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Abstract: The tactile sensation is an important indicator of the added value of a product, and it is thus
important to be able to evaluate this sensation quantitatively. Sensory evaluation is generally used to
quantitatively evaluate the tactile sensation of an object. However, statistical evaluation of the tactile
sensation requires many participants and is, thus, time-consuming and costly. Therefore, tactile
sensing technology, as opposed to sensory evaluation, is attracting attention. In establishing tactile
sensing technology, it is necessary to estimate the tactile sensation of an object from information
obtained by a tactile sensor. In this research, we developed a tactile sensor made of two-layer silicone
rubber with two strain gauges in each layer and obtained vibration information as the sensor traced an
object. We then extracted features from the vibration information using deep autoencoders, following
the nature of feature extraction by neural firing due to vibrations perceived within human fingers. We
also conducted sensory evaluation to obtain tactile scores for different words from participants. We
finally developed a tactile sensation estimation model for each of the seven samples and evaluated
the accuracy of estimating the tactile sensation of unknown samples. We demonstrated that the
developed model can properly estimate the tactile sensation for at least four of the seven samples.

Keywords: tactile sensor; tactile estimation; machine learning; vibration; feature extraction; sen-
sory evaluation

1. Introduction

Quantitative evaluation of tactile sensation is important in industry because tactile
sensation is a characteristic of products that relates directly to product value, especially
for consumer products [1–4]. Sensory evaluation is generally conducted to quantify tactile
sensation but requires an extremely large number of participants to ensure reliability,
resulting in high financial and time costs. There is thus strong demand for the establishment
of tactile sensing technology.

A number of studies have endeavored to establish tactile sensing technology [5–17].
Chen et al. [5] recorded vibration data when an artificial finger ran over a cloth sample.
The vibration was detected from a sound wave traveling through a conductive liquid in
the artificial finger. They found that the peak average, power, Shannon entropy calculated
from the vibration data, and friction coefficient characterize the tactile sensation of a
cloth sample. Asaga et al. [6] proposed a method of evaluating the tactile sensation
of fabric, leather, plastic, and paper samples based on the human mechanism of tactile
perception. They measured the output waveform when the sample surface was touched
with a piezoelectric element and estimated the firing status of each mechanoreceptor
by comparing the vibration waveform and firing threshold of each mechanoreceptor
in the frequency domain. In addition, they compared the firing status with the results
of the sensory evaluation of each sample and concluded that they could estimate the

Sensors 2021, 21, 7772. https://doi.org/10.3390/s21237772 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0298-5558
https://doi.org/10.3390/s21237772
https://doi.org/10.3390/s21237772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237772
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237772?type=check_update&version=2


Sensors 2021, 21, 7772 2 of 16

tactile sensation of softness and roughness from the quantitatively estimated firing status
of mechanoreceptors. A similar approach has been applied to different samples [7,8].
Kerzel et al. [9] used an optical force sensor mounted on a robot arm to measure vibration
generated by friction and texture. They then extracted the relevant spectral features from
the obtained information and used a multi-neural network to classify the materials of
32 different samples. Saga et al. [10] traced the surface of an object using either a finger or
a pen equipped with a wireless accelerometer and classified 15 kinds of sample material
using the collected tactile information.

Previous research on tactile sensing technology can be divided into two main cate-
gories: (a) the research uses physical properties such as friction and roughness, as well as
other information acquired by sensors, to understand the relationship between the tactile
and physical properties of a sample, or (b) the research on physical analysis of samples,
such as material classification and force prediction, based on information acquired by
sensors. However, research of category (a) does not consider the evaluation of the tactile
sensation of an unknown sample and research of category (b) only analyzes the physical
properties of samples and does not evaluate or explain the tactile sensation. In particu-
lar, there has been little research on an effective feature extraction strategy for physical
measurements. As a human has an effective feature extraction function in the form of
mechanoreceptors [18,19], an effective feature extractor should be designed for an artificial
tactile sensor.

