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ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the
human diet. The human gut microbiota (HGM) modulates the bioactivities of these
compounds, which consequently affect host physiology and microbiota composition.
Despite a significant impact on human health, the key players and the underpinning
mechanisms of this interplay remain uncharacterized. Here, we demonstrate the
growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides
(PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the up-
regulation of host interaction genes and identified two loci that encode phospho-
transferase system (PTS) transporters and phospho-�-glucosidases, which mediate
the uptake and deglucosylation of these compounds, respectively. Inactivating these
transport and hydrolysis genes abolished or severely reduced growth on PG, estab-
lishing the specificity of the loci to distinct groups of PGs. Following intracellular de-
glucosylation, the aglycones of PGs are externalized, rendering them available for
absorption by the host or for further modification by other microbiota taxa. The PG
utilization loci are conserved in L. acidophilus and closely related lactobacilli, in cor-
relation with versatile growth on these compounds. Growth on the tested PG ap-
peared more common among human gut lactobacilli than among counterparts from
other ecologic niches. The PGs that supported the growth of L. acidophilus were uti-
lized poorly or not at all by other common HGM strains, underscoring the metabolic
specialization of L. acidophilus. These findings highlight the role of human gut L. aci-
dophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemi-
cals, which is likely to have an important impact on the HGM and human host.

IMPORTANCE Thousands of therapeutically active plant-derived compounds are
widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactiv-
ity and bioavailability of these compounds, which are typically glycosylated, are al-
tered by microbial bioconversions in the human gut. Remarkably, little is known
about the bioconversion of PGs by the gut microbial community, despite the signifi-
cance of this metabolic facet to human health. Our work provides the first molecular
insights into the metabolic routes of diet relevant and therapeutically active PGs by
Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is
adept at metabolizing the glucoside moieties of select PG and externalizes their
aglycones. The study highlights an important role of lactobacilli in the bioconversion
of dietary PG and presents a framework from which to derive molecular insights into
their metabolism by members of the human gut microbiota.
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The human gut microbiota (HGM) exerts a profound impact on human health and
developmental biology (1–3), in part through interplay with diet as well as metab-

olism of xenobiotics (4) and nondigestible carbohydrates (5). These impressive meta-
bolic capabilities are encoded by a vast metagenome that outnumbers the genes of the
human genome by more than 150-fold. Preferential carbohydrate metabolism is a key
factor that shapes the HGM (6–8), whereby specific taxa adapt to different biogeo-
graphic and metabolic niches in the gut (9–11). The impact of the HGM composition on
health has been well established through metagenomics and association studies (2, 12),
but the functional understanding of the interplay between HGM and various dietary
components remains limited.

A plethora of phytochemicals occur in fruits, berries, nuts, and vegetables and also
in beverages, such as wine and tea (13). These compounds are frequently glycoconju-
gated in planta to enable storage and solubility or to modulate biological activity (14).
Several phytochemicals, e.g., some phenolic and polyphenolic compounds, exhibit
beneficial health effects via anti-inflammatory, antiestrogenic, cardioprotective, anti-
carcinogenic, chemopreventative, neuroprotective, antimicrobial, or antioxidant prop-
erties (15, 16). The biological activity varies depending on the glycoconjugation of the
phytochemical (17). Stimulation or lack of inhibition of growth of lactobacilli on a few
available glycosylated phytochemicals, here referred to as plant glycosides (PGs), has
been reported (18, 19), but the role of lactobacilli in the bioconversion of PG has not
been clear to date.

Lactobacillus acidophilus NCFM, a widely used probiotic, is a well-characterized
model for human gut-adapted lactobacilli (20, 21), owing to its tolerance to bile (22),
adhesion to epithelial cells and mucus (23, 24), and ability to colonize the host.
Additionally, the abilities of this strain to take up and catabolize a variety of nondi-
gestible complex carbohydrates have been documented and implicated in gut persis-
tence (25–27). Lactobacilli rely on phosphotransferase systems (PTS) in the uptake of
most carbohydrates (28). The genomes of human gut lactobacilli are expanded with
PTS genes, compared to genomes of counterparts from more carbohydrate-poor
ecologic niches (e.g., dairy or food), but functional assignment is lacking for most of
these transporters. To a lesser extent, lactobacilli also possess ATP-binding cassette
(ABC) importers for uptake of nutrients and ABC exporters, for which the specificities of
most are unknown.

Here, we demonstrate the growth of L. acidophilus NCFM on chemically diverse and
nutritionally relevant PG. We also elucidate a new metabolic strategy, involving the
uptake of PG via two different PTS and intracellular hydrolysis by specialized phospho-
�-glucosidases (P-Bgls), followed by the externalization of the aglycone moieties into
culture supernatants. The PG utilization loci are conserved in the L. acidophilus species
and closely related lactobacilli and correlate with versatile growth on these com-
pounds. Growth on the tested PG appeared more common in human gut lactobacilli
than for counterparts from other ecologic niches. The PG that supported the growth of
L. acidophilus were utilized poorly or not at all by other common HGM strains,
underscoring the metabolic specialization of L. acidophilus. These findings highlight the
role of human gut L. acidophilus and select lactobacilli in modulating the availability
and bioactivity of glycoconjugated phytochemicals, and these modulations are likely to
have an important impact on the HGM and their host.

