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Abstract

To better understand the agricultural resources and environmental problems of the prov-

inces along The Belt and Road in China, it is critical to investigate their agricultural carbon

emission efficiency and evolutionary trends. Based on the panel data of 18 key provinces

and cities between 2006 and 2015, this paper evaluated the agricultural carbon emission

efficiency with the data envelopment analysis–Malmquist model and further explored their

dynamic evolutionary trends. There were several main findings. First, the efficiency levels of

agricultural carbon emissions showed significant regional differentiation among the areas,

with that along the 21st-Century Maritime Silk Road being much higher than that along the

Silk Road Economic Belt. Second, technical efficiency was the key factor that restricted the

improvement of the comprehensive efficiency of agricultural carbon. Third, most provinces

invested in too many redundant and unreasonably allocated resources, showing a trend of

diminishing returns to scale. Last, According to dynamic evolution analysis, the total produc-

tivity still demonstrated a diminishing trend. This paper provides some suggestions for effec-

tively improve the efficiency of agricultural carbon emissions in China, such as optimize the

agricultural industrial structure, increasing the investment of carbon emission reduction

technology, and implementing a carbon emission quota clearing system. This paper contrib-

utes to the improvement of the environment in China.

Introduction

Global warming involves the essential task of worldwide environmental governance. The

Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) indi-

cated that the global temperature has raised by 0.85 ˚C from 1880 to 2012, and the increase

in surface temperature every 10 years is higher than that of the prior 10-year period [1].
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Global warming has triggered glacier melting, sea level rise, deterioration of freshwater

resources, the slow speed of air flow, and the formation of haze, all of which also affect the

survival and development of human beings. Therefore, solving the problem of global warm-

ing is critical for the long-term stability and well-being of the earth. By 2400, the existing

atmospheric greenhouse gas (GHG) components will increase the global temperature by 1

˚C on average, and new GHG emissions will produce an additional increase of 2 to 6 ˚C,

resulting in a 10–25-cm rise in the sea level per century. Carbon emission is one of the pri-

mary sources of GHGs, and therefore a reduction in carbon emissions has become the prin-

cipal means of global governance of GHGs. Since the industrial revolution, the massive

exploitation and use of fossil energy have rapidly increased industrial carbon emissions [2].

However, the carbon emissions of agricultural activities, such as agricultural land use, crop

planting, and livestock farming, cannot be ignored. Given widespread agricultural activities,

agriculture has become an important source of GHG emissions [3, 4] while being the most

vulnerable to climate change [5, 6]. Therefore, many scholars have extensively researched

carbon dioxide emissions from agriculture [7, 8].

The issue of agricultural carbon emissions has been investigated by researchers from vari-

ous perspectives based on different countries and regions, such as the causality of agricul-

tural CO2 emissions [9–13]. Samuel and Phebe investigated the relationship between CO2

and agriculture in Ghana between 1961 and 2012, their findings showed that CO2 emissions

affect the production of coarse grain, cocoa bean, fruits, and vegetables; they suggested the

integration of climate change measures into Ghana’s national strategies to strengthen the

country’s effort to achieve sustainability [10, 14]. Some scholars studied the relationship

between carbon dioxide and economic growth in China’s agricultural sector using the car-

bon dioxide decoupling theory [15, 16], investigating the structure and features of agricul-

tural production from 1993 to 2013 in Shanghai and measuring the increase in agricultural

carbon emissions, and suggested that improving energy efficiency and reducing the amount

of energy consumption will be possible solutions for further emissions reduction during

agricultural development. Luo et al. stated that, “fertilizer, in-season rice cultivation,

and cattle generated the most CO2 emissions in the categories of agricultural production

activities, farming, and livestock husbandry, respectively.”, and also explored the spatial-

temporal characteristics of CO2 emissions and their intensity in China’s agricultural sector

[17].

The carbon footprint of crop cultivation patterns and animal husbandry forms and the

carbon balance in the agroecosystem are key topics, such as in the fields of food crops, ani-

mal husbandry, vegetables, and fruits during climate change [18–20]. Scholars have esti-

mated the carbon footprint of some products to comprehensively assess agricultural carbon

emissions [21–26], and this has provided a reliable data foundation for formulating effective

carbon dioxide reduction strategies. Fargione et al. [27] and Arevalo et al. [28] researched

the change in the carbon effect in two cases of reclaiming biomass energy crops and trans-

forming agricultural land into fast-growing shortcut woody crops, respectively. Lal sug-

gested that soil erosion is the most widespread form of soil degradation and indicated that

soil erosion has a significant impact on the global carbon cycle, and this issue must be con-

sidered when assessing the global carbon budget [29]. Kindler et al. found that loss of soil

carbon through leaching significantly affects the carbon balance of the agricultural system

[30].

The many studies that have been conducted to investigate the critical characteristics of

agricultural carbon dioxide emissions not only enriched the carbon emission research system

but also laid a solid foundation for the development of this study. However, some research
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gaps exist and need to be filled in: (1) Most of the related literature is based on a single per-

spective, lacking the necessary macro coordination. Few scholars have systematically ana-

lyzed and evaluated the agricultural carbon emission efficiency of the provinces along the

B&R areas. (2) Most authors studied carbon emission efficiency from a macro level or

focused on the technical perspective [31–35]. Few scholars have discussed the situation, evo-

lution trend, and convergence of agricultural carbon emission efficiency. (3) From the data

perspective, the cross-section data from one year are usually selected as a comparison point,

whereas few scholars have used panel data to explore the dynamic distribution and evolution-

ary trends of agricultural carbon emission efficiency. The paper aims to fill these research

gaps. As China is in a critical period of transformation in its agricultural economy, agricul-

tural carbon emissions, as an essential part of China’s carbon emissions, should be included

in the government’s energy saving and emission reduction work. The B&R initiative repre-

sents a bright new aspect of China’s opening to the world. Efficient measurement of the agri-

cultural carbon emission efficiency in the provinces along the B&R can provide the necessary

theoretical basis for the formulation of various agricultural carbon emission reduction

policies.