As for feature extraction, various research has been conducted. Neural networks
have recently been applied to a variety of nonlinear problems [20–22], among which
the deep autoencoder approach has been widely used in dimensionality reduction and
feature extraction [23]. Deep autoencoder has been proven to be an effective way to
learn and describe latent codes that reflect meaningful variations in data with encoder
and decoder [23,24]. Deep autoencoder has also been applied to many vibration-related
problems, such as vibration-based feature extraction and fault detection [25–27]. Therefore,
it must be reasonable to introduce deep autoencoder to extract features from the vibration
information acquired by a tactile sensor. This research, therefore, first fabricates a tactile
sensor capable of collecting vibration information and introduces the feature extraction
function from the vibration information by deep autoencoder. Then, the present research
develops a machine learning model that estimates the tactile sensation of an unknown
sample by modeling the relationship between the extracted features and human tactile
sensation scores collected with sensory evaluation tests.

The paper is organized as follows: Section 2 presents details of the research method-
ology and describes the tactile sensor developed in this study, followed by the structure
of neural networks. Sections 3 and 4 present the experimental results and discussions,
respectively. Then, the conclusion of this study is given in Section 5.

2. Materials and Methods
2.1. Strategy for Tactile Model Development

An approach to developing a tactile estimation model is shown in Figure 1. We first
conducted a sensory evaluation of human subjects. In parallel, we fabricated a tactile
sensor and acquired vibration information while the tactile sensor ran over each sample.
Features of vibration information were then extracted by deep autoencoders. Finally, a
model for estimating tactile sensation was developed by modeling the relationship between
the features of vibration as input and the tactile evaluation score as output.

2.2. Target Samples

Seven aluminum plate samples, shown in Figure 2a, were used as test samples. The
surface of each sample was embossed to provide a different tactile sensation, and the
arithmetic mean roughness (Ra) and the maximum height (Rz) of seven samples are shown
in Figure 2b,c, respectively. A cardboard plate was glued onto the back side of each sample
to prevent a possible different friction feeling when it was employed in sensory evaluation
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experiments. In order to demonstrate that the developed system can detect the difference
in tactile sensation, which is due to the difference in shape, we employed the samples with
different surfaces with the same material.
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Figure 2. Information about seven aluminum samples. All samples are embossed. (a) Images of aluminum test samples.
The sample number is given above each sample. (b) The arithmetic mean roughness (Ra), (c) the maximum height (Rz)
(n = 10, mean± SD).
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2.3. Sensory Evaluation of Samples

A sensory evaluation was performed by test participants to provide tactile scores for
the seven aluminum samples. The sensory evaluation was conducted at a temperature of
23.0 ± 1.6 ◦C and relative humidity of 30.9% ± 1.6% by 14 healthy adults (12 males and
2 females), aged 23.3 ± 1.0 years (ranging 21–25 years). We employed a semantic differ-
ential method with a seven-step unipolar scale. Following the previous research [8], we
employed the unipolar scale to avoid translation problems between opposite adjectives [28].
Moreover, the scale is only defined at the endpoints to prevent varying interpretations of
verbal anchors and unevenness between anchors [29]. Nine Japanese adjectives (Table 1),
which were determined in a preliminary experiment, were used as evaluation words. In
the preliminary experiment, 28 Japanese adjectives obtained by brainstorming of tactile
researchers were prepared, and we asked six participants (aged 23.2 ± 1.5 years, ranging
21–25 years) whether it was possible to evaluate the samples using each of 28 Japanese
adjectives. Subsequently, the adjectives for which more than 80% (at least five out of six) of
the participants found suitable for evaluation were considered suitable for the evaluation
of the aluminum samples. On the basis of this criterion, 9 of the 28 adjectives were adopted
as evaluation words. During the preliminary experiment and the sensory evaluation, each
sample was put in a box so that visual information was excluded. The participants were
requested to actively trace his/her finger on the samples in the horizontal direction. In
advance to the evaluation, the participants touched all the samples to understand the
population of samples. Additionally, in order to avoid the possible order effect in the
sensory evaluation, the participants were free to touch the samples in random order. In
addition, the participants could touch all the samples while scoring an evaluation word.
A 30 s interval was placed after the participant had evaluated two evaluation words in
order to reduce the fatigue of the participant and to reduce possible heat transfer from
the finger to the aluminum plate samples. The test protocol was approved in advance
by The Bioethics Board of the Faculty of Science and Technology, Keio University. The
participants were provided a thorough explanation of the evaluation methods and then
signed an informed consent form before participating in the study.