RESULTS
L. acidophilus NCFM grows on nutritionally relevant plant glycosides. The

growth of L. acidophilus NCFM was evaluated on 11 chemically diverse, nutritionally
relevant, and/or therapeutically active PG after 24 h of growth (Fig. 1; see Table S1 in
the supplemental material). The cyanogenic diglucoside amygdalin, coumarin gluco-
sides esculin and fraxin, alcoholic glucoside salicin, and aldehyde glucoside vanillin
4-O-�-glucoside all supported growth to a maximum optical density at 600 nm (OD600)
of 0.3 to 1.3 in 200-�l cultures in 96-well plates. The poor solubility of the stilbenoid
polydatin precluded use of the OD600 as a growth metric, but growth on this bioactive
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compound was verified by the production of lactate and metabolite analysis (described
below). Additional Lactobacillus strains from different ecologic niches were tested for
growth on the PGs amygdalin, arbutin, esculin, and salicin, as well as the control
disaccharides, cellobiose, and glucose. L. acidophilus displayed versatile growth on PG,
together with Lactobacillus plantarum subsp. plantarum and a Lactobacillus rhamnosus
strain (Table S2). Generally, the ability to grow on PG was more common in strains
isolated from the human gut niche than in counterparts from other ecological envi-
ronments.

Growth on plant glycosides upregulates carbohydrate metabolism and host
interaction genes in L. acidophilus NCFM. Global transcription was analyzed by
transcriptome sequencing (RNA-Seq) in early- to mid-exponential-phase L. acidophilus
NCFM cultures growing on lactose or glucose, as well as the growth-supporting PGs
amygdalin, esculin, and salicin, which were selected based on their availability and
chemical diversity.

The growth on lactose and the PGs differentially upregulated less than 10% of the
1,832 predicted protein-coding genes, compared to glucose (Table S3). Only 2% of the
genes were highly upregulated on PG (Table 1). Of the upregulated genes, 55 were
shared by two or more of the PG, whereas 58, 35, and 0 were uniquely induced by
amygdalin, esculin, and salicin, respectively, indicating more extensive and unique
cellular responses to amygdalin and to a lesser extent esculin than to salicin. Amygd-
alin, which supported the lowest level of growth, interestingly upregulated the highest
number of genes (116 genes), followed by esculin (87 genes) and salicin (33 genes).

Carbohydrate metabolism and transport genes comprised about one-third of the
differential transcriptome. Notably, three genes encoding �-glucan utilization enzymes
were highly upregulated, including a GH31 putative �-glucosidase, a GH4 putative
isomaltose-6=-phosphate �-glucosidase (LBA1689), which likely confers the breakdown
of isomaltose (26), and a putative maltogenic �-amylase (LBA1871), which resides in the
maltodextrin utilization cluster (29) (Table 1). The physiological significance of such
upregulation is unclear, but �-glucans from starch breakdown by humans and bacteria
are common metabolic resources in the small intestine, which is inhabited by lactoba-
cilli (30), and this may explain the observed response. The transcriptional response also
revealed the upregulation of genes encoding proteins predicted to be associated with
mucus, fibrinogen, and epithelial cell adhesion, e.g., LBA0649, LBA1392, LBA1633, and
LBA1709 (Table 1; Table S3) (24, 31, 32). Interestingly, genes encoding cellular defense

FIG 1 Growth of Lactobacillus acidophilus NCFM on plant glycosides. (A) Structures and common sources of plant glycoside substrates in this study. The
compounds that support growth of L. acidophilus are shown in green. R1, �-D-Glcp; R2, gentiobioside [�-D-Glcp-(1,6)-D-Glcp]; R3, rutinoside [�-L-Rhaf-(1,6)-D-
Glcp]. (B) Graph showing results of PG utilization mass spectrometry analysis (black bars) and growth (gray bars, maximum OD600) after 24 h of at least biological
triplicates. Standard deviations were �13% of the maximum OD600 for PGs that sustained growth. Due to the low solubility of polydatin, the OD600 could not
be used as a growth metric and utilization of this compound was confirmed by the production of lactate as well as a high utilization level based on the
metabolite analysis.
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redox enzymes, e.g., a peroxidase (LBA1401) and an oxidoreductase (LBA1025), were
also upregulated, indicating a possible xenobiotic stress response (Table 1; Table S3).
Multidrug efflux ABC export systems were also upregulated, e.g., LBA0574 and
LBA0575, together with 41 hypothetical proteins (Table S3). Growth on PG appeared to
promote increased host interaction and adhesion, which was also observed for L. rh-
amnosus after pretreatment with the PG rutin and phloridzin (33).

Specific phosphotransferase uptake systems and specialized phospho-�-gluco-
sidases are essential for growth on plant �-glucosides. Growth on PGs highly
upregulated two gene loci compared to growth on glucose (Table 1; Table S3), and
these findings were also corroborated by quantitative reverse transcriptase PCR (qRT-
PCR) analysis (data not shown). The first locus encompassed four genes which were
highly upregulated (log2 ratios of 4.1 to 8.9, corresponding to 17- to 478-fold upregu-
lation) for all 3 PG. The genes encode a LicT transcriptional antiterminator (LBA0724),
an EIIABC component of a phosphotransferase system (PTS; LBA0725), a phospho-�-
glucosidase (P-Bgl; LBA0726) of glycoside hydrolase family 1 (GH1) according to the
CAZy database (34), and a hypothetical protein (LBA0728) (Fig. 2A). These genes, except
for the less frequently transcribed LBA0728, which belongs to the Lactobacillus core
genome (35), are among the top 10% most upregulated genes in the PG transcriptomes
(Table S3). The second locus, which was only transcriptionally responsive to amygdalin,
encodes another P-Bgl of GH1 (LBA0225), a divergently transcribed PTS enzyme II
component (EIIC; LBA0227), and a transcriptional regulator (LBA0228) (Fig. 2B). Both