Since its reform and opening, China has made remarkable economic achievements, but

rapid growth inevitably results in a massive amount of consumption of resources, making

China the largest emitter of carbon in the world [36]. Determining how to effectively reduce

carbon emissions has become one of the hot spots for academia in China. In September and

October 2013, Chinese Government introduced the Silk Road Economic Belt and the 21st-

Century Maritime Silk Road policies. These two strategies are combined as The Belt and Road

(B&R) in this study. This B&R development strategy has attracted considerable attention from

the international community. In 2017, the amount of trade between China and the countries

along the B&R reached 7.4 trillion Chinese Yuan (CNY) and increased by 17.8% over 2016

[37], which shows that economic and trade cooperation has produced remarkable results. In

the new B&R scheme, China and the countries involved are completing agricultural connec-

tions under a dual or multilateral cooperation mechanism. The field of cooperation has been

expanding, and the economic benefit of agriculture is increasing in some countries. The total

agricultural output value along the B&R reached 2916.72 billion yuan in 2017, accounting for

7.59% of the gross domestic product (GDP). In particular, the total agricultural output value

reached 1990.15 billion yuan in the Silk Road Economic Belt, accounting for 11.32% of GDP

[38]. In addition, the proportion of agricultural land area is high, but the per capita cultivated

land area is lower. This shows that agriculture generally occupies a high proportion in the

national economic composition along the B&R and plays a particularly important role in the

development of the national economy. With the introduction of policies such as “Guidance

on Promoting Green Belt and Road” and “The Belt and Road Ecological and Environmental

Cooperation Plan,” the research on agricultural carbon emissions is conducive to strengthen-

ing the protection of regional agricultural ecological security and improving the ecological

environment of regional agricultural production. Therefore, to understand the agricultural

resources and environmental problems of the provinces along the B&R in China, it is critical

to investigate their agricultural carbon emission efficiency and evolutionary trends, which pro-

vide an essential reference and suggestions to formulate an agricultural carbon emissions

reduction policy.

Based on the panel data of 18 key provinces and cities in China between 2006 and 2015,

including agricultural input, expected output and unexpected output, we evaluated agricultural

carbon emission efficiency with a data envelopment analysis (DEA)-Malmquist model and

further explored their dynamic evolutionary trends.
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Methods and data source

Models

Data envelopment analysis model. The data envelopment analysis (DEA) model was

developed to help compare the relative performance of decision-making units [39]. As a

nonparametric estimation method, DEA is a quantitative analysis method that is used to

evaluate the relative effectiveness of different sectors based on the linear programming

method, which is based on multiple input and output indicators [40]. DEA generates an

efficiency score between 0 and 1 for each of the units, indicating how effectively they are at

managing their resources [41]. Charnes et al. [39] proposed the CCR model, and Banker

et al. [42] further developed CCR into the BCC model by changing the assumption that the

scale returns would change. Many studies have been conducted to analyze carbon emissions

using the DEA model [43–46]. Under the assumption of stable returns of scale, the input–

BCC model is formulated as follows:

Consider a set of n DMUs that is associated with m inputs and s outputs. Each DMUj

(j = 1,2, � � �, n) consumes amount Xij (>0) of input i and produces amount Yij (>0) of output

r. Consider the observed input Xj = (X1j, X2j, � � �, Xmj)T�0, Xj6¼0, and the observed input

Yj = (Y1j, Y2j, � � �, Ymj)T�0, Xj6¼0 for DMUj.

Generally, the Production Possibility Set (PPS) of the BCC model and the corresponding

variable returns to scale can be defined as follows:

T ¼ fðX;YÞjX �
Xn

j¼1
ljXj;Y �

Xn

j¼1
lYj;

Xn

j¼1
lj ¼ 1; lj � 0;8jg ð1Þ

To evaluate the efficiency of DMUj0 related to the Production Possibility Set t, the linear

programming model can be defined as follows:

Miny ¼ VD

s:t:
Xn

j¼1
ljXj � yXj0 ð2Þ

Xn

j¼1
ljYj � Yj0 ðlj � 0; j ¼ 1; 2 . . . ; nÞ;

where
Pn

j¼1
ljXj is the input factor of this DMU,

Pn
j¼1
lYj is the output factor, and λj

stands for the weight. The model can be used to evaluate the relative efficiency of DMUj0.

Eq (2) uses as few input factors (minθ,
Pn

j¼1
ljXj � yXj) as possible under the condition of

Pn
j¼1
lYj � Yj0. When θ = 1, the input cannot be reduced since the output does not decrease

through the weight combination, and the DMU is effective at this time. Otherwise, there is

a fictitious DMU (θ< 1); that is, the same or even more outputs can be achieved with less

input.

After introducing the relaxation variables S−, S− and non-Archimedes infinity ε, Eq (2) is

transformed into a CCR model.

Min½y � εðET
1
S� þ ET

2
SþÞ� ¼ VD

s:t:
Xn

j¼1

ljXj þ S� ¼ yXj0
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Xn

j¼1

ljYj � Sþ ¼ Yj0

lj � 0; j ¼ 1; 2; . . . ; n

S� � 0; Sþ � 0 ð3Þ

where E1
T and E2

T are m-dimension and s-dimension unit vectors respectively, and non-

Archimedes infinity ε is a value less than any positive number but greater than 0. Let λ�, S�−,

S�+, and θ� represent an optimal solution for the CCR model, and the decision theorem of

DEA validity is as follows:

If θ� = 1, then DMUj0 is weakly valid.

If θ� = 1, S�− = 0 and S�+ = 0, then DMUj0 is valid.

