augments both the increase in intraceUular 
free Ca ++ and the proliferation induced after cross-linking 
of cell surface Ig (10, 11). The cytoplasmic tail of CD22 con- 
tains a region of homology with the antigen-receptor recog- 
nition homology 1 motif that is found in the cytoplasmic 
domains of several signal transduction molecules (12, 13). A 
fraction of cell surface CD22 has also been reported to as- 
sociate with the surface Ig receptor complex (12, 13). There- 
fore, ligand-binding by CD22 is likely to play a significant 
role in B cell activation. 

The first isolated CD22 cDNA encoded an extracellular 
region composed of an amino-terminal V-type Ig-like domain, 
followed by four C-type Ig domains (14). Subsequently, a 
CD22 cDNA that encoded two additional C-type Ig-like do- 
mains (domains 3 and 4) was cloned (15). The five Ig domain 
form, termed CD22o~, was reported to bind erythrocytes and 
monocytes (1, 14), while the seven Ig domain form (CD22/3) 
mediates binding of B and T lymphocytes, monocytes, neu- 
trophils, and erythrocytes (2, 14, 15). CD22 can be immu- 
noprecipitated from B lymphocytes and some B cells lines 
as a dominant 140,000-M, protein, with a modest 130,000- 
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Mr protein species (2, 8, 16). The above structural and func- 
tional data imply that CD22 contains, at least, two distinct 
ligand-binding sites and that the third and/or fourth Ig-like 
domains play a selective role in CD22 binding to ligands 
present on B and T lymphocytes (1). In contrast to this hy- 
pothesis, studies using a panel of CD22 mAb indicate that 
a single region of CD22 is involved in binding of lympho- 
cytes, monocytes, neutrophils, and erythrocytes (2). To fur- 
ther determine the components of CD22 responsible for its 
unique sialic acid-binding activity and to examine the differen- 
tial function of the CD22 forms, the ligand-binding domains 
of CD22 were mapped using mAb and domain deletion mu- 
tants. These studies demonstrate that the first two domains 
of CD22 form a functional unit that mediates adhesion. 

Materials and Methods 
Antibodies. The HB22 mAb reactive with CD22 were used as 

hybridoma tissue culture supernatant fluid or as purified mAb at 
5/~g/ml, as described (2). The remaining CD22 mAb were from 
the Fifth International Leukocyte Differentiation Antigen Work- 
shop (Boston, MA) and were used as purified mAb at 5 #g/ml. 

Production of Mutant CD22 cDNA. Truncated CD22 cDNA 
were produced using restriction sites naturally present at the bound- 
aries between Ig-like domains and/or by introducing new unique 
restriction sites by PCtL (GeneAmp; Perkin-Elmer Cetus, Norwalk, 
CT), using a full-length CD22 cDNA template (15), as described 
(2). Domain deletions were guided by previous assignment of do- 
main boundaries (15). All PCR products were subcloned, sequenced, 
ligated with the appropriate CD22 cDNA fragments, and subcloned 
into the pMT2 expression vector (Genetics Institute, Cambridge, 
MA). Different oligonucleotide primers were used, which changed 
amino acids D s~ D s2, L s3' E 54, and I s6 to alanine. The amino acids 
FSSIL were also changed to LSSAR. PCR products containing 
point mutations were swapped with the corresponding sequence, 
using a unique HindlII site close to the mutation site. 

Adhesion Assays. COS cells were transfected by the DEAE- 
dextran method with full-length CD22 cDNA in the CDM8 ex- 
pression vector (15), or with the CD22 cDNA mutants. After trans- 
fection (24 h), the cells were trypsinized and transferred to 35-mm 
tissue culture dishes and cultured for an additional 24 h. Adhesion 
assays were as described (2). 

Staining of cDNA-transfected COS Cells with mAh Transfected 
COS cells were stained with different CD22 mAb 48 h after trans- 
fection, using a peroxidase-conjugated rabbit anti-mouse Ig an- 
tiserum (Dako, Glostrup, Denmark) and a substrate containing 
amino ethyl carbazole (Sigma Chemical Co., St. Louis, MO) and 
dimethyl formamide (Sigma Chemical Co.). None of the mAb 
stained untransfected COS cells, except the HB22.33 and S-HCL1 
mAb, which gave light staining in some experiments. 

