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In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors
influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to
enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo.

1. Potential of MSC and MSC-Like Cells for
Cell-Based Therapies

For stem cells to be used in the clinical setting, they should
be safe, that is, do not form tumors, and be readily harvested
and/or expanded. Although embryonic stem cells (ESCs)
are pluripotent and could be used to replace any tissue,
they can form teratomas. Hence, their potential use in cell-
based therapies will require that no undifferentiated ESCs
persist in the graft. In addition, culture methods for human
ESCs are still quite demanding; hence, scaleup is not yet
straightforward.

The best-studied transplanted stem cell is the hematopoi-
etic stem cell (HSC) that can be harvested from different
sources (bone marrow, blood, and umbilical cord blood) in
sufficient numbers for transplantation. HSCs have then also
been used for cell-based therapies especially in an allogeneic
setting for more than a quarter of a century.

Other adult stem cell populations that are being evaluated
clinically are MSCs and multipotent adult progenitor cells
(MAPCs; trade name MultiStem) both derived from human
postnatal tissue.

MSCs were first described in the 1970s by Friedenstein
et al. who described a population of cells derived from bone
marrow that had the appearance of fibroblasts and could
generate aside from fibroblasts, also adipocytes, chondro-
cytes, and osteocytes [1, 2]. These cells grew out as colonies
and were therefore termed “colony forming units” or CFUs.
Later on, Caplan and others termed these cells “mesenchymal

stem cells” (MSCs) [3, 4]. MSCs are classically isolated from
bone marrow however; they can be found in multiple tissues,
such as adipose tissue, fetal lung, placenta, Wharton’s jelly,
and UCB, among others [5-8]. MSCs are characterized as
adherent cells with the ability to differentiate into fibroblasts,
adipocytes, chondrocytes, osteocytes, and smooth muscle
cells apart from supportive hematopoietic “stromal” cells
[1, 3, 4, 9] and with a characteristic cell surface antigen
profile.

Many MSCs or MSC-like cells with varying differentia-
tion potential have been described and reviewed elsewhere
[10]. Although the cell surface repertoire and the gene expres-
sion pattern vary among these cells, this is likely a reflection
of the tissue of origin or the culture conditions used for
maintenance of these cells [11, 12]. A standardized phenotype
was proposed for MSCs by the International Society for
Cellular Therapies. A typical human (h)MSC should express
CD105, CD90, and CD73 but not CD79a, CD45, CD34,
CD19, CD14, CD11b, and HLA-DR on its surface [3, 4, 13].
Most hMSCs or hMSC-like adult progenitors give rise to
mesoderm derivatives such as fat, bone, and cartilage [9].
Apart from the mesenchymal lineages, MSCs and MSC-like
cells such as hMAPC have been reported to also be able to
give rise to skeletal myocytes, cardiomyocytes smooth muscle
cells, and endothelial cells [11, 14-16] (also reviewed in [10]).
Although some studies have suggested that MSCs can give
rise to neurons and endodermal progeny [17-19], it remains
unclear whether such progeny has all properties of primary
neuroectodermal and endodermal cells.
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Apart from being able to differentiate to multiple cell
types in vitro (and in vivo), MSCs and MSC-like adult
stem cells have extensive immunomodulatory and immuno-
logical tolerance inducing characteristics [20-26]. hMSCs
that characteristically lack expression of MHC-II, CD40,
CD80 and CD86 but express MHC-I present themselves as
nonimmunogenic. Although the presence of MHC-I may
activate T-cells, due to lack of costimulatory molecules,
MSCs fail to elicit an immune response [27]. MSCs also
efficiently suppress an immune response by modulating T-
cell activation and proliferation [28, 29], either by a direct
cell-cell interaction [30] or mediated via soluble factors
[28, 31] and this is independent of MHC matching. This
immunomodulating effect of MSCs is being explored as
adjuvants during allogenic transplantation to prevent graft-
versus-host disease (GVHD) [32, 33] and during organ
transplantation to prevent immune rejection [29, 34-36]. In
addition, the immunomodulatory characteristics of MSCs are
being evaluated in the setting of autoimmune diseases, such
as Crohn’s Disease, among others [37, 38].