To evaluate the pure technical efficiency of regional agricultural carbon emission, the BCC

model with non-Archimedes infinity ε is as follows:

Min½y � εðET
1
S� þ ET

2
SþÞ� ¼ VD

s:t:
Xn

j¼1

ljXj þ S� ¼ yXj0

Xn

j¼1

ljYj � Sþ ¼ Yj0

Xn

j¼1

lj ¼ 1

lj � 0; j ¼ 1; 2; . . . ; n

S� � 0; Sþ � 0 ð4Þ

Compared with the CCR model, the BCC model has only one more constraint
Pn

j¼1
lj ¼ 1.

Let λ�, S�−, S�+, and θ� represent an optimal solution for the BCC model, and the decision theo-

rem of DEA validity is as follows:

If θ� = 1, then DMUj0 is weakly valid.

If θ� = 1, S�− = 0 and S�+ = 0, then DMUj0 is valid.

The BCC model clearly distinguishes the comprehensive technical efficiency (CTE), pure

technical efficiency (PTE), and scale efficiency (SE) of each decision-making unit. CTE is used

to measure the ability of maximum output given a fixed investment or minimum input given a

fixed outcome. SE is used to measure the extent to which economies of scale can function

when the scale reaches an effective point. PTE is used to measure the efficiency level after elim-

inating the scale factor in the comprehensive technical efficiency [47]. Therefore, for each deci-

sion-making unit, CTE is a combination of PTE and SE.

Malmquist index model. The Malmquist index was first introduced by Malmquist in

1953, and it was initially used to analyze the movement effect of consumption bundles on

different indifference curves. Later, this index was applied to production analysis and the

measurement of productivity changes in two successive periods [48–50], combining the
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nonparametric linear programming method and the DEA method, and then the Malmquist

index was gradually widely applied.

The distance function is the basis of Malmquist index. It is a method of studying multiple

inputs and outputs without any assumptions about producer behavior. The distance function

can mathematically be expressed as the reciprocal of the optimal solution of the CCR model

and BCC model.

Dt
iðx

t
i ; y

t
iÞ ¼ Ftðy

t
i ; x

t
i jC; SÞ

� 1
ð5Þ

Dt
iðx

t
i ; y

t
iÞ ¼ Ftðy

t
i ; x

t
i jV; SÞ

� 1
; ð6Þ

where xti; y
t
i stands for the input and output vector of region i at time t, respectively; S stands

for the possible production set at time t; C and V stand for the constant returns to scale and

variable returns to scale, respectively; and Dt
iðx

t
i; y

t
iÞ represents the distance functions, taking

technology standard at time t. The higher the value of Dt
iðx

t
i; y

t
iÞ, the more effective the produc-

tion is and the higher the technical efficiency is.

Since the Malmquist index is defined by benchmark technology, the output-based Malm-

quist index referring to technology at time t is as follows:

Mt
iðx

t
i ; y

t
i ; x

tþ1

i ; ytþ1

i Þ ¼ Dt
iðx

tþ1

i ; ytþ1

i Þ=D
t
iðx

t
i ; y

t
iÞ ð7Þ

Similarly, the output-based Malmquist index referring to technology at time t+1 is as fol-

lows:

Mi;tþ1ðx
t
i ; y

t
i ; x

tþ1

i ; ytþ1

i Þ ¼ Dtþ1

i ðx
tþ1

i ; ytþ1

i Þ=D
tþ1

i ðx
t
i ; y

t
iÞ ð8Þ

The Malmquist production index can be defined as the geometric average of Eqs (7) and (8)

according to the ideal index construction method [43].

Mi;tþ1 xt
i ; y

t
i ; x

tþ1

i ; ytþ1

i

� �
¼

Dt
iðx

tþ1
i ; ytþ1

i Þ

Dt
iðxt

i ; yt
iÞ
�

Dtþ1
i ðx

tþ1
i ; ytþ1

i Þ

Dtþ1
i ðxt

i ; yt
iÞ

� �1=2

ð9Þ

Mi;tþ1 xi
t; yi

t; xi
tþ1; yi

tþ1ð Þ ¼
Di

tþ1ðxi
tþ1; yi

tþ1Þ

Di
tðxi

t; yi
tÞ
½
Di

tðxi
t; yi

tÞ

Di
tþ1ðxi

t; yi
tÞ
�

Di
tðxi

tþ1; yi
tþ1Þ

Di
tþ1ðxi

tþ1; yi
tþ1Þ
�
1
2; ð10Þ

where xi
t and xi

t + 1 stand for the input vector of region i at times t and t + 1, respectively; yit

and yit + 1 stand for the output vector of region i at times t and t + 1, respectively; and Di
t (xi

t,

yit) and Di
t + 1 (xi

t + 1, yi
t + 1) represent the distance functions taking technology standard at

times t and t + 1, respectively, as reference points. Eq (10) is the deformation of Eq (9), which

refers to the separation of technological change from technical efficiency change.
Di

tþ1ðxitþ1 ;yitþ1Þ

Di
tðxit ;yitÞ

is the technical efficiency change from time t to time t + 1, and the rest is TC, which is the tech-

nical change from time t to time t + 1.

Mv;c
t;tþ1 ¼

Dv
tþ1ðxi

tþ1; yi
tþ1Þ

Dv
tðxi

t; yi
tÞ

�
Dv

tðxi
t; yi

tÞ

Dc
tðxi

t; yi
tÞ

�
Dv

tþ1ðxi
tþ1; yi

tþ1Þ

Dc
tþ1ðxi

tþ1; yi
tþ1Þ

� �

�
Dc

tðxi
t; yi

tÞ

Dc
tþ1ðxi

t; yi
tÞ
�

Dc
tðxi

tþ1; yi
tþ1Þ

Dc
tþ1ðxi

tþ1; yi
tþ1Þ

� �
ð11Þ

Eq (11) changes the original assumption that the scale remuneration is fixed and is suitable

when the return of scale is changeable. This function further divides the comprehensive tech-

nical efficiency change (CTEC) into pure technical efficiency change (PTEC) and scale effi-

ciency change (SEC) [41]. Subscript v shows the circumstance of changeable return of scale,
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whereas subscript c shows the circumstance of the eternal return of scale. The first part of

Eq (11) shows the PTEC change. The second part is the change of SEC, whereas the third part

is the same as Eq (10), which shows the CTEC change.