Table 1. Words used in the sensory evaluation test (terms in brackets are in Japanese).

Evaluation Words
(Japanese)

Rough
(Zarazara-suru)

Uneven
(Dekoboko-suru)

Coarse
(Kime-no-arai)

Prickle
(Chikuchiku-suru)

Smooth
(Namerakana)

Rugged
(Gotsugotsu-suru)

Slippery
(Tsurutsuru-suru)

Sleek
(Subesube-suru)

Dry
(Sarasara-suru)

2.4. Tactile Sensing System and Experimental Conditions

We developed a tactile sensing system that detects vibration when a tactile sensor runs
over a sample. Figure 3a,b, respectively, show the actual tactile sensor and its structure. As
shown in Figure 3b, the tactile sensor comprises two layers of silicone rubber with different
hardness; layer A is made of a silicone rubber (KE-1316, Shin-Etsu Chemical Co., Ltd.,
Tokyo, Japan) whereas layer B is made of another silicone rubber (SYLGARDTM 184, The
Dow Chemical Company, Midland, MI, USA). The hardness value (as measured by a type-
A durometer) is 23 and 43 for layers A and B, respectively [30,31], so the silicone rubber
for layer B is harder than that for layer A. Note that the dermis inside the human finger is
harder than the subcutaneous tissue [32]. Each layer contains two strain gauges, shown in
Figure 3c (KFGS-03-120-C1-23, Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan), such
that a total of four strain gauges measure the vibration generated inside the tactile sensor
when the tactile sensor runs over a sample surface. Each of the four strain gauges is glued
onto a phosphor bronze plate with an adhesive (CC-33A, Kyowa Electronic Instruments
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Co., Ltd., Tokyo, Japan), and we refer to such a strain gauge with the phosphor plate as a
receptor. There are thus two receptors in each layer, making it possible to collect four sets
of vibration information in a single measurement. Furthermore, since the two receptors in
each layer are placed in random positions and directions, a variety of information can be
collected in a single measurement. The two receptors in layer A are denoted A1 and A2
and the two receptors in layer B are denoted B1 and B2. The output of the strain gauges
is acquired through four dynamic strain amplifiers (DPM-911B, DPM-913B, DPM-913C,
Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan). The specific characteristics for
dynamic strain amplifiers are shown in Table S1. Figure 3d shows the overall appearance
of the system, in which the tactile sensor mentioned above is attached to the arm of the
static/dynamic friction-measuring instrument (TL201Ts, Trinity-lab.INC., Tokyo, Japan).
The specific characteristics for the static/dynamic friction measuring instrument are shown
in Table S2. The load pressing down on the sample during the experiment can be adjusted
using a weight. As the sample table of the TL201Ts static/dynamic friction measuring
instrument moves horizontally, the sensor runs over a sample. Vibration generated by the
relative slippage between the sensor and sample is measured through the four receptors.
The measurement conditions in the present study were a running speed of the tactile sensor
of 20 mm/s, a running distance of 50 mm, and a weight (corresponding to the sample
pressing force) of 0.98 N. Measurements were acquired for a period of 2 s (from 0.25 to
2.25 s) from a tracing of about 2.5 s.
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Figure 3. Tactile sensing system with the developed tactile sensor: (a) photograph of the fabricated
tactile sensor, (b) overview of the tactile sensor, (c) photograph of the strain gauge, and (d) overall
view of the sensing system. The image in (d) shows the tactile sensor running over a sample as a
result of the sliding of the sample table.