MSCs also produce innumerable growth factors and
cytokines, which make them suitable for inducing endoge-
nous repair. For instance, MSCs express bone morphogenic
protein(s) (BMPs) which is effective in enhancing cartilage,
bone, and tendon repair [39]. Likewise, MSCs produce factors
that enhance revascularisation, even if their nature is not
understood, and are therefore being evaluated in therapies
for ischemic disorders, such as stroke, myocardial infarct, or
peripheral arterial disorders. Yet another field of therapeutic
applications is grafting MSCs that have been genetically
modified to overexpress a protein in diseased tissues due to
the genetic mutation of the given factor.

2. Homing of MSCs

The lingering problem in the field of cell-based therapies is
the delivery of the cells to the site of injury, a process termed
“homing” As discussed above, the therapeutic efficacy of
MSCs is greatly dependent on their ability to produce
juxtacrine or paracrine factors that enhance regeneration
from endogenous (stem) cells. For juxtacrine effects to be
possible, migration of MSCs to the diseased organ/tissue
is required. Migration and homing to the tissue of injury
is influenced by multiple factors including age and passage
number of the cells, culture conditions, and the delivery
method, among others. We here provide a review of the
literature demonstrating the effect of various factors on
migration and homing of MSCs.

2.1. Age, Passage Number, and Dosage of MSCs. It has been
shown that with higher passage number, the engraftment
efficiency of MSCs decreased. Rombouts et al. had performed
a time course experiment, where they showed that freshly
isolated MSCs had a better efficiency of homing compared
to cultured cells [40]. Moreover, they showed that culture of
MSCs for 24 hr decreased the homing efficiency to 10% from
55-65% and to near 0% when cultured for 48 hr. It is well
documented that with age, the ability of an organism to repair

Stem Cells International

and heal goes down which is in part due to decreased potency
of resident stem/progenitor cell. Thus, it is possible that in
vitro multiplication also causes “aging” and hence decreases
potency. However, another possibility is that for other stem
cells like HSCs, culture alters the expression and function of
cell surface ligands required for homing; it will be discussed
below.

2.2. Source and Culture Conditions of MSCs. As alluded
earlier, MSCs can and have been isolated from multiple
different tissues [41] with differences in the phenotype of
the cells isolated [42]. These differences are likely in part
due to differences in the native microenvironment from
where they are isolated [43]. This presents a challenge for
the use of MSCs for therapeutic purposes. In order to
define an MSC, the Mesenchymal and Tissue Stem Cell
Committee of the International Society for Cellular Ther-
apy (ISCT) proposed certain standards to be considered
while using human MSCs therapeutically [44]. Apart from
the source of the MSCs, culture methods greatly influence
MSC characteristics, including their homing potential. As
mentioned earlier, freshly isolated MSCs home better than
their cultured counterparts [40]. The CXCR4 chemokine
receptor that recognizes CXCLI12 (also termed SDF-l«) is
highly expressed on bone marrow MSCs, but is lost upon
culturing [45, 46]. However, when MSCs are cultured with
cytokines (such as HGE, SCF, IL-3, and IL-6) [47], and under
hypoxic conditions, CXCR4 expression can be reestablished
[48]. Similarly, matrix metalloproteases (MMPs), known to
be important in migration of cells, have been demonstrated
to play a role in MSC migration [49-51]. Expression of MMPs
in MSCs is influenced by factors such as hypoxia [50] and
increased culture confluence [49]. Moreover, inflammatory
cytokines TGF-f31, IL-1/3, and TNF-« also enhance migration
by upregulation of MMPs (MMPs) [51] affecting homing of
MSCs. Hence, culture conditions to which MSCs are exposed
play a vital role in their homing ability.