The Malmquist index method uses multiple input and output variables to analyze effi-

ciency. It divides the cause of productivity change into technology change (TC) and CTEC,

whereas CTEC can be subdivided into PTEC and SEC. Thus, the Malmquist index can be

shown as: ML = CTEC × TC = PTEC × SEC × TC.

Data and variables

Agricultural carbon emissions from carbon sources. Agriculture has a general and nar-

row definition. From a broad perspective, agriculture contains five kinds of industrial forms:

planting, forestry, animal husbandry, fishery, and sideline industry, whereas the narrow sense

refers to only the planting industry. The sources of agricultural carbon emissions can be subdi-

vided into three sections. The first section includes the carbon emissions that are caused by

agricultural land use, including chemical fertilizers, pesticides, and agricultural film. Carbon

emissions from the use of diesel by agricultural machinery, the loss of organic carbon pro-

duced by soil destruction when tilling the soil, and the carbon release from the indirect con-

sumption of fossil fuels during the irrigation process are all included in this section. Second is

the production of methane and other greenhouse gases during rice growth. The third is carbon

emissions from ruminant farming, including methane production from intestinal fermenta-

tion and excrement management. Agricultural carbon emissions are the total amount of car-

bon emissions that are produced by various types of carbon sources. According to the IPCC

and existing literature, the carbon emission coefficients of various agricultural carbon sources

are shown in Table 1.

According to Table 1, the total carbon emissions mainly include three parts. First, the

carbon emissions of chemical fertilizers, pesticides, agricultural film and diesel oil are the

product of the usage amount and carbon emission coefficient. The formula for calculating

Table 1. Carbon emission coefficients of various agricultural carbon sources.

Farming Land

Utilization and Rice

Coefficient of

Carbon Emission

Reference Ruminant Intestinal

Fermentation

Feces Management Reference

Chemical fertilizer 0.8956 kg(C)�kg−1 West and Marland, Oak Ridge National

Laboratory [51]

Cow 416.02kg(C)�

head−1�year−1
122.76kg(C)�

head−1�year−1
IPCC [53]

Pesticide 4.9341kg (C)�kg−1 Buffalo 375.10kg(C)�

head−1�year−1
13.64kg(C)�

head−1�year−1

Agricultural film 5.18kg (C)�kg−1 Agricultural resources and ecological,

environment institute of Nanjing Agricultural

University [52]

Other

Cattle

320.54kg(C)�

head−1�year−1
6.82kg(C)�

head−1�year−1

Diesel 0.5927kg (C)�kg−1 IPCC [53] Horse 122.76kg(C)�

head−1�year−1
11.18kg(C)�

head−1�year−1

Irrigation 266.48kg (C)�hm−2 West and Marland [51] Donkey 68.20kg(C)�

head−1�year−1
6.14kg(C)�

head−1�year−1

Soil destruction 312.60Kg(C)�hm−2 College of Biology and Technology of China

Agricultural University [54]

Mule 68.20kg(C)�

head−1�year−1
6.14kg(C)�

head−1�year−1

Rice growth 49.57kg (C)�hm−2 Wang et al. [55] Pig 6.82kg(C)�

head−1�year−1
27.28kg(C)�

head−1�year−1z

Goat 34.10kg(C)�

head−1�year−1
1.16kg(C)�

head−1�year−1

Sheep 34.10kg(C)�

head−1�year−1
1.02kg(C)�

head−1�year−1

https://doi.org/10.1371/journal.pone.0228223.t001
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carbon emissions from agricultural land use is as follows: C1 = fertilizer use�0.8956 + pesticide

use�4.9341 + agricultural film use�5.18 + diesel oil use� 0.5927. Second, the carbon emissions

of agricultural irrigation, tillage and rice are the product of area and carbon emission coeffi-

cient. The formula for calculating carbon emissions from rice planting is as follows: C2 = irri-

gation area � 266.48 +soil destruction area � 312.6 +rice planting area� 49.57. Then, the carbon

emissions of ruminants are divided into two parts, where one is the product of the number of

animals and the coefficient of intestinal fermentation and the other is the product of the num-

ber of animals and the coefficient of fecal management. The formulas for calculating carbon

emissions from ruminant farming are as follows: C3 = cow number� (416.02+122.76) + buffalo

number� (375.1+13.64) +other cattle number� (320.54+6.82) + horse number �(122.76+11.18)

+donkey number�(68.2+6.14) + mule number �(68.2+6.14) +pig number (6.82+27.28) +goat

number �(34.1+1.16) +sheep number �(34.1+1.02). Therefore, the total carbon emissions from

carbon sources are C = C1+ C2+ C3.

Selection of input and output indicators. According to previous research [3,7,11,15,19]

and based on traditional macroeconomic theory, the input variables of the agricultural carbon

emission efficiency of the provinces and cities along the B&R can be summarized with the fol-

lowing four items: (1) labor input, measured by the number of agricultural workers; (2) land

input, measured by the cultivated land area; (3) capital investment, estimated by the annual

investment in agricultural fixed assets and the PIM index that is used to convert the flow index

into the stock index; and (4) input of agricultural material, which contains fertilizer input, die-

sel fuel, agricultural film input, and pesticide input. Fertilizer input is measured by the actual

amount of fertilizer application, including nitrogen, phosphorus, potassium, and compound

fertilizers. Diesel fuel is measured by the annual use of diesel in the agricultural sector. Agricul-

tural film input is measured by the annual consumption of the membrane. Pesticide input is

measured by the annual use of pesticides.

The total output values of agriculture, forestry, animal husbandry and fisheries were

selected as the expected outputs and agricultural carbon emissions as the undesirable outputs.