2.5. Feature Extraction for the Data Acquired by the Autoencoder

There are four types of mechanoreceptors in the glabrous skin of a human, namely
Meissner corpuscles (FA I), Pacinian corpuscles (FA II), Merkel disks (SA I), and Ruffini
endings (SA II) [18,33,34]. These mechanoreceptors constitute mechanoreceptive units
with corresponding neurons. The mechanoreceptive units respond to mechanical stimuli
induced by vibration inputs and fire nerve impulses to neurons. Considering this human
feature extraction function, an autoencoder [35] with a deep neural network is used to
implement a feature extraction function in the tactile sensing system.

An autoencoder is a kind of neural network used for dimensional compression. The
simplest autoencoder has three layers, namely an input layer, intermediate layer, and
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output layer. The numbers of neurons in the input and output layers are set equal, and
the same data are used as the input and the target output during training. The number
of neurons in the intermediate layer is set to be smaller than that in the input and output
layers. The layer that performs compression (from the input layer to the intermediate
layer) is called the encoder, and the layer that performs restoration (from the intermediate
layer to the output layer) is called the decoder. By learning the parameters that minimize
the difference between the input and target output, the output values of the neurons in
the intermediate layer can be used as dimensionally compressed features [35]. The deep
autoencoder shown in Figure 4 is an application of the autoencoder. It has been shown
that a neural network with more than one intermediate layer and a sufficiently large
number of neurons in the intermediate layer can approximate arbitrary functions [36,37].
This approximation allows for the use of a deep autoencoder to develop models that can
be used for more diverse expressions compared to a simple autoencoder with a single
intermediate layer.
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the feature extraction layer. The numbers of neurons are the same for L1 and L7, L2 and L6, and L3
and L5. The dimension of features, which is the number of neurons in L4, is three and the numbers
of neurons in L1, L2, L3, L5, L6, and L7 are optimized in the range of 5 to 999 by Optuna.

Vibration input to the autoencoder was generated as shown in Figure 5. First, the
measurement results of vibration obtained in Section 2.4 were standardized to have a mean
of zero and variance of 1. The equation of standardization for a certain data point di is
written as

d′i =
di − dmean

dstd
, (1)

where dmean is the average and dstd is the standard deviation of all data points (correspond-
ing to (a) in Figure 5). Next, from vibration information having a total time length of
2 s, the information for a period of 0.2 s was slid by 0.005 s, and 361 pieces of vibration
information for a period of 0.2 s were extracted per measurement (corresponding to (a)
to (b) in Figure 5). In other words, 25,270 pieces of vibration information for each period
of 0.2 s were extracted for each of the four receptors, A1, A2, B1, and B2. A fast Fourier
transformation (FFT) was then performed on the vibration information for each period
of 0.2 s to obtain 1000-dimensional information in the frequency range of 5 to 5000 Hz in
5 Hz increments (corresponding to (b) to (c) in Figure 5). The FFT was performed using
the Python library NumPy [38] with 2000 data points and a Hamming window as the
window function.