Radiolabeling and Immunopre@itation Analysis. Daudi cells were 
surface labeled (2 x 107 cells in 200 #1) with 12sI, as described (2). 
Immunoprecipitations were as described (17). Immunoprecipitates 
were electrophoresed under reducing conditions on an 8.5% SDS- 
PAGE gel, dried, and autoradiographed. Mr were determined, 
using prestained standard mol wt markers (Gibco-BRL, Gaithers- 
burg, MD). 

Results 
Epitopes Identified by mAb that Block CD22-mediated Adhe- 

sion. A panel of 30 CD22 mAb was tested for the ability 

to block the attachment of B cell lines (Raji and Daudi), a 
T cell line (Jurkat), erythrocytes, neutrophils, and monocytes 
to COS cells transfected with a full length CD22 cDNA 
(COS-CD22). 4 mAb completely blocked (80-100%) the 
binding of all cells to COS-CD22 cells (Table 1). 4 additional 
mAb partially blocked adhesion (20-80%). The remaining 
22 mAb had little or no effect on cell binding, except I mAb, 
IS7, which partially blocked erythrocyte adhesion. 

The domains identified by the CD22 mAb were determined 
using truncated forms of CD22 cDNA that lacked domain 
1 (CD22A1), domain 2 (CD22A2), domains 3 and 4 
(CD22A3,4), domain 4 (CD22A4), and domains 2, 3, and 
4 (CD22A2-4). All truncated forms of CD22 were identified 
by the HB22-12 and BC-8 mAb, and all cDNA were expressed 
with an intensity similar to that observed for wild-type CD22 
(Table 1). The binding of most CD22 mAbs was dependent 
on the expression of individual Ig-like domains, whereas 12 
of the CD22 mAb recognized epitopes dependent on the pres- 
ence of both the first and the second Ig-like domains (Table 
1). The epitopes recognized by mAb HD239, HD39, 
HB22.27, and S-HCL1 were also dependent on expression 
of the first two domains, but reduced expression was detected 
on CD22-A2 cells, suggesting that these mAb recognize an 
epitope primarily localized within the first domain. These 
results suggest that the first and second domains interact to 
achieve correct folding of this portion of the molecule. Im- 
portantly, each of the mAb that blocked CD22-mediated adhe- 
sion was reactive with the first and/or second Ig-like domains 
(Table 1). 

Since the conformation of the first Ig-like domain of CD22 
may be affected by the loss of the second Ig-like domain, the 
second domain of mouse CD22 was substituted for that of 
human CD22. Essentially, this domain substitution had an 
effect on CD22 mAb binding similar to that induced by de- 
letion of the second human Ig-like domain, except low level 
binding of the HB22-196 and HI22 mAb was preserved (Table 
1). None of the anti-human CD22 mAbs were reactive with 
mouse CD22. 

CD22 Ig-like Domains 1 and 2 Mediate Cell Adhesion. COS 
cells transiently transfected with the truncated CD22 cDNA 
constructs were tested in direct binding assays with erythro- 
cytes, B cell lines (Raji and Daudi), monocytes, neutrophils, 
and the Jurkat T cell line. All cDNA constructs containing 
domains I and 2 conferred cell binding, and no binding was 
observed when either domain I or domain 2 was absent (Fig. 
1). COS cells transfected with CD22A3-4 and CD22A4 
cDNA supported adhesion to equivalent levels as wild-type 
CD22. Ligand-binding activity of the second domain of mouse 
CD22 was completely absent. Thus, CD22-mediated adhe- 
sion requires both the first and second Ig-like domains, but 
not subsequent domains. 

Mutational Analysis of the First Ig-like Domain. A conserved 
amino acid motif is present in the first domain of several 
members of the Ig superfamily that represents an essential 
primary binding site for integrins (17, 18). Since this motif 
is similar in location and sequence to regions in the first do- 
main of human and mouse CD22, the aspartic acid residue 
at position 50 was changed to an Ala (DS~ as well as 
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T a b l e  1. Adhesion-blocking Activity and Domain Reactivity of CD22 mAb 

B l o c k i n g  a c t i v i t y *  R e a c t i v i t y  w i t h  C D 2 2  c D N A - t r a n s f e c t e d  cells* 
m A b  