To eliminate the interference of prices, this study calculated the total output values of agricul-

ture, forestry, animal husbandry, and fisheries in 2006. When using the DEA model to evaluate

the environmental efficiency, the efficiency is usually presented in the form of the evaluation

index. The greater the index value, the higher the efficiency level. Therefore, higher efficiency

requires less input and more output. The input and output indicators can be seen in Table 2.

The DEA model requires both the input and output data of each decision unit to be posi-

tive. As a negative output index, carbon dioxide emissions cannot meet the operating

Table 2. Input and output indicators of agricultural carbon emissions.

Category of

Indicator

1st Tier Indicator 2nd Tier Indicator

Input Labor input Number of agricultural workers

Land input Cultivated land area

Capital investment Annual investment in fixed agricultural assets

Agricultural materials

input

Amount of fertilizer

Amount of diesel

Amount of agricultural film

Amount of pesticides

Output Expected output The total output value of agriculture, forestry, animal husbandry

and fishery

Undesirable output Agricultural carbon emissions

https://doi.org/10.1371/journal.pone.0228223.t002
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conditions of the DEA model, and the selection of the BCC model results in evaluation invalid-

ity. Thus, CO2 emission indicators must be transformed accordingly. The current applicable

methods are curved measure evaluation, pollutant input treatment, data conversion function

processing, and the directional distance function. The research selected the data conversion

function method [56], as this method is regarded as one of the most satisfactory efficiency

assessment methods and includes different types of negative outputs and linear and nonlinear

data conversions. Since the linear data conversion method is more advantageous in the model

with variable returns to scale analysis (VRS), this method is used to transform the environmen-

tal pollutants index data. It can be measured as: Y’
i = -Y+C, where C represents a large vector

to ensure that all converted output data are positive.

Data sources. The data for the variables were obtained from the Chinese Rural Statisti-

cal Yearbook (2007–2016) [57], the Annals of China’s Environmental Statistics (2007–

2016) [58], the National Bureau of Statistics of China [59], and the Chinese economic

database [60].

Results

Based on the steps, the descriptive statistical results of variables are calculated and listed in

Table 3.

Measurement of agricultural carbon emission efficiency based on BCC

model

With the use of DEAP 2.0 (the Computer Vision and Systems Laboratory at University Laval,

Quebec City, Canada) and the BCC model, this paper evaluated the agricultural carbon emis-

sion efficiency of 18 key provinces and cities (there are 16 provinces and two municipalities in

total; for ease of reference, the paper refers to them all as provinces) along the B&R. The empir-

ical model determined the comprehensive technical efficiency, pure technical efficiency, and

the change of economies of scale.

Comprehensive technical efficiency of agricultural carbon emissions. Among the three

efficiency indicators, the comprehensive technical efficiency most directly reflects the effi-

ciency values of the 18 provinces within 10 years, which were affected by both the pure tech-

nical efficiency and scale efficiency. Additionally, efficiency here is a relative measure

(relative to other provinces) rather than an absolute one. Therefore, the paper selected the

comprehensive technical efficiency value as a measurement, and the result is shown in

Table 4.

Table 3 shows that the agricultural carbon emission efficiencies of the five provinces in Xin-

jiang, Tibet, Shanghai, Zhejiang and Hainan have long reached the effective frontier of com-

prehensive technology. There are five provinces with high efficiencies (0.8 < x< 1): Qinghai,

Heilongjiang, Liaoning, Fujian and Guangdong. The remaining eight provinces are classified

Table 3. Descriptive statistical results of variables.

Category Variable Sample number Average Standard deviation Minimum Maximum

Input Agricultural workers (10 thousand people) 180 619.35 496.1 12.84 1677

cultivated land area (million hectare) 180 393.83 356.61 18.76 1586.59

Investment in agricultural fixed assets (100 million yuan) 180 434.82 351.33 3.1 1701.81

Input of agricultural materials (10 thousand tons) 180 135.69 86.46 4.57 279.26

Output GDP (100 million yuan) 180 1026.89 677.45 54.33 2706.65

Agricultural carbon emissions (10 thousand tons) 180 999.69 386.26 149.19 1598.82

https://doi.org/10.1371/journal.pone.0228223.t003
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in the middle level: Shaanxi, Gansu, Ningxia, Inner Mongolia, Jilin, Guangxi, Yunnan, and

Chongqing. Forty-five percent of the provinces remain in the medium efficiency level, which

highlights the importance of improving carbon emission efficiency. Carbon emission reduc-

tion strategies need to be further implemented.

Second, from the fluctuation of the comprehensive technical efficiency of each province

over the last 10 years, except for the five provinces of Xinjiang, Tibet, Shanghai, Zhejiang and

Hainan which have already reached the effective frontier, the fluctuation range of Shaanxi,

Gansu, Ningxia, Qinghai, Liaoning, Chongqing, Fujian and Guangdong is basically between

0.1 and 0.2, which is a small range. Additionally, the fluctuation range of efficiency in Inner

Mongolia, Heilongjiang, Jilin and Guangxi is between 0.2 and 0.3. Since the launch of China’s

the Belt and Road (B&R) initiative in 2013, the carbon emission efficiency of all other prov-

inces has not achieved sustained growth except for Guangdong.

Pure technical efficiency and economies of scale of agricultural carbon emission. The

comprehensive technical efficiency is affected by both the pure technical efficiency and scale

efficiency, which can be calculated as: comprehensive technical efficiency = pure technical

efficiency × scale efficiency. The paper further discusses how the latter two efficiencies

affect the comprehensive technical efficiency of each province. The details are provided in

Table 5.

Table 4 shows that five provinces—Xinjiang, Tibet, Shanghai, Zhejiang, and Hainan—

have long reached comprehensive technical efficiency. Their pure technical efficiency and

efficiency are both 1, proving that they have reached the frontiers from both perspectives.