TABLE 1 Highly upregulated genes in the transcriptome of L. acidophilus NCFM grown on amygdalin, esculin, or salicin

Locus tag Annotationa COGb

Log2 ratioc

Amy/Glc Esc/Glc Sal/Glc

LBA0227 PTS EIIC G 9.9 0.8 0.9
LBA0725 PTS EIIABC G 9.7 9.8 8.9
LBA0726 Phospho-�-glucosidase (GH1) G 7.2 6.9 6.2
LBA1436 Glycerol uptake facilitator protein G 7.2 4.9 3.8
LBA0631 Hypothetical protein 7.2 2.9 2.9
LBA1435 Hypothetical protein S 7.1 5 3.6
LBA1434 Dihydroxyacetone kinase G 6.7 4.5 3.3
LBA1869 �-Phosphoglucomutase R 6.7 4.2 2.4
LBA1684 PTS EIIA G 6.6 2.9 2.6
LBA0225 Phospho-�-glucosidase (GH1) G 6.5 �0.2 �0.1
LBA0724 Transcriptional regulator (antiterminator) K 6.4 5.5 5.3
LBA0228 Transcriptional regulator G 6.3 0.9 0.1
LBA1433 Dihydroxyacetone kinase G 6 3.7 2.7
LBA0728 Hypothetical protein R 6 4.8 4.1
LBA0555 Myosine-cross-reactive antigen/fatty acid hydratase S 6 2 1.4
LBA1974 Pyruvate oxidase E 5.5 3.6 1.8
LBA1689 Isomaltose-6=-phosphate glucosidase (GH4) G 5.3 1.8 3.7
LBA1812 �-Glucosidase II (GH31) G 5.3 2.8 2.2
LBA1701 Melibiose operon regulatory protein K 5.3 4.9 1
LBA0466 Phosphoenolpyruvate carboxykinase (ATP) C 5.2 2 1.3
LBA0492 Hypothetical protein 5 3.7 2
LBA0606 PTS EIIBC G 4.9 2.8 2.5
LBA0491 PTS EIIC G 4.7 3.4 1.5
LBA1797 Hypothetical protein 4.7 2.6 1.3
LBA0877 PTS EIIA G 4.6 3 1.3
LBA1873 Acetate kinase C 4.6 0.8 1.2
LBA1709 Mucus binding protein precursor 4.5 3.6 0.5
LBA1632 NAD-dependent aldehyde dehydrogenase C 4.4 3.3 2
LBA1401 Peroxidase (Npx) R 4.4 3.1 2.7
LBA0876 PTS EIIC G 4.4 2.9 2.4
LBA1871 Maltogenic �-amylase (GH13) G 4.3 2.1 0.9
LBA1411 Fumarate reductase flavoprotein subunit C 4 1.7 1.4
aAnnotations are based on homology or functional characterization when possible.
bCOG, cluster of orthologous group classification; C, energy production and conversion; E, amino acid metabolism and transport; G, carbohydrate metabolism and
transport; K, transcription; R, general functional prediction only; S, function unknown.

cDifferential transcription log2 ratio of normalized transcripts per million relative to glucose. Amy, amygdalin; Esc, esculin; Sal, salicin; Glc, glucose. The included genes
displayed log2 differential expression ratios (of the normalized transcripts per million) of �4 for the plant glycosides.
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these gene loci are strictly conserved in the L. acidophilus species and to some extent
in related lactobacilli from the Lactobacillus delbrueckii group (Fig. 2; Table S4).

To establish the functional significance of these two loci, constructs with single
deletions of each PTS EII and P-Bgl gene or a double deletion of both P-Bgl genes were
created by using the upp-based counterselectable gene replacement system (36)
(Table S5), and the growth phenotypes of the mutant strains were analyzed (Fig. 3). This
analysis is very powerful, particularly as the physiological 6=-phosphorylated substrates

FIG 2 Transcriptional profiles and conservation of plant glycoside utilization loci. The RNA read
coverages for amygdalin (dark green), esculin (light green), salicin (turquoise), and glucose (light gray) are
shown. (A) The top upregulated locus in L. acidophilus NCFM on the three plant glycosides encodes a
transcriptional regulator (LBA0724), a PTS EIIBCA transporter (LBA0725), a phospho-�-glucosidase of
glycoside hydrolase family 1 (LBA0726), and a hypothetical protein (LBA0728). (B) A locus upregulated
exclusively during growth on amygdalin also encodes a P-Bgl (LBA0225), a PTS EIIC transporter
(LBA0227), and two transcriptional regulators (gray). Conservation of the loci in selected lactobacilli from
the L. delbrueckii group and the amino acid sequence identities relative to L. acidophilus NCFM are shown.
The red vertical line signifies the scaffold border. Predicted rho-independent transcriptional terminators
are shown as hairpin loops, with overall confidence scores (ranging from 0 to 100) (67).