N a m e  L y r e .  R B C  A1 A2 A 3 , 4  A4  A 2 - 4  m 2  D o m a i n  

H B 2 2 - 2  - - + + + + - + + - + 3 

H B 2 2 - 5  + + + - - + + + + - 1 - 2  

H B 2 2 - 7  + + + + - - + + + + - 1 - 2  

H B 2 2 - 1 2  - - + + + + + + + + + + + + 5 - 7  

H B 2 2 - 1 3  + + + - - + + + + - 1 - 2  

H B 2 2 - 1 5  . . . .  + + + + - 1 - 2  

H B 2 2 - 1 7  . . . .  + + + + - 1 - 2  

H B 2 2 - 1 8  . . . .  + + + + - 1 - 2  

H B 2 2 - 1 9  . . . .  + + + + - 1 - 2  

H B 2 2 - 2 2  + + + + - - + + + + - - 1 - 2  

H B 2 2 - 2 3  + + + + - - + + + + - 1 - 2  

H B 2 2 - 2 5  - - + + + + - - - + + 4 

H B 2 2 - 2 7  - - - + + + + + - + 1 

H B 2 2 - 3 3  + + + + - - + + + + - 1 - 2  

H B 2 2 - 1 9 6  + + + - - + + + + - + 1 - 2  

3 G 5  - - + + + + - + + - 3 

4 K B 1 2 8  - - + + - + + + + - - 2 

B L - 3 C 4  - - + + - + + + + - - 2 

G 2 8 - 7  - - + + + + - - - 4 

H D 2 3 9  - - - + + + + + - + 1 

H D 3 9  - - - + + + + + - + 1 

H D 6  - - + + + + - + + - 3 

IS7 - + + + - - + + - 2 - 3  

T o l 5  - - + + + + - - - + + 4 

3 H 4  - + + - - + + - 2 - 3  

O K B 2 2 A  - - + + + + - + + - 3 

H I 2 2  . . . .  + + + + - + 1 - 2  

B U 5 9  + + + + + - + + + + - 2 

B C - 8  - - + + + + + + + + + + 5 - 7  

S - H C L 1  - - - + + + + + - 1 

* Values represent the amoun t  of adhesion inhibi ted by  the mAb:  - ,  < 2 0 %  blocking;  + ,  20 -80% blocking;  + + ,  80 -100% blocking.  Similar 
results were obtained wi th  Raji,  Daudi,  and Jurkat  cells (Lym). These results are representative of those obtained in at least two  independent experiments. 
* Resul ts  represent: - ,  s ta ining identical to background;  + ,  distinct posit ive staining; + + ,  b r igh t  s ta ining intensi ty,  as determined by immuno-  
histochemical  analysis. 

o t h e r  r e s i d u e s  s u r r o u n d i n g  a n d  w i t h i n  t h e  m o t i f ,  D 5 2 / A ,  

L 5 3 / A ,  E 5 4 / A ,  a n d  I57 /A  ( F i g .  2) .  P r o p e r  f o l d i n g  o f  C D 2 2  

w a s  m a i n t a i n e d ,  s i n c e  s t a i n i n g  o f  t h e s e  m u t a n t  r e c e p t o r s  w i t h  

e a c h  m A b  d i r e c t e d  a g a i n s t  t h e  f i r s t  a n d / o r  s e c o n d  I g - l i k e  d o -  

m a i n s  w a s  n o t  a f f e c t e d .  S i m i l a r l y ,  n o n e  o f  t h e  i n t r o d u c e d  

a m i n o  a c i d  c h a n g e s  h a d  a n  e f f ec t  o n  t h e  b i n d i n g  o f  B ce l l s ,  

T ce l l s ,  o r  e r y t h r o c y t e s .  O n e  m u t a t i o n ,  i n  w h i c h  t h e  a m i n o  

a c i d s  FSSlL i n  t h e  m o t i f  w e r e  c h a n g e d  t o  L S S A R ,  a b r o g a t e d  

a d h e s i o n  o f  a l l  c e l l  t y p e s  a n a l y z e d .  H o w e v e r ,  t h i s  c h a n g e  d i s -  

r u p t e d  t h e  o v e r a l l  c o n f o r m a t i o n  o f  C D 2 2 ,  s i n c e  d o m a i n s  1 

a n d  2 m A b  d i d  n o t  r e a c t  w i t h  t h i s  m u t a n t .  T h u s ,  t h i s  r e g i o n  

o f  C D 2 2  w a s  n o t  c r i t i c a l  f o r  l i g a n d - b i n d i n g  a c t i v i t y .  