In this research, we used a hyperparameter optimization algorithm to develop deep
autoencoders. In neural networks, there are weights and biases that are optimized by
learning and other parameters, such as the learning rate and number of epochs, which are
not optimized by learning. The parameters that are not optimized by learning are called
hyperparameters. In this study, we used Optuna [39], which adjusts hyperparameters
using a Tree-structured Parzen Estimator [40].
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We developed deep autoencoders for feature extraction using the input information
and hyperparameter optimization algorithm described above. We used Keras [41], a Python
framework for deep learning, to develop the deep autoencoders. There were 25,270 datasets
of 1000-dimensional data as mentioned above. To evaluate the generalization ability of
the deep autoencoder, we first used 80% of a dataset for training and the remaining 20%
for testing, and we did not use any test data when optimizing the hyperparameters and
training the deep autoencoder. Then, using the training dataset, we developed a deep
autoencoder with nine layers and the three-dimensional extraction of features, as shown in
Figure 4. The preset parameters are given in Table 2. In addition, the numbers of neurons
in the intermediate layers L1–L3 and L5–L7 shown in Figure 4 were set at 5 to 999 and
optimized by Optuna. The number of neurons in each intermediate layer optimized by
Optuna is given in Table 3. Note that in hyperparameter optimization, 75% of the training
dataset was used for training and 25% for verification.

After the optimization of hyperparameters, the training dataset was used to train the
deep autoencoder. The training was performed using the cross-validation method with
k = 8, and the number of training epochs at each evaluation was 200. On the above basis,
vibration information with 1000 dimensions was compressed to three dimensions. In other
words, three features were extracted for a single receptor. This feature extraction procedure
was performed for all four receptors, and 12-dimensional features (four receptors and three
features for each receptor) were thus extracted.
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Table 2. Preset parameters for the deep autoencoders.

The number of neurons of the input layer 1000
The number of neurons of the output layer 1000

The number of neurons of the feature extraction layer (L4) 3
The number of intermediate layers of encoder and decoder 3

Weight optimization algorithm

Adam [42]
β1 : 0.9

β2 : 0.999
ε : 10−7

α = 0.001

Activation function Encoder: sigmoid
Decoder: ReLU

Loss function Mean squared error
Batch size 128

Trial number of Optuna 200
Epochs 200

Table 3. Optimized number of neurons in intermediate layers for the four autoencoders.

A1 A2 B1 B2

L1 and L7 606 505 957 951
L2 and L6 96 306 43 278
L3 and L5 37 154 324 266

2.6. Establishment of a Tactile Estimation Model through Machine Learning

A model for estimating tactile sensation was constructed by modeling the relationship
between the 12-dimensional feature of vibration information obtained in Sections 2.4 and 2.5
as input and the nine-dimensional tactile evaluation of aluminum plates (scores of nine
evaluation words) as output. There were 3610 data for the features extracted from the
vibration information in Section 2.5, whereas there were 14 tactile evaluation data obtained
in the sensory evaluation in Section 2.3, and the data for sensory evaluation were replicated
until there were 3610 data per sample such that the numbers of data were made equal.
To evaluate the generalization performance of the tactile sensation estimation model for
unknown data, we trained the model for data of six of the seven aluminum plate samples
and used the developed model to estimate the tactile evaluation score for the remaining
sample. A total of seven models were constructed such that each of the seven samples
was used as the unknown sample, and the generalization performance of each model
was evaluated. In the evaluation, the results of the tactile sensation estimation using each
model were compared with the tactile evaluation score given by the human participants in
sensory evaluation.

An all-coupled neural network was used for model development to consider the
nonlinearity of the human tactile perception mechanism. As in the case of feature extrac-
tion, the optimization of hyperparameters by Optuna was performed for the number of
intermediate layers (one to four layers) and the number of neurons in each intermediate
layer (1–500 neurons). The parameters predetermined for optimization and the number of
optimized intermediate layers are given in Tables 4 and 5, respectively. For all models, the
optimized number of intermediate layers was four. Note that each intermediate layer is
arranged in the order of input–L1–L2–L3–L4-output in Table 5.

The optimized hyperparameters were used to train the tactile sensation estimation
model for each of the seven samples. Training was performed using the cross-validation
method with k = 10, and the number of epochs in each evaluation was 200. After confirm-
ing that there was no overtraining in any evaluation, we evaluated the tactile sensation of
each sample to be estimated using the seven models developed.
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Table 4. Preset parameters for the tactile sensation estimation model.