Metabolism of Plant Glucosides by L. acidophilus ®

November/December 2017 Volume 8 Issue 6 e01421-17 mbio.asm.org 5

http://mbio.asm.org


of the GH1 enzymes are not available to perform enzymatic analyses in vitro. The
growth of the �LBA0725 mutant (with an inactive PTS EIIABC) was abolished on esculin
or salicin, severely reduced on amygdalin, and moderately reduced on cellobiose or
gentiobiose. The abolished growth on esculin and salicin identified this EIIABC as the

FIG 3 Phenotypic growth analyses of deletion mutants of EII PTS transporters (left) and phospho-�-
glucosidases (right) on the �-glucosides esculin, salicin, and amygdalin, and the disaccharides gentio-
biose and cellobiose. The background �upp strain is shown in gray, and the growth of the mutant strains
is shown for PTS EIIC (LBA0227; pink triangle), the phospho-�-glucosidase (LBA0225; light blue triangles),
the PTS EIIABC (LBA0725; yellow squares), the second phospho-�-glucosidase (LBA0726; lilac squares),
and the double phospho-�-glucosidase mutant (LBA0225/LBA0726; black stars). The color scheme is
consistent with that used for the gene loci in Fig. 2. The growth experiments were performed in
biological triplicates, and the average errors were �6%.
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sole transporter for these PG, but the reduced growth on the other compounds
suggested additional roles for this transport system. The growth profile of the
�LBA0726 mutant, which lacks a functional P-Bgl, was similar on PGs, but growth on
either cellobiose or gentiobiose was unaffected. This phenotype also supports the
specificity of P-Bgl (LBA0726) toward the PGs esculin and salicin (Fig. 3). Accordingly, we
can assign the specificity of this locus to the uptake and hydrolysis of PGs, with a
preference for distinct monoglucosylated small aromatic aglycones.

The growth of the �LBA0227 mutant (inactive EIIC) in the second locus, which was
exclusively upregulated by amygdalin, was abolished on both amygdalin and gentio-
biose (Fig. 3E and G), both of which share a �-(1,6)-diglucoside moiety (Fig. 1). The
phenotypes for salicin and esculin were invariant compared to the wild-type strain
(Fig. 3A and C). These data provided compelling evidence for the specificity of this PTS
EIIC transporter for amygdalin and gentiobiose, consistent with previously reported
upregulation in response to gentiobiose (26). This specificity is also supported by the
phenotype of the P-Bgl mutant �LBA0225. The severe reduction in growth for the
�LBA0726 mutant lacking the P-Bgl from the first locus on amygdalin (Fig. 3F), but not
on gentiobiose (Fig. 3H), suggests a role for this enzyme in the catabolism of amygdalin.
Indeed, growth on amygdalin was only abolished with the double P-Bgl mutant
(Fig. 3F). The identification of low levels of prunasin, the singly deglucosylated form of
amygdalin (Table S6), suggests that the deglycosylation of amygdalin occurs in two
steps, with sequential cleavage of the nonreducing �-(1,6)-linked glucosyl by the P-Bgl
that recognizes the �-(1,6)-gentiobiose moiety (LBA0225) and by a second P-Bgl that
cleaves monoglucosylated compounds (LBA0726) to release the aglycone moiety.
Based on these data, we can assign the specificity of the locus encoding the PTS EIIC
transporter (LBA0227) and the phospho-�-glucosidase (LBA0225) to compounds with a
�-(1,6)-diglucoside motif, like gentiobiose and amygdalin. The full deglycosylation of
PGs possessing a gentiobiose moiety like amygdalin, however, required the additional
activity of the second P-Bgl (LBA0726).

L. acidophilus cells externalize the bioactive aglycones of PGs and preferen-
tially utilize glucosides that support the highest growth levels. We monitored the
growth of L. acidophilus NCFM and analyzed the metabolites in the culture superna-
tants at 0 and 24 h. The PG were identified in the preculture medium (Table S6).
Depletion of the PGs that supported growth (Fig. 1) was proportional to growth (the
final OD600), and the respective aglycones lacking the glucosyl moiety (loss of 162 Da)
(Table S6) were identified in the culture supernatants. The growth on polydatin was
verified from the extent of depletion (Fig. 1), the identification of the aglycone
resveratrol (Table S6), and the production of lactate. The only deviation from this trend
was the absence of the aglycone of amygdalin (mandelonitrile). Instead, the main
metabolite of amygdalin utilization was benzaldehyde, which was only detectable by
UV, due to its volatility. The PGs that did not support growth persisted, and no
metabolites of these PGs were detected at 24 h.

We also monitored the temporal changes in concentrations of the three most
available PGs, salicin, esculin, and amygdalin, and of their metabolites in culture
supernatants. The concentration of salicin decreased throughout the growth period
(Fig. 4A; Fig. S1), while an inverse trend was observed for the aglycone salicyl alcohol
during exponential-phase growth. Notably, the aglycone moiety of salicin per se was
unable to support growth of L. acidophilus (data not shown). The same pattern was
observed for esculin, which was depleted concomitantly with the increase in the
concentration of the aglycone metabolite esculetin during the first 12 h of growth
(Fig. S1).