Analysis of CD22 Isoforms. T h e  s t r u c t u r a l  b a s i s  f o r  t h e  

s i z e  d i f f e r e n c e  i n  c e l l  s u r f a c e  C D 2 2  s p e c i e s  w a s  e x a m i n e d  b y  

i m m u n o p r e c i p i t a t i n g  C D 2 2  w i t h  m A b  t h a t  r e c o g n i z e  d o -  

m a i n s  1 ( H D 3 9 ) ,  1 - 2  ( H B 2 2 - 7 ) ,  2 ( B U 5 9 ) ,  2 - 3  ( I 5 7 ) ,  3 ( 3 G 5 ) ,  

4 ( G 2 8 - 7  a n d  T o 1 5 ) ,  a n d  5 - 7  ( B C - 8 ) .  A l l  C D 2 2  m A b ,  ex -  

c e p t  t h o s e  r e c o g n i z i n g  t h e  f o u r t h  d o m a i n ,  i m m u n o p r e c i p i -  

t a t e d  t w o  b a n d s  o f  1 4 0 , 0 0 0  a n d  1 3 0 , 0 0 0  M ,  ( F i g .  3 ) .  A n t i -  

b o d i e s  t h a t  b i n d  t o  t h e  f o u r t h  d o m a i n  p r e c i p i t a t e d  o n l y  t h e  
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Figure 1. Binding of Raji cells to mock-transfected COS cells (Control), or COS cells transfected with full-length, or mutants of, CD22 lacking 
the indicated Ig-like domains. CD22-mediated adhesion was verified by blocking test cell attachment with the HB22-23 mAb (5/xg/ml). Results repre- 
sent those obtained with RBC, neutrophils, T cell lines, and monocytes. 

i,I/L-D/E- 

human CD22 D1 CVWIPCTYRALDGD-- 

human ICAM-I D1 CSTS-CDQPKLLG--- 

human ICAM-2 D1 CSTT-CNQPEVGG--- 

human ICAM-3 D1 CSTD-CPSSEKIA--- 

human VCAM-I D1 CSTTGCESPFFSWRTQ 

human VCAM-I D4 CSVMGCESPSFSWRTQ 

mouse CD22 D1 CIRIPCKYKTPLPKAR 

mouse ICAM-I D1 CSSS-CKEDLSLG--- 

mouse ICAM-2 D] CSTN-CAAPDMGG--- 

mouse VCAM-I D1 CSTTGCESPLFSWRTQ 

mouse VCAM-I D4 CAAIGCDSPSFSWRTQ 

mouse MAdCAM-I D1 CSMSCDEGVARVHWRG 

S/T-P/X-L I 
# # 

]LESFI LFH 

IIETPL PKK 

!LETSL NKI 

~LETSL SKE 

IDSPL NGK 

IDSPL SGK 

ILDNIL LFQ 

]LETQW LKD 

ILETPT NKI 

IDSPL NAK 

TDSPL NGV 

L D T S L  GSV 

Figure 2. The first Ig-like domain of CD22 contains an amino acid 
motif characteristic of that found in integrin ligands. Amino acid sequence 
alignment of members of the Ig superfamily with known integrin receptors 
showing the C-X3.4-C motif and the motif that directs integrin binding. 
Sequences from Ig-like domain 1 (D1) and domain 4 (D4) are indicated. 
Dashes indicate spaces introduced in the sequence to provide optimal align- 
ment. The bold and boxed amino acids represent the conserved residues 
necessary for integrin binding; # indicates amino acids essential for VCAM-1 
and ICAM-1 binding, and * indicates amino acids in CD22 that were mu- 
tated to Ala. 

140,000 Mr band, indicating that the smaller isoform of 
CD22 results from the selective loss of domain 4. A very 
minor protein species of --120,000 M, was detectable with 
long exposure of some immunoprecipitations with domains 
1 and 2 mAb (Fig. 3). However, this band was not precipi- 
tated by domain 4 mAb and was not convincingly detectable 

Figure 3. Immunoprecipitation of CD22 from surface-labeled Daudi 
B cells, using mAb that identify different CD22 Ig-like domains. 
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with domain 3 mAb, suggesting that it may be composed 
of CD22 forms lacking domains 3 and 4. 