Shaanxi, Gansu, Ningxia, Qinghai, Inner Mongolia, Jilin, Yunnan, and Chongqing are the

provinces whose pure technical efficiencies are less than their scale efficiencies. For these

provinces, the lag in carbon emission reduction technology is restricting the efficiency of

Table 4. Comprehensive technical efficiency of agricultural carbon emissions of the key provinces along the Belt and Road (B&R) within 2006–2015.

Area Province 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average

The Silk Road Economic Belt Xinjiang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Shaanxi 0.500 0.603 0.615 0.612 0.618 0.557 0.625 0.563 0.494 0.518 0.571

Gansu 0.471 0.543 0.578 0.591 0.639 0.643 0.540 0.608 0.588 0.597 0.580

Ningxia 0.691 0.736 0.751 0.780 0.814 0.814 0.839 0.826 0.789 0.789 0.783

Qinghai 0.876 0.927 0.982 0.925 0.938 1.000 0.806 0.887 0.862 0.817 0.902

Inner Mongolia 0.751 0.826 0.806 0.839 0.571 0.636 0.739 0.697 0.666 0.618 0.715

Heilongjiang 0.707 0.874 0.918 0.862 0.855 0.850 1.000 1.000 1.000 1.000 0.907

Jilin 0.798 0.871 0.855 0.866 0.664 0.676 0.789 0.713 0.705 0.722 0.766

Liaoning 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 0.999

Guangxi 0.692 0.801 0.791 0.745 0.701 0.650 0.662 0.612 0.578 0.580 0.681

Yunnan 0.567 0.599 0.617 0.631 0.570 0.549 0.607 0.586 0.566 0.549 0.584

Tibet 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Chongqing 0.614 0.605 0.602 0.570 0.513 0.487 0.493 0.487 0.475 0.492 0.534

Avg. 0.744 0.799 0.809 0.802 0.759 0.759 0.777 0.768 0.748 0.745

The 21st-Century Maritime Silk Road Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fujian 1.000 1.000 1.000 1.000 1.000 0.963 1.000 1.000 1.000 1.000 0.996

Guangdong 1.000 1.000 1.000 1.000 1.000 0.908 0.945 0.946 0.960 0.975 0.973

Zhejiang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hainan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Avg. 1.000 1.000 1.000 1.000 1.000 0.974 0.989 0.989 0.992 0.995

B&R Average 0.815 0.855 0.862 0.857 0.826 0.819 0.836 0.829 0.816 0.814

https://doi.org/10.1371/journal.pone.0228223.t004
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Table 5. Average value of the efficiencies of key provinces along the B&R, 2006–2015.

Regions Provinces Comprehensive technical efficiency Pure technical efficiency Scale efficiency

The Silk Road Economic Belt Xinjiang 1.000 1.000 1.000

Shaanxi 0.571 0.729 0.789

Gansu 0.580 0.609 0.953

Ningxia 0.783 0.832 0.941

Qinghai 0.902 0.922 0.978

Inner Mongolia 0.715 0.794 0.917

Heilongjiang 0.907 0.966 0.938

Jilin 0.766 0.806 0.956

Liaoning 0.999 1.000 0.999

Guangxi 0.681 0.839 0.812

Yunnan 0.584 0.676 0.865

Tibet 1.000 1.000 1.000

Chongqing 0.534 0.546 0.980

The 21st-Century Maritime Silk Road Shanghai 1.000 1.000 1.000

Fujian 0.996 1.000 0.996

Guangdong 0.973 1.000 0.973

Zhejiang 1.000 1.000 1.000

Hainan 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0228223.t005

Table 6. Increase/decrease in economies of scale of agricultural carbon emissions of key provinces along the B&R, 2006–2015.

Regions Provinces 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

The Silk Road Economic Belt Xinjiang — — — — — — — — — —

Shaanxi drs drs drs drs drs drs drs drs drs drs

Gansu drs drs drs drs drs drs drs drs drs drs

Ningxia drs drs irs drs drs irs irs irs irs irs

Qinghai drs drs drs irs irs — irs irs irs irs

Inner Mongolia drs drs drs drs drs drs drs drs drs irs

Heilongjiang drs drs drs drs drs drs — — — —

Jilin drs drs drs drs drs drs drs drs drs drs

Liaoning — — — — drs — — — — —

Guangxi drs drs drs drs drs drs drs drs drs drs

Yunnan drs drs drs drs drs drs drs drs drs drs

Tibet — — — — — — — — — —

Chongqing irs drs drs drs drs — drs drs irs drs

The 21st-Century Maritime Silk Road Shanghai — — — — — — — — — —

Fujian — — — — — drs — — — —

Guangdong — — — — — drs drs drs drs drs

Zhejiang — — — — — — — — — —

Hainan — — — — — — — — — —

Notes: drs means decreasing scale remuneration;

“—”means no change of scale remuneration;

“irs” means increasing scale remuneration.

https://doi.org/10.1371/journal.pone.0228223.t006
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their agricultural carbon emissions. The provinces with lower scale efficiency than pure

technical efficiency are Heilongjiang, Guangxi, and Guangdong, showing that their

scale of resource allocation is unreasonable and that appropriate adjustments should be

undertaken.

Increase/decrease in economies of scale of agricultural carbon emission. For the major-

ity of provinces, the lag in technology is the key factor restricting the efficiency of their agri-

cultural carbon emission. For the scale efficiency indicator, only five provinces reached the

best production frontier, and considerable improvements are needed in the other 13 prov-

inces, indicating that the allocation of the input resources needs to be improved in those 13

provinces. Therefore, the paper further investigated the increase/decrease in the scale remu-

neration of the agricultural carbon emissions from 2006 to 2015 in different provinces

(Table 6).

Shanxi, Gansu, Jilin, Guangxi, and Yunnan demonstrated a long-term decreasing trend.