The number of neurons of the input layer 12
The number of neurons of the output layer 9

The number of neurons of the feature extraction layer (L4) 21,660

Weight optimization algorithm

Adam
β1 : 0.9

β2 : 0.999
ε : 10−7

α = 0.001
Activation function of the output layer Linear

Activation function other than the output layer sigmoid
The ration of train data and verification data 4:1

Loss function Mean squared error
Batch size 128

Trial number of Optuna 100
Epochs 200

Table 5. Optimized number of neurons in intermediate layers for each tactile sensation
estimation model.

Model L1 L2 L3 L4

Sample 1 449 442 155 150
Sample 2 484 498 207 50
Sample 3 399 412 408 402
Sample 4 439 447 236 21
Sample 5 474 446 157 411
Sample 6 266 287 244 35
Sample 7 492 481 320 116

3. Results
3.1. Sensory Evaluation Results

The results of the sensory evaluation are shown in Figure 6. Each graph presents the
mean score and standard deviation for each evaluation term used. The figure shows that
there are obvious differences in the tactile sensation among the samples.

3.2. Feature Extraction from Acquired Vibration Data

After the deep autoencoder was trained for each receptor, the outputs of the three
neurons in the feature extraction layer (L4 in Figure 4) were extracted and used as the
feature values in the following tactile estimation. Figure 7 shows the 12 extracted features
for the four receptors against the seven samples. The feature values are well distributed.
Table 6 gives the generalization error when the trained model was applied to the test data.
The small error in feature extraction given in the table is small enough compared with the
input/output data being standardized with a mean of zero and variance of 1.

3.3. Tactile Estimation Models Developed through Machine Learning

The optimized hyperparameters were used to develop the tactile estimation models.
The vibration features of the unknown samples were input to each of the developed models,
and the mean squared errors, which means differences between the output tactile sensation
estimates and the tactile sensation evaluations obtained in human sensory evaluation, are
compared in Table 7. Figure 8 compares the estimated tactile scores of the nine evaluation
words for each sample and the evaluation scores obtained in the sensory evaluations
performed by the human participants. In the figure, samples with p < 0.01 for the majority
of the nine evaluation words (samples 1, 3, and 4) are considered to have not been properly
estimated for tactile sensation, whereas the remaining samples (samples 2, 5, 6, and 7)
are considered to have been properly estimated. The samples that were not properly
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estimated correspond to the samples with mean squared errors larger than 4 in Table 7. The
generalization error in training is important; however, tactile sensation was successfully
estimated for four of the seven samples.
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Table 6. Error in applying the trained deep autoencoder to the test data.

Receptor Generalization Error [×10−5 V2]

A1 2.20
A2 2.93
B1 4.09
B2 3.11
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Table 7. Error in applying the trained tactile sensation model to unknown data.

Model Generalization Error [-]

Sample 1 4.05
Sample 2 1.75
Sample 3 8.33
Sample 4 6.68
Sample 5 2.08
Sample 6 3.99
Sample 7 2.38
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Figure 8. Comparison of the mean and standard deviation of the tactile scores estimated by the estimation model (gray,
n = 3610, mean ± SD) and the evaluation values obtained in the sensory evaluations by human participants (white,
n = 14, mean± SD) for the nine evaluation words in each sample. Each panel is the result for a model that estimates
the tactile sensation of (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5, (f) sample 6, and (g) sample 7
(∗∗ p < 0.01).
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4. Discussion

As described in Section 3.3, there are two groups of samples. That is, the tactile
sensations of samples 2, 5, 6, and 7 can be properly estimated by the developed system,
whereas those of samples 1, 3, and 4 cannot. We discuss here two aspects of the differences
between the two groups, namely the different characteristics of each sample and the
learning status of the neural network, to clarify what type of sample is suited to our tactile
estimation system. To understand the difference in samples, we performed cluster analyses
based on the evaluation scores from sensory evaluation and on features extracted from
vibration data obtained with the tactile sensor. In the cluster analysis, we employed the
Ward method, which is an agglomerative hierarchical method [43,44]. The calculation was
conducted with Scipy, a Python library [45].