2.3. Delivery Method. The efficacy, bioavailability, and func-
tionality of a pharmacological drug are dependent on the
method via which it is being administered. In order to
enhance efficacy and availability, the method of adminis-
tration of MSCs should hence facilitate homing of MSCs
to the desired tissue. Intravenous infusion is one of the
major routes of administration of MSC [52-55]. When MSCs
are infused systemically, they are trapped into capillary
beds of various tissues, especially the lungs [52, 56-58].
Therefore, intra-arterial injection of MSCs has been assessed.
Delivery of MSCs via the internal carotid artery significantly
improved their migration and homing in the injured brain
compared with injection via the femoral vein [59]. Similarly,
in humans with subacute spinal cord injury (SCI), delivery of
MSCs via the vertebralis artery leads to a greater functional
improvement than when cells were administered via the
intravenous route [60]. However, delivery of cells in an artery
may lead to “microvascular occlusions” [59]. While to treat
myocardial infraction (MI), delivery of bone marrow cells
or MSCs directly in the heart or close to the site of injury
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enhances the number of cells found in the peri-infarct region
[61]. Similarly, direct injection of adipose-derived MSC in
damaged skeletal muscle leads to an increase in mass and
functional capacity [62].

2.4. Host Receptability-Injury versus Noninjured. MSCs have
the luxury of being tolerated by the host immune system due
to low immunogenicity as discussed earlier. Their bioavail-
ability and efficacy are dependent on the host pathological
condition. During an injury, host cells release different
chemo-attractants that have a positive influence on homing
of MSCs. This possibly explains the observation that MSCs
home better when injected 24 hrs after injury than after
14 days in a myocardial injury model [63]. Many such
chemoattractants and the associated receptors on MSCs
have been identified. Moreover, MSCs are being genetically
engineered to overexpress such receptors to enhance their
homing to the damaged tissue [61, 63-66]. Moreover, strate-
gies to precondition the host for better distribution and to
prevent injected cells from being entrapped in small vessels
especially of the lungs have proven beneficial. One such
approach was the pretreatment of host with vasodilator such
as sodium nitroprusside (SNP) which resulted in increased
MSC passage through the lung microvasculature compared
to untreated hosts [58].

3. Mechanism of Homing

Most insights in the mechanisms underlying migration and
homing are from studies that evaluated leukocyte migration
[67] into inflamed tissues, HSCs [68] the and metastatic
cancer cells [69]. A significant body of the literature also exists
related to mechanism of MSCs migration towards the target
tissue and the role of cell surface receptors and molecules in
aiding this migration. The role of activated endothelial cells in
migration of MSCs is also being extensively studied. We here
describe the factors that aid MSCs in migration and homing
to tissue of interest.

3.1. Expression of Receptors and Adhesion Molecules. Similar
to leucocytes, MSCs express many receptors and cell adhe-
sion molecules that aid in migration and homing to target
tissues. However, the precise mechanisms by which MSCs are
recruited are not yet fully understood.

Homing is in a significant part dependent on the
chemokine receptor, CXCR4, and its binding partner that was
previously characterized in HSC homing, that is, stromal-
derived factor-1 CXCLI2 [61, 64, 70-72]. Wynn et al. demon-
strated that CXCR4 is resent on a subpopulation of MSCs,
which aid in CXCLI2-dependent migration and homing
[45]. Aside from CXCR4, freshly isolated BM MSCs and
cultured MSCs also express CCR1, CCR4, CCR7, CCRIO0,
CCRY9, CXCR5, and CXCR6 [72, 73] which are also involved
in MSC migration

Integrins are another family of cell surface molecules
involved in migration of variety of cells and are expressed
on adipose-derived MSC-like cells [74]. Neutralizing anti-
bodies against integrins, more specifically the integrin-betal

integrin, but not integrin-alpha4, inhibit, MSC homing to
infracted myocardium [75]. However, other studies have
shown that integrin-alpha4 plays a role in MSC migration
[76]. Interestingly, integrin ligands such as VCAM and ICAM
are also expressed on MSCs [77].