In these areas, radial movement should be reduced, and the rational allocation of resources

should be optimized to improve the efficiency of agricultural carbon emissions. Similar strate-

gies also apply to Inner Mongolia and Chongqing. The four efficient provinces of Guangdong,

Fujian Liaoning, and Heilongjiang have some years of diminishing returns on the scale. Thus,

governments should strive to improve scale efficiency and achieve the frontier of production

Fig 1. Comprehensive technical efficiency of different regions, 2006–2015.

https://doi.org/10.1371/journal.pone.0228223.g001
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in comprehensive technical efficiency. For Ningxia and Qinghai, which maintained increasing

returns to scale in most of the years, a possible strategy involves increasing the input materials

to improve carbon emission efficiency. For Xinjiang, Tibet, Shanghai, Zhejiang, and Hainan,

the scale of remuneration remained unchanged for 10 years.

Regional comparison of agricultural carbon emissions. The Belt and Road Initiative is

divided into the 21st-Century Maritime Silk Road and The Silk Road Economic Belt. Each

contains different provinces, and a detailed classification is outlined in Tables 4–6. The paper

further compared the three average values of the efficiencies in those regions to provide useful

advice on how to strengthen exchange and cooperation between regions. The results are

shown in Figs 1–3.

The above figures show that for any of the three efficiencies, the overall efficiency of the

B&R always falls between the higher values for the 21st-Century Maritime Silk Road prov-

inces and the lower values of The Silk Road Economic Belt provinces. Therefore, the gover-

nance of agricultural carbon emissions should focus on the provinces along The Silk Road

Economic Belt. Those provinces along the 21st-Century Maritime Silk Road benefit from a

small proportion of agricultural industry, fewer carbon emissions from agriculture, high

total economic volume, and massive investment in environmental management. They have

achieved an ideal state of agricultural carbon emissions. It is highly recommended that those

provinces should strengthen communication and cooperation with provinces along the Silk

Road Economic Belt, providing experience and financial support for carbon emission

reduction.

Fig 2. Pure technical efficiency of different regions, 2006–2015.

https://doi.org/10.1371/journal.pone.0228223.g002
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Dynamic evolution analysis of agricultural carbon emission efficiency

based on the Malmquist index model

With the use of the DEA-Malmquist index, the paper could test the dynamic change in the

agricultural carbon emission efficiency in various provinces. In the process of dynamic evolu-

tion, it can determine whether the efficiency has been promoted since the B&R initiative in

2013 to measure the impact of the initiative on China’s environmental protection scheme.

Fig 3. Scale efficiency of different regions, 2006–2015.

https://doi.org/10.1371/journal.pone.0228223.g003

Table 7. Temporal dynamic evolution in agricultural carbon emission efficiency of the provinces along B&R, 2006–2015.

Time Comprehensive Technical Efficiency Change Technical Change Pure Technical Efficiency Change Scale Efficiency Change Malmquist

2006–2007 1.059 0.915 1.050 1.008 0.969

2007–2008 1.010 0.981 1.012 0.998 0.991

2008–2009 0.994 0.906 0.977 1.017 0.901

2009–2010 0.957 0.957 0.957 1.000 0.916

2010–2011 0.996 1.069 1.000 0.996 1.065

2011–2012 1.017 0.896 1.024 0.993 0.911

2012–2013 0.989 1.005 0.995 0.994 0.994

2013–2014 0.978 0.986 0.977 1.001 0.965

2014–2015 0.999 0.960 0.990 1.009 0.959

2006–2015 1.000 0.963 0.998 1.002 0.962

https://doi.org/10.1371/journal.pone.0228223.t007
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Temporal dynamic evolution of agricultural carbon emission efficiency. Table 7 shows

that the total factor productivity of the key provinces in China fluctuated during the period of

2006 to 2015. The main trend was downward, except for an increase of 6.5% from 2010 to

2011. Even after 2013, the total factor productivity still demonstrated a diminishing trend,

which further indicates that the B&R initiative has not improved China’s carbon emission effi-

ciency. From the decomposition of the Malmquist index, the reduction in productivity was

mainly due to the mobile efficiency of the production frontier or technological change. During

the descending periods, this change led to a 5.45% average decrease in the total factor produc-

tivity. Thus, the paper concludes that the reduction of the technology utilization level is the

critical issue restricting the efficiency of agricultural carbon emissions. Even after the introduc-

tion of the B&R initiative in 2013, technology still causes a downward trend in total factor pro-

ductivity, and there was no substantial change thereafter.

In addition to the temporal analysis of the dynamic changes in the agricultural carbon

emission efficiency of the provinces, the paper also analyzed the specific conditions of each

province, as shown in Table 8. First, the results revealed that the agricultural carbon emis-

sion efficiencies of the key provinces were trending downward. Only 3 of the 18 provinces,

Ningxia, Heilongjiang, and Shanghai, had a Malmquist greater than 1. Second, the technical

improvement index for all the other provinces was less than 1, except for Shanghai, which

verifies that the lag in technology is the key factor in reducing agricultural carbon

emissions.

Spatial dynamic evolution of agricultural carbon emission efficiency. The paper also

discussed the spatial difference and evolution of the agricultural carbon emission efficiency of

key provinces along the B&R with the use of the Malmquist index and ArcGIS (Environmental

Systems Research Institute, RedLands, and The United States). The spatial distribution was

Table 8. Dynamic evolution of agricultural carbon emission efficiency of each province along the B&R, 2006–2015.