Discussion 

The first and second domains of CD22 were both essen- 
tial for CD22-mediated adhesion of T cells, B cells, mono- 
cytes, neutrophils, and erythrocytes, and neither domain could 
function alone (Fig. 1, Table 1). Also, all CD22 adhe- 
sion-blocking mAbs bound epitopes located within the first 
and/or second Ig-like domains (Table 1). Thus, CD22 is similar 
to other adhesion receptors, CD2, CD4, intercellular adhe- 
sion molecule (ICAM)-I, ICAM-3, and vascular cell adhe- 
sion molecule (VCAM)-I, which contain ligand-binding sites 
in the two amino-terminal Ig-like domains. The amino- 
terminal Ig-like domain of CD22 is structurally similar to 
that of several integrin ligands; ICAM-1, ICAM-2, ICAM-3, 
VCAM-1, and mucosal addressin-1, which each contain extra 
cysteine residues generating the C-X3.4-C motif. Integrin 
binding to these proteins depends on the integrity of a crit- 
ical five-amino acid sequence motif proximal to the C-X3-4-C 
motif (Fig. 2), while additional nonconserved sequences confer 
specificity for binding of the appropriate integrin (18, 19). 
Although a similar amino acid motif is present within human 
and mouse CD22, mutagenesis of the critical residues of this 
region did not affect CD22-mediated adhesion or the binding 
of function-blocking CD22 mAb (Fig. 2). These results argue 
that, despite the structural similarities between CD22 and 
other adhesion molecules of the Ig-superfamily that bind inte- 
grins, CD22 adhesion in the cases examined may not be inte- 
grin mediated. 

Expression of most CD22 mAb-defined epitopes within 
the first two domains of CD22 was dependent on the pres- 
ence of both the first and second Ig-like domains, suggesting 
that these two domains are conformationally linked and func- 
tion cooperatively as a ligand recognition unit. The two amino- 
terminal Ig-like domains of CD22 share the most significant 
amino acid sequence homologies with CD33 and myelin- 
associated glycoprotein (MAG) (14, 15), and these proteins 
all share a common chromosome location, 19q13.1 (20). The 

two amino-terminal domains of CD22, CD33, and MAG 
also contain one additional cysteine residue per domain lo- 
cated at the same relative position. In fact, these two residues 
form a novel disulfide linkage between the first two Ig-like 
domains in MAG (21). Since this potential interdomain 
disulfide bridge is a unique feature of this small subset of 
Ig superfamily members, these three proteins may identify 
a new class of adhesion receptors that have similar specifirities 
for sialylated ligands. 

Previous studies have suggested that CD22 is expressed 
in two functionally distinct forms on the cell surface, full 
length 140,000 Mr CD22~ and a smaller 130,000 Mr CD22o~ 
that lacked Ig-like domains 3 and 4 (1). However, deletion 
of either the first or second domain of CD22 completely elim- 
inated all cell adhesion, despite high-level expression of the 
truncated proteins (Table 1). Also, COS-CD22 that lacked 
the third and fourth domains had the same binding capacity 
as full-length CD22. Thus, all adhesion is mediated by the 
first and second Ig-like domains of CD22. Immunoprecipi- 
tation of CD22 with mAb that bind different domains demon- 
strated that the 130,000 Mr form of CD22 is lacking just 
the fourth domain (Fig. 3), which is consistent with earlier 
suggestions. A CD22 mRNA splice variant lacking domain 
4 has already been identified from different B cell lines, and 
the relative levels of expression of this mRNA species corre- 
lates with the level of 130,000 Mr CD22 protein precipitated 
from the cell surface (2). Although a CD22 protein of the 
size predicted for a form lacking two domains ('~120,00 Mr) 
has not been previously reported, there was a very minor pro- 
tein species observed in this study that could correlate with 
this mRNA species. Since there are no binding capacity differ- 
ences between the splice variants, the functional significance 
of the smaller CD22 species remains unknown. 

In conclusion, these studies demonstrate that ligand binding 
occurs through a single region of CD22 that is completely 
dependent on the presence of both the first and second Ig- 
like domains. The rare presence of a potential interdomain 
disulfide bridge between domains 1 and 2 suggests a new 
subclass of Ig superfamily receptors which may mediate adhe- 
sion through a sialic acid-dependent mechanism. 
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