3.2. Interaction with Endothelial Cells. Migration and hom-
ing requires that cells can attach to and migrate between
endothelial cells (ECs) to enter the target tissue. While it
well established that leukocytes attach to ECs, roll over the
ECs, and then transmigrate between ECs, how MSCs interact
with ECs is not well understood. MSCs express molecules
as a number of adhesion molecules, including selectins and
integrins, involved in these steps. Riister et al. using a parallel
plate flow chamber, demonstrated that MSCs like HSCs bind
to ECs derived from human umbilical cord vein (HUVECsS)
[76]. The binding was enhanced when ECs were activated by
TNF-« [76]. The cells migrate by extending podia followed by
rolling and adhesion on the EC. They further demonstrated
that the binding and rolling of MSCs were mediated by the
P-selectin adhesion molecule, whereas migration involved
the binding of VLA-4 (or integrin-betal & integrin-alpha4
dimer) on MSC with VCAM-1 found on ECs [76]. Steingen
et al. found a similar mechanism by which VLA-4/VCAM-
1 is required for transendothelial migration. In addition,
migration was dependent on the phenotype of the vascular
bed [78] and also involved proteolytic enzymes [78]. This is
consistent with the studies from De Becker et al. and others
demonstrating a role of the MMP class of proteolytic enzymes
in MSC homing and migration [49, 51]. MMP-2 belongs to
the gelatinase class of proteolytic enzymes that cleave gelatin
and collagen-IV, the two major constituents of basement
membrane.

4. Approaches to Improve Homing

For MSCs to home and target a specific tissue, they require
the right combination of signaling molecules from the
injured tissue and the corresponding receptors on MSC. The
expression of chemokine receptors on MSCs is influenced by
many factors. Although freshly isolated MSCs home better,
only limited numbers of cells can be isolated. Therefore,
approaches to expand MSCs while retaining expression of
receptors needed for efficient homing are being developed.
For instance, pretreatment of cultured MSCs with cytokines
(such as IL-6, HGE etc.) increased expression of chemokine
receptors (CXCR4) and improved their migration both in
vivo [47] and in vitro [79]. Likewise, IL-1f3 pre-treatment
enhanced the efficacy by MSCs homing in a colitis model
[80].

Other approaches include changing culture conditions
and coculture of MSC. Hung et al. demonstrated that short-
term exposure of MSCs to hypoxia leads to increased
expression of chemokine receptors (CX3CR1 and CXCR4)
that may aid engraftment in vivo [81]. A similar increase in
chemokine receptor (CXCR4) apart from cell proliferation-
associated cyclin (cyclin DI, D3) expression was observed
when humans umbilical cord MSCs were cocultured with



Sertoli cells [82]. Yet another approach is the use of genetically
engineered MSCs that overexpress chemokine receptors such
as CXCR4 and integrin-alpha4 to influence their homing
ability. Kumar et al. transduced MSCs with an adenovirus
encoding integrin-alpha4, which enhanced their ability to
home to bone [83]. A similar approach was taken to over-
express CXCR4 in MSCs to enhance their homing ability
and to improve recovery after myocardial infraction [84].
Compared with untransduced MSCs, CXCR4 overexpressing
MSCs resulted in a decrease in anterior wall thinning, and left
ventricular chamber dimensions were better maintained and
remodeling was observed [84]. Although these genetically
modified MSCs may not yet be available for therapeutic use
in humans, pre-treatment approach may well be applicable.

5. Tracking Mesenchymal Stem Cells In Vivo

As homing of MSCs is inefficient and many MSCs are trapped
in the lung following systemic administration, it is imperative
that we can trace the fate of the injected cells. One classical
method to label cells is with retroviral vectors to express
fluorescent proteins, which has been helpful in gaining
insights in MSC homing and engraftment [85]. However,
the visualization of cells that homed in different organs
requires sacrificing of the animal, as the tissue penetrability of
fluorescence is limited. Hence, more advanced techniques to
track the injected cells in vivo, such as bioluminescence imag-
ing (BLI), single-photon emission CT (SPECT), positron
emission tomography (PET), multiple photon microscopy,
and magnetic resonance imaging (MRI), are being employed.
The noninvasive cellular imaging allows for tracking the
injected cells in multiple tissues and over time.