Figure 9a shows the results of cluster analysis based on the sensory evaluation scores,
whereas Figure 9b shows the results of cluster analysis based on the extracted features
of vibration information. Figure 9a presents the similarity of the tactile sensations that
the participants actually feel, whereas Figure 9b presents the similarity of the information
acquired by the tactile sensor. It is seen that the tactile sensation (human) and vibration
feature (tactile sensor) are similar for samples 5 and 7. Figure 8e,g show that the tactile
sensations of these samples are well estimated by the developed system. Additionally,
samples 2 and 6 are close in Figure 9a,b, and their tactile estimations are successfully
conducted. Note that the term “successfully” here means that the majority of evaluation
words are statistically well estimated. Meanwhile, samples 1, 3 and 4 are distant from
the other samples in Figure 9. Sample 1 is close to sample 6 in terms of the extracted
vibration feature (Figure 9b) but not in terms of the evaluation score (Figure 9a). This
implies that the samples that have almost the same similarity pair in Figure 9a,b are suitable
for the developed tactile estimation system. The sample information (Figure 2) and sensory
evaluation scores (Figure 6) reveal that a successful estimation (samples 2, 5, 6, and 7) was
made for the samples with a relatively flat surface, wide unevenness width, and rugged
texture. The estimation failed for sample 1 having deep unevenness (Figure 6b, uneven),
sample 3 having a narrow unevenness width (Figure 6d, prickly), and sample 4 having
a dot-like texture (Figure 6f, rugged). From the viewpoint of learning, these samples are
isolated in terms of texture among the prepared sample group, and the appropriate learning
of these samples was thus difficult. However, as described above, the tactile estimation of
samples having similar texture in the prepared sample group was successfully conducted.
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The above discussion suggests that our strategy can contribute to the establishment of
an effective and quantitative tactile estimation model, provided that an appropriate target
sample group is prepared. In addition, by having demonstrated the efficacy of using deep
autoencoders to extract feature quantities in tactile sensing, it was shown that the system
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can be extended to use other parameters such as temperature for tactile estimation in future
work. Any physically developed tactile sensor system can have its own feature extractor
through the use of a deep autoencoder, just as humans have acquired mechanoreceptive
units, namely the feature extractors in our glabrous skin.

5. Conclusions

The tactile sensation is an important characteristic of a consumer product and is
strongly related to product evaluation. The estimation of tactile sensation is thus a major
topic in the field of sensing technology. We developed in this study a tactile sensing
technology by developing a tactile sensor, a feature extractor of vibration data, and an
estimation model of tactile sensation from sensor data through machine learning. We first
fabricated the tactile sensor with two silicone layers with two strain gauges in each layer
capable of measuring vibration data when the sensor runs over a sample. In addition,
instead of using the raw vibration data obtained by the sensor, we extracted the features
from the vibration data using a deep autoencoder, considering that feature extraction is
performed at mechanoreceptors in human fingers. Sensory evaluation was also conducted
to obtain human tactile evaluation scores. We finally modeled the relationship between
the extracted feature values of the vibration data recorded by the sensor as input and the
human tactile evaluation scores obtained in the sensory evaluation as output using an
all-coupled neural network. We thus demonstrated that the tactile sensations of four of
seven samples could be successfully estimated. A detailed discussion suggested that the
success of the estimation depends on the prepared sample group.

Our method allows us to understand the tactile sensation of a product from a simple
measurement. It can be applied to product development processes to reduce time and
economic costs. In future studies, the sensor’s design may be optimized to make it possible
to estimate the tactile sensation of samples with even more diverse shapes. Furthermore,
the generality of this study can be enhanced by applying the developed system to samples
with different materials.
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