The concentration of amygdalin in the culture supernatant also decreased steadily,
concomitant with an increase in benzaldehyde (Fig. S1). In contrast to the other 2 PGs,
however, only about one-third of the initial amygdalin was utilized during 24 h of
growth, and the summed concentration of amygdalin and benzaldehyde was invariant
over time. Low levels of the monodeglucosylated metabolite of amygdalin, prunasin
(37), were identified (Table S6). Although the corresponding aglycone, mandelonitrile,
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FIG 4 Time-resolved metabolite analysis of L. acidophilus NCFM grown on plant glucosides. (A) Time
course depletion of salicin and appearance of its aglycone salicyl alcohol in the culture supernatants,
visualized as the area under the A270 peaks in the UHPLC– qTOF-MS chromatograms. (B) Preference of
L. acidophilus NCFM for plant glycosides during growth on an equimolar mixture of salicin, esculin, and
amygdalin. Salicin was preferred, followed by esculin, while amygdalin was hardly consumed after 24 h.
The aglycones of the plant glycosides and the concentration of lactate increased concomitantly with
growth.
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was identified in the first 6 h ([M � CH3COO]� adduct; m/z 192.0664), the main
amygdalin metabolite was benzaldehyde, which is produced via a hydrogen cyanide
elimination reaction of mandelonitrile. This reaction is catalyzed by nitrile lyase but has
also been reported to occur spontaneously (38). This is the likely scenario for our
experiment, as no nitrile lyase is encoded by L. acidophilus. Detection of traces of
scopoletin, the methylated form of the esculin aglycone (Table S6), was the only
evidence for enzymatic modification of the aglycones of PG, but the paucity of this
species casts doubt on the specificity of this modification. Taken together, our metab-
olite analyses are supportive of L. acidophilus largely exporting noncarbohydrate
moieties without enzymatic modification. The mechanism of externalization is not clear,
but the export systems, e.g., an ATP-binding cassette exporter in the case of esculin
(LBA0573 to LBA0575), are upregulated in the transcriptome (Table S3).

To evaluate whether amygdalin, esculin, and salicin are taken up randomly or
according to a certain preference, we analyzed the supernatants of L. acidophilus NCFM
grown on equimolar concentrations of these PG. Strikingly, salicin was the first com-
pound to be fully depleted, followed by esculin, whereas significant amounts of
amygdalin persisted after 24 h of growth (Fig. 4B), thus establishing the clear prefer-
ence of L. acidophilus in the utilization of PG that support its best growth.

DISCUSSION

A considerable proportion of the thousands of diet-derived known phytochemicals
mediates positive health effects in humans (39). The daily intake of phytochemicals is
relatively high due to the enrichment of common nutritional sources, such as fruits,
berries, nuts, vegetables, herbs, and beverages such as wine and tea (13). Frequently,
phytochemicals occur as glycoconjugates that exhibit lower bioactivity and bioavail-
ability than their aglycone derivatives, which are smaller in size and typically less polar
(40, 41). Therefore, deglycosylation of PGs is likely an important factor in modulating
their biological activity (42). The health impact of HGM-mediated biotransformation of
drug xenobiotics and diet-derived phytochemicals has gained considerable interest (4,
43). Our insight into this latter metabolic aspect of the HGM is conspicuously limited.
The small intestine is the primary site for absorption of nutrients and xenobiotics, which
lends extra gravity to the metabolic activities of HGM prevalent in this part of the
gastrointestinal tract, where lactobacilli constitute an important part of the microbial
population (11). Based on our findings, we report here the versatility of the probiotic
bacterium L. acidophilus NCFM in utilization of dietary therapeutically active PG,
revealing that only the carbohydrate moieties are catabolized while the aglycones are
externalized, making them bio-accessible to absorption by the host or available for
further interactions with other organisms of the HGM.

Carbohydrates are mainly taken up by PTS transporters in lactobacilli (28, 44).
Translocation is coupled to phosphorylation of the glycoside mostly at the 6=-position
via an enzymatic cascade that relays the phosphoryl group to a substrate-specific EIIC
complex (45). The EIIC forms the translocation channel that defines the specificity of the
EII complex. Phosphorylation is relayed via EIIA and EIIB enzymes, of which the latter is
known to interact specifically with EIIC. The EII modules are either encoded by a single
gene, e.g., the gene for the EIIABC salicin and esculin uptake system (LBA0725), or by
2 to 3 separate genes, to assemble the phosphorylation cascade. The amygdalin EIIC
component (LBA0227) requires coupling from EIIA and EIIB modules that are not
encoded by the same locus. This EIIC is only upregulated upon growth on its substrate,
amygdalin, whereas the LBA0725 EIIABC is highly upregulated during growth on the
substrates salicin and esculin, as well as on amygdalin (Table 1; Fig. 3 and 5). Accord-
ingly, inactivation of the EIIC elicits an impaired growth phenotype only on the
substrate amygdalin, whereas the inactivation of the EIIABC causes an approximate
50% reduction of growth on amygdalin, as well as on the two disaccharides cellobiose
and gentiobiose, both of which are not hydrolyzed by the P-Bgl encoded by this locus
(Fig. 3). The lack of growth on amygdalin or gentiobiose, when the EIIC system is
inactivated, precludes uptake of these compounds solely via the EIIABC system. A
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possible rationale for the coregulation of the two transporters and the phenotypic
impact of the EIIABC on nonsubstrates is that the EIIA and/or EIIB components of
LBA0725 contribute in coupling phosphorylation to the amygdalin EIIC system and
possibly to other EIIC modules. The less drastic phenotype of EIIABC on nonsubstrates,
however, suggests that the contribution of this transporter can be complemented by
other PTS systems. To our knowledge, this functional overlap between PTS systems that
are assigned to different families (46) has not been reported before and merits further
investigation. Such an overlap may orchestrate interplay between different transporters
to confer the uptake of diverse sugars by bacteria.