Regions Provinces Comprehensive Technical

Efficiency Change

Technical

Change

Pure Technical Efficiency

Change

Scale Efficiency

Change

Malmquist

The Silk Road Economic

Belt

Xinjiang 1.000 0.982 1.000 1.000 0.982

Shaanxi 1.004 0.925 1.038 0.968 0.928

Gansu 1.027 0.958 1.023 1.003 0.984

Ningxia 1.015 0.988 0.997 1.018 1.003

Qinghai 0.992 0.982 0.997 0.996 0.975

Inner

Mongolia

0.979 0.979 0.949 1.031 0.958

Heilongjiang 1.039 0.992 1.020 1.019 1.031

Jilin 0.989 0.980 0.971 1.018 0.970

Liaoning 1.000 0.978 1.000 1.000 0.978

Guangxi 0.981 0.930 0.993 0.987 0.912

Yunnan 0.996 0.955 1.000 0.996 0.952

Tibet 1.000 0.873 1.000 1.000 0.873

Chongqing 0.976 0.958 0.976 1.000 0.935

Avg. 1.000 0.960 0.997 1.003 0.960

The 21st-Century Maritime

Silk Road

Shanghai 1.000 1.002 1.000 1.000 1.002

Fujian 1.000 0.978 1.000 1.000 0.978

Guangdong 0.997 0.938 1.000 0.997 0.935

Zhejiang 1.000 0.970 1.000 1.000 0.970

Hainan 1.000 0.965 1.000 1.000 0.965

Avg. 0.999 0.971 1.000 0.999 0.970

https://doi.org/10.1371/journal.pone.0228223.t008
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measured in different periods. The paper selected the years 2007, 2011, and 2015 to observe

the spatial differences in agricultural carbon emissions at different time points and then dis-

cussed their evolution characteristics.

Figs 4–6 reflect the spatial evolution at three key time points from 2006 to 2015. It regards

2011 as the best time point, as the Malmquist of most provinces (16) was greater than 1, with

only one in the 0.9–0.95 and another in the 0.8–0.9 range. In 2007, the Malmquist index

increased in six provinces, with a value larger than 1. Five of the other provinces remained

within 0.95–1, while the others had smaller values. For 2015, the performance was even more

unsatisfactory, with two provinces experiencing an increase in the Malmquist index. The other

cities were categorized into groups of 0.95–1, 0.9–0.95, 0.8–0.9, or less than 0.8. This difference

further illustrates the conclusion provided in the previous section.

Discussions and conclusions

Exploring the efficiency is the basic premise in further research on China’s agricultural carbon

emissions [61], which helps explain agricultural “water-land-energy-carbon” (WLEC) nexus

Fig 4. Spatial distributions of the Malmquist index of key provinces along the B&R in 2007.

https://doi.org/10.1371/journal.pone.0228223.g004
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and improve the efficiency of agricultural resources use [62]. Based on the panel data of 18 key

provinces and cities along the B&R between 2006 and 2015, the paper evaluated agricultural

carbon emissions efficiency using the DEA-BCC model and further explored their dynamic

evolution trend with the DEA-Malmquist model. The results showed that: (1) the level of agri-

cultural carbon emissions in various provinces was uneven. Xinjiang, Tibet, Shanghai, Zhe-

jiang, and Hainan were at the forefront of agricultural carbon emissions, with the five

provinces of Qinghai, Heilongjiang, Liaoning, Fujian, and Guangdong being highly efficient.

The remaining eight provinces demonstrated medium efficiency. For most provinces, the effi-

ciency of agricultural carbon emissions must be improved. (2) Technical efficiency is the key

factor that restricts the promotion of comprehensive efficiency of agricultural carbon. (3)

Although the impact of scale efficiency on comprehensive efficiency is less than that of techni-

cal efficiency, except for five provinces at the frontier of production, the scale efficiency of the

other provinces requires improvement. Through the increase or decrease in scale remunera-

tion, most provinces demonstrated downward trends in their economies of scale, implying

that their investment is too redundant, and that the allocation of resources is not reasonable.

Fig 5. Spatial distributions of the Malmquist index of key provinces along the B&R in 2011.

https://doi.org/10.1371/journal.pone.0228223.g005
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(4) The efficiency level of agricultural carbon emissions presented significant regional differen-

tiation among the areas, with those along the 21st-Century Maritime Silk Road being much

higher than those included in the Silk Road Economic Belt. (5) According to dynamic evolu-

tion analysis, the total factor productivity still demonstrated a diminishing trend. Therefore,

although the B&R Initiative has promoted the exchange and development of China with the

surrounding countries in the economic, cultural, and political arenas, the initiative has con-

tributed little to the environmental amelioration of our country, which is contrary to the con-

cept of sustainable development, which should be seriously considered by the Chinese

government.

From the above research results, the paper provides some suggestions to effectively enhance

the efficiency of agricultural carbon emissions in China. (1) The government should optimize

the agricultural industrial structure and accelerate agricultural modernization in the Belt and

Road region. (2) A low-carbon agricultural development mechanism should be constructed

with the basis of the modern agricultural industrial technology system, and scientific research

should be integrated and applied to the whole process of agricultural production. (3) Each

Fig 6. Spatial distributions of the Malmquist index of key provinces along the B&R in 2015.

https://doi.org/10.1371/journal.pone.0228223.g006
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province should increase their investment in low-carbon agriculture and establish a complete

set of low-carbon agricultural ecological compensation technology system to play China’s

model as a leading role in low-carbon agriculture along the Belt and the Road. (4) Due to the

significant regional differences in agricultural carbon emission efficiencies, the focus of agri-

cultural energy conservation and emission reduction work should be on striving to realize the

transformation of agricultural production to a low-carbon direction in the Silk Road Eco-

nomic Belt areas.

There are also some deficiencies in this paper in the availability of data and deficiencies at

the author’s own level, such as the lack of deep excavation about the causes and influencing

factors for the differences in regional agricultural carbon emissions and the agricultural carbon

emission efficiencies of various countries or regions along the Belt and Road region. Then, the

cooperation and incentive mechanisms of agricultural carbon emission reduction are not

involved. Next, the authors will further research these problems that urgently need to be

solved. There are also some deficiencies in this research in the availability of data and the defi-

ciencies at the author’s own level, such as the lack of deep excavation about the causes and

influencing factors in the differences in regional agricultural carbon emissions and the agricul-

tural carbon emission efficiencies of various countries or regions along the Belt and Road

region. Then, the cooperation and incentive mechanisms of agricultural carbon emission

reduction are not involved. Next, the authors will further research these problems that urgently

need to be solved.
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