To trace cells by MRI requires labeling of the cells with
contrast reagents in order for the cells to be visualized. Cells
can be labeled with contrast agents: either positive contrast
agents used in T, -weighted MRI such as lanthanide chelates
[86] or Mn-containing compounds [87, 88]; or negative
contrast agents, such as superparamagnetic iron oxide (SPIO)
[89-92], ultra-small superparamagnetic iron oxide (USPIO)
particles [90, 92, 93], or micron-sized iron oxide particles
[94, 95], that are highly sensitive and have a dominant effect
on the T,/T, relaxation times, causing negative contrast
enhancement in the regions of interest. For use with stem
cells, the role of these agents on cell potency and function
needs to be evaluated. Crabbe et al. evaluated the effect of
different MRI contrast reagents on the cellular function of
embryonic and postnatal stem cells including MSC in an
ischemic stroke model [96]. Differences were observed in
terms of size, densities, and number of inclusions among
the different reagents tested. Moreover, the labeling did not
interfere with the migratory capacities of these cells in vivo
[96]. One drawback of MRI-based cell tracking is that whole
body scans are difficult to achieve, and, hence, determination
of where the labeled cells traffic to other than the tissue that is
damaged, is difficult. A second drawback is that the iron oxide
particles are retained in a tissue even if the grafted (stem)
cell dies, hence, leading to false positive signals. Yet another
problem as shown by Vandeputte et al. is that a pronounced
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hypointense signal intensity on 3D T, w MR images can be
seen spontaneously, corresponding to damaged blood vessels
and inflammatory cells, thus, warranting caution [97].

PET imaging relies on the activation of a tracer dye by a
protein such as herpes simplex virus type 1 thymidine kinase
(HSV1-tk) or varicella zoster virus thymidine kinase (VZV-
tk), expressed by genetically engineering into the injected
cells [98, 99]. Two main tracer classes used as probes for
HSVI-tk substrate are pyrimidine nucleoside derivatives and
acycloguanosine derivatives [100]. PET/SPECT visualizes the
emission from a tracer dye that can be toxic and interferes
with cellular function. Alternatively, cells can be directly
labeled with tracer dyes such as '*F-FDG. Wolfs et al.
demonstrated that '®F-FDG, a positron emitting glucose
analogue, can be easily taken up by MSC and MSC-like cells
without interfering with cellular functions [101]. Further, the
presence of this analogue did not significantly affect the via-
bility, proliferation, differentiation, and migratory capacities
of these cells [101]. However, this only allows following the
cells for a short period of time, as the tracer decays over 109
minutes [102].

BLI requires the expression of a bioluminescence protein
that can be visualized and is hindered less by tissue mass
unlike fluorescent proteins. With the availability of instru-
mentation for visualization, the BLI method has been quite
useful in tracing cells in mouse models. Bioluminescence can
be obtained using proteins from the luciferase family (firefly
or Renilla), which again needs to be genetically engineered
in the injected MSCs [103, 104]. In a study evaluating
the immunogenicity of such xenoproteins in genetically
engineered MSCs, Bergwerf et al. found no immunological
response when such MSCs were injected in the brain. In
contrast, they found reporter gene-specific immune-reactive
T-cell responses when they were injected in the muscle [105].

Kraitchman et al., using dual labeled cells (tracer and
contrast reagent), were able to follow the cells for up to a week
in an MI mouse model [106]. Their tracing showed that the
cells initially home to the lungs followed by redistribution to
nontarget organs within 48 hrs. MSCs were also found at the
site of infarct up to one week after injection [106]. However,
the cells were unable to be located using MRI, rather, they
were traceable using high sensitive SPECT [106].

Many such reagents and cell tracing methodologies have
been developed and evaluated for stem and progenitor cells.
The eflicacy, toxicity and resolution are the main factors that
determine the choice of imaging technique.

6. Conclusion

Postnatal MSC or MSC-like cells are currently the primary
source of stem cells that have found clinical relevance.
Embryo-derived stem cells such as ESC although have a
greater differentiation potential, they suffer from their ability
to induce teratomas in vivo; hence, it has been difficult to
translate their clinical use. As alluded here, a great deal
of work has been done to harness the potential of these
adult stem cells for the treatment of patients. MSC and the
likes are already undergoing clinical trials for use in patients
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especially for their immunomodulatory features. However,
their heterogeneity and off-target homing especially lodging
in the lungs impede the clinical use of MSC and MSC-like
cells. Owing to this, a large number of cells are required to
obtain desired effect at the target organ(s). Different methods
as discussed above, such as targeted delivery, cytokine pre-
treatment, and assisted homing, are being used to circumvent
such impedances.
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