There is a large and growing body of evidence on functionalities of phytochemicals
and their beneficial health effects (i.e., nutraceuticals) (39, 47, 48). Several intervention
studies have shown changes in HGM composition, especially an increase in lactobacilli
and bifidobacteria, due to phytochemicals, which are also suggested to have antimi-
crobial effects (7, 49, 50). The routes of conversion of these compounds, however, have
not been addressed at the molecular level. Our data suggest an important role of
human gut L. acidophilus in the activation of dietary-relevant PG (Fig. 5). For example,
salicin, the best growth substrate for L. acidophilus NCFM in this study, is a pharmaco-
logically inactive precursor of the analgesic and antirheumatic drug salicylic acid.
Indeed, salicylic acid has been reported to be the main metabolite (86%) in serum after
oral administration of salicin-rich willow bark extract in humans (51). Our study revealed
that L. acidophilus performs a step in this bioactivation, via deglycosylation and

FIG 5 Plant glucoside utilization model for L. acidophilus and closely related human gut lactobacilli. Plant glucosides consisting of mono- or bicyclic aromatic
rings conjugated with a glycosyl moiety and present in the diet are taken up by dedicated PTS transporters and hydrolyzed by specific phospho-�-glucosidases
into the glycolytic precursors glucose-6-phosphate and glucose. The aglycones are exported likely by an upregulated ATP-binding cassette exporter or by other
unknown transporters, rendering them accessible for absorption by the human host and eliciting various biological activities, most of which are beneficial.
Antimicrobial effects and subsequent changes in the microbiota composition are common effects of the aglycones, but further modifications and modulations
of biological activity have been reported (4, 43, 49). The solid arrows show the steps established in our study, whereas the dashed lines indicate physiological
effects that have been reported in the literature.
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externalization of salicyl alcohol, which becomes accessible for oxidation to salicylic
acid performed by other microbiota. Fraxin, which also sustains the growth of L. aci-
dophilus, is one of the active ingredients in some Chinese and Japanese herbal
medicines and has several potential positive health effects, including protection against
oxidative stress (52). L. acidophilus also converts polydatin, which is enriched in wines
and tea, to resveratrol, which is one of the most-studied therapeutic phytochemicals
due to its implication in protection against, e.g., inflammation, cancer, and obesity
(53–55). Other lactobacilli have also been implicated in the metabolism of other PGs,
e.g., the in vitro conversion of the isoflavonic daidzin, present in soy products, by the
pig intestinal commensal Lactobacillus mucosae EPI2, to the estrogen-mimicking agly-
cone equol, which has been proposed to be protective against breast cancer (56, 57).

In silico analysis of genomic sequences of L. acidophilus strains revealed the con-
servation of the PG utilization loci identified in the present study, indicating the
potential ability of this species to metabolize PGs (Table S4). Our growth survey using
four different PG revealed large species variations in growth (Table S2). Generally,
L. acidophilus strains were among the top strains in terms of growth on PG, and
lactobacilli strains from the gut appeared to better at PG utilization than counterparts
from other ecologic niches, suggesting a competitive advantage in the adaptation to
the human gut environment. Gene landscape analyses showed a correlation between
growth on salicin or esculin and the presence of the intact LBA0724-LBA0726 locus in
the tested strains that belong to the taxonomically closely related L. delbrueckii clade,
i.e., L. acidophilus, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus gasseri
(58) (Fig. 2A). Strains missing one or more genes within this cluster or which have a
fragmented version of the LBA0725 transporter gene were conversely unable to grow
on esculin or salicin (Table S2). Growth on amygdalin is less common within the
L. delbrueckii group, in line with the limited occurrence of the amygdalin gene cluster
(LBA0225 to LBA0228). The L. amylovorus strain has a fragmented and likely dysfunc-
tional version of EIIABC LBA0725 (Fig. 2A, total sequence coverage of 72%). This strain
is unable to grow on amygdalin, consistent with the involvement of modules from this
PTS in the uptake of �-(1,6)-glucosides, as discussed above. The good growth of more
distant species, e.g., Lactobacillus plantarum subsp. plantarum and Lactobacillus rham-
nosus GG, which lack the gene locus, discloses the presence of alternative routes for the
utilization of amygdalin in other Lactobacillus clades. The functional data in the present
study, combined with the genetic analysis, provide an extended predictive power for
PG utilization within closely related lactobacilli, although the metabolic pathways and
transporters are likely to be diverse across a larger taxonomic group. Although our
limited screening was not sufficient to establish PG utilization in other microbiota taxa,
our results do hint at the specialization of L. acidophilus growth on PGs that are not
utilized by other common taxa (Fig. S2).

Taken together, this study enabled the elucidation of a novel pathway for the
bioconversion of PGs and the externalization of their bioactive aglycones by the human
gut-adapted L. acidophilus and closely related taxa. The bioconversion of PG is accom-
panied by a modulation of the activities of the phytochemicals in the small intestine,
which renders these compounds bioavailable for further functional interplay with the
host and other HGM taxa (Fig. 5). In conclusion, this study casts light on underexplored
facets of the metabolism of plant-derived glycosides and their bioconversion by the
microbiota that exert a significant impact on human health. Further work is required to
bring insight on the fate of PG in the human gut ecologic niche and to evaluate the
clinical and possible therapeutic implications of PG bioconversion by the HGM.

MATERIALS AND METHODS
Chemicals and carbohydrates. The plant glycosides utilized in this work are described in Table S1.

All other chemicals used were of high purity.
Bacterial strains and growth. Bacterial strains and plasmids used in this study are presented in

Table S5. Lactobacillus strains were propagated statically in de man-Rogosa-Sharpe (MRS) broth (Difco
Laboratories, Detroit, MI) under aerobic conditions or on MRS agar plates (1.5% [wt/vol]; Difco) under
anaerobic conditions at 37°C, or at 42°C for pTRK669 elimination (59). Recombinant L. acidophilus strains
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were selected in the presence of 2 �g ml�1 erythromycin (Sigma-Aldrich, St. Louis, MO, USA) and/or 2
to 5 �g ml�1 chloramphenicol (Sigma). Selection of plasmid-free double recombinants was done on a
semidefined agar medium containing 2% (wt/vol) glucose (GSDM) (60) with 100 �g ml�1 5-fluorouracil
(5-FU; Sigma), as described by Goh et al. (36).

For initial growth and gene expression studies, L. acidophilus NCFM was propagated three times in
semidefined medium supplemented with either 1% or 0.5% (wt/vol) of the plant glycoside or carbohy-
drate (Table S1). The plant glycoside screening was carried out in at least biological triplicates. For the
RNA-Seq analysis, cells were harvested by centrifugation (3,220 � g, 10 min, 25°C) in the mid-exponential
phase (OD600, 0.6 to 0.8) and stored at �80°C for subsequent RNA isolation. For the mass spectrometry
metabolite analyses, 200-�l samples were taken at 0, 3, 6, 9, 12, and 24 h of growth, cells were removed
by centrifugation, and supernatants were stored at �80°C for further analysis.

Phenotypic growth assays were performed using 1% (vol/vol) overnight cultures of L. acidophilus
strains (Table S5) and other Lactobacillus species (Table S2) grown on SDM supplemented with 1%
(wt/vol) glucose to inoculate 200 �l of SDM supplemented with 1% (wt/vol) of the examined carbohy-
drate (0.5% in the case of esculin) in 96-well microplate wells (Corning Costar, Corning, NY). Phenotypic
growth assays of L. acidophilus NCFM and its knockout variants were performed in biological triplicates,
whereas the growth screening of other L. acidophilus strains or other Lactobacillus species was performed
in biological duplicates. The microplates were sealed with clear adhesive film and incubated at 37°C in
a Fluostar Optima microplate reader (BMG Labtech, Cary, NC), and the culture OD600 was monitored
for 30 h.

Escherichia coli EC101, used for generating the L. acidophilus gene knockouts, was grown in brain
heart infusion (BHI) broth (Difco) at 37°C with aeration in the presence of kanamycin (40 �g ml�1).
Recombinant E. coli EC101 cells containing pTRK935-based plasmids were selected with erythromycin
(150 �g ml�1). Growth of Bifidobacterium longum subsp. longum DSM 20219, Bifidobacterium longum
subsp. infantis DSM 20088, and Bacteroides ovatus DSM 1896 was carried out in MRS medium or modified
MRS medium supplemented with a 1% (wt/vol) carbon source. Roseburia intestinalis L1-82 was cultured
in yeast extract-casein hydrolysate-fatty acids (YCFA) medium supplement with a carbon source (61).

RNA extraction, sequencing, and transcriptional analysis. Pellets from 10-ml cell cultures were
resuspended in 1 ml of TRI reagent (Thermo Fisher Scientific, Waltham, MA) and thereafter transferred
into 1.5-ml bead beating conical tubes with 0.1-mm glass beads (BioSpec Products, Inc., Bartlesville, OK),
and cells were disrupted by six 1-min cycles (with 1 min on ice intermittently) with a Mini-Beadbeater 16
apparatus (BioSpec Products). RNA purification was performed using the Direct-zol RNA MiniPrep kit
(Zymo Research, Irvine, CA) with on-column DNase I treatment followed by an additional Turbo DNAse
(Thermo Fisher) treatment of the eluted RNA, and further purification was carried out using the RNA
Clean and Concentrator 5 kit (Zymo Research). The quality of RNA was analyzed using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA), and the absence of genomic DNA was confirmed by
PCR using L. acidophilus NCFM gene-specific primers. Library preparation and RNA sequencing were
performed by the High-Throughput Sequencing and Genotyping Unit of the Roy J. Carver Biotechnology
Centre, University of Illinois (Urbana-Champaign, IL). After rRNA removal (using a Ribo-Zero rRNA removal
kit for bacteria; Illumina, San Diego, CA), library preparation was carried out using the TruSeq stranded
total RNA library prep kit (Illumina). Single-read RNA sequencing was performed using a HiSeq 2500
ultrahigh-throughput sequencing system (Illumina) and the Illumina HiSeq SBS v4 kit (Illumina) with a
read length of 160 nucleotides (nt). The raw reads were demultiplexed with the bcl2fastq conversion
software (v 2.17.1.14; Illumina), trimmed for the adapter sequences, quality trimmed to remove sequence
reads with an error probability threshold of 0.001 (Phred score, 30), and filtered to remove reads of
�20 nt by using Geneious version 9.0.4 (62). The quality of the reads was assessed by using FastQC
v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The resulting reads were then
mapped to the L. acidophilus NCFM reference genome by using the Geneious Mapper with default
settings (62). The sequencing coverage depths were calculated to be 610� to 692�, and transcriptional
analyses were based on the number of normalized transcripts per million (nTPM), calculated within
Geneious. Differentially expressed genes were defined as having a log2 ratio of �2 unless otherwise
stated.

RT-qPCR assay. To confirm the results of the RNA-Seq transcriptional study, RT-qPCR analysis of
selected genes was performed (63). Briefly, the iTaq universal SYBR green one-step kit (Bio-Rad Labora-
tories, Hercules, CA) was used according to the manufacturer’s instructions, except for scaling down to
25-�l reaction mixtures with 50 ng of RNA template and 300 nM of each primer (Table S7). An iCycler
MyiQ single-color detection system (Bio-Rad) was used, and the data were analyzed using iCycler MyiQ
software v1.0 (Bio-Rad). The correlation coefficients for the standard curves and PCR efficiencies were
between 0.930 and 0.999 and 88.7% to 102.5%, respectively.

DNA manipulation and transformation. Genomic DNA from L. acidophilus NCFM and mutants
thereof was isolated using the ZR fungal/bacterial DNA MiniPrep kit (Zymo Research). Plasmid DNA was
isolated using the QIAprep Spin MiniPrep kit (Qiagen, Hilden, Germany). Restriction enzymes were from
Roche (Basel, Switzerland), and T4 DNA ligase was from NEB (New England Biolabs, Ipswich, MA). PfuUltra
II fusion HS DNA polymerase (Agilent Technologies, Santa Clara, CA) was used for cloning, and
Choice-Taq Blue DNA polymerase (Denville Scientific, South Plainfield, NJ) was used for PCR screening of
recombinants. PCR amplicons were analyzed on 0.8% (wt/vol) agarose gels and extracted using the
QIAquick gel extraction kit (Qiagen). DNA sequencing was performed by Eton Biosciences (Durham, NC).

Construction of gene deletion mutants. The L. acidophilus NCFM genes LBA0225 and LBA0726,
both of which encode P-Bgl of glycoside hydrolase family 1 (GH1) enzymes (34), in addition to the
LBA0227 and LBA0725 genes which encode EIIC and EIIABC components of two PTS, respectively (64),
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were deleted using the upp-based counterselectable gene replacement system (36). Briefly, in-frame
deletions were constructed by amplifying 650 to 750 bp of the up- and downstream flanking regions of
the deletion targets with two primer pairs, e.g., LBA0225A/LBA0225B and LBA0225C/LBA0225D (Ta-
ble S7). The resulting purified products were joined by splicing using overlap extension PCR (SOE-PCR)
(65) and amplified to establish the deletion alleles. The SOE-PCR products, which included flanking
restriction enzyme sites, were cloned within the BamHI and SacI/EcoRI sites of the pTRK935 integration
vector and transformed into E. coli EC101. The resulting recombinant plasmids (pTRK1113 to -6) were
confirmed by DNA sequencing and electroporated into L. acidophilus NCK1910 (Table S5), which contains
the pTRK669 helper plasmid, and recovery of single- and double-crossover recombinants was performed
as previously described (63). Recombinants carrying the new gene deletion alleles were isolated by
colony PCR using primer pairs denoted up-down (e.g., LBA0225up/LBA0225down), which anneal to the
flanking regions of the amplicons. Sequence integrity and in-frame deletions were verified by DNA
sequencing employing the aforementioned primer pairs and a primer denoted mid (e.g., LBA0225mid).
The mutations were in-frame deletions of 90 to 96% of the coding regions.

Analysis of plant glycoside uptake from L. acidophilus NCFM culture supernatants using mass
spectrometry. The supernatants of L. acidophilus NCFM cultures grown on amygdalin, arbutin, esculin,
or salicin as carbon sources were analyzed during 24 h by using ultrahigh-performance liquid chroma-
tography– diode array detection– quadruple time of flight mass spectrometry (UHPLC–DAD–Q-TOF-MS).
Samples were diluted 1:20 (vol/vol) with methanol, and an injection volume of 1.5 �l was used.
Separation was carried out on an Agilent Poroshell 120 phenyl-hexyl column (2.1 by 150 mm, 2.7 �m)
using the Infinity 1290 UHPLC system (Agilent Technologies, Santa Clara, CA) equipped with a UV-visible
spectrum diode array detector. Separation was performed at 0.35 ml min�1, 60°C, with a linear gradient
consisting of water (A) and acetonitrile (B), both buffered with 20 mM formic acid, starting at 10% B and
increased to 100% in 15 min, at which conditions were held for 2 min, returned to 10% in 0.1 min, and
kept for 3 min. MS detection was performed on an Agilent 6550 iFunnel QTOF MS equipped with the
Agilent Dual jet stream electrospray ion source with a drying gas temperature of 160°C and gas flow of
13 liters min�1, whereas the sheath gas temperature was 300°C and flow was 16 liters min�1. Ionization
was conducted in ESI� mode with a capillary voltage set to 4,000 V and nozzle voltage set to 500 V. Mass
spectra were recorded as centroid data for m/z 85 to 1700 in MS mode with an acquisition rate of 10
spectra s�1. To avoid carryover, the needle seat was back-flushed for 15 s at 4 ml min�1 with each of the
following: (i) isopropanol– 0.2% ammonium hydroxide (wt/vol) in water (1:1 [vol/vol]); (ii) acetonitrile with
2% formic acid (wt/vol); (iii) water with 2% formic acid. Data were processed with the Agilent MassHunter
qualitative analysis B.07.00 software package (Agilent Technologies), and molar concentrations were
obtained from standard curves of the plant glycosides and their main metabolites. Targeted compound
searches were performed using lists of previously identified compounds plus standard chemical modi-
fications (37, 51, 66).
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