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Simple Summary: Our previous preclinical trial in a head and neck squamous cell carcinoma (HN-
SCC) xenograft model showed a high potential for the improvement of curative treatment outcome
upon the combination treatment of a radiolabeled (Yttrium-90) anti-EGFR antibody (Cetuximab)
and external radiotherapy. We aim to elucidate the molecular response of HNSCC tumors upon this
combination. Here, we show that the combination treatment leads to an increasing number and
complexity of DNA double strand breaks. The upregulation of p21cip1/waf1 expression and cleaved
caspase-3 suggest a blockage of cell cycle transition and an induction of programmed cell death.
Collectively, a complex interplay between molecular mechanisms involved in cell death induction,
cell cycle arrest, and DNA double strand break repair accounts for the beneficial potential using
Yttrium-90-Cetuximab in combination with external radiotherapy.

Abstract: Combination treatment of molecular targeted and external radiotherapy is a promising
strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance
the therapeutic value of this approach, this study investigated the underlying molecular response.
Subcutaneous HNSCC FaDuDD xenografts were treated with single or combination therapy (X-ray: 0,
2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (90Y)). Tumors were excised
24 h post respective treatment. Residual DNA double strand breaks (DSB), mRNA expression of
DNA damage response related genes, immunoblotting, tumor histology, and immunohistological
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staining were analyzed. An increase in number and complexity of residual DNA DSB was observed
in FaDuDD tumors exposed to the combination treatment of external irradiation and 90Y-Cetuximab
relative to controls. The increase was observed in a low oxygenated area, suggesting the expansion
of DNA DSB damages. Upregulation of genes encoding p21cip1/waf1 (CDKN1A) and GADD45α
(GADD45A) was determined in the combination treatment group, and immunoblotting as well as
immunohistochemistry confirmed the upregulation of p21cip1/waf1. The increase in residual γH2AX
foci leads to the blockage of cell cycle transition and subsequently to cell death, which could be
observed in the upregulation of p21cip1/waf1 expression and an elevated number of cleaved caspase-3
positive cells. Overall, a complex interplay between DNA damage repair and programmed cell death
accounts for the potential benefit of the combination therapy using 90Y-Cetuximab and external
radiotherapy.

Keywords: molecular targeted radiotherapy; DNA damage response; Cetuximab; cell death induc-
tion; external beam radiotherapy

1. Introduction

HNSCC is the most common malignant disease arising in the oral cavity, oropharynx,
hypopharynx, and larynx. It is considered as the sixth most common cancer worldwide
with approximately 900,000 newly diagnosed cases in 2020 [1]. Radiotherapy with curative
intent for HNSCC remains challenging as a subset of HNSCC patients are radioresistant [2].
In molecular targeted radiotherapy, molecules coupled with tumor-associated antigen-
binding components are systemically administered, allowing targeted internal irradiation
to primary cancers as well as distant metastases [3]. By combining the precise and confor-
mal dose delivery to the primary tumor via external beam radiotherapy with molecular
targeted radiotherapy, an increased tumor dose and potential targeting of metastases can
be achieved, improving treatment outcome in HNSCC [4].

Epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase receptor,
is involved in crucial cellular processes e.g., cell proliferation, differentiation, survival,
and migration [5]. Overexpression of EGFR has been associated with an unfavorable
treatment outcome in several tumor entities including HNSCC. Based on this, EGFR has
been proposed as a potential target for molecular targeted radiotherapy [6]. Cetuximab, a
monoclonal antibody targeting EGFR conjugated with radionuclides showed a therapeutic
efficacy in a broad set of tumor types as monotherapy or combination therapy with chemo-
or radiotherapy [4,7–14].

Yttrium-90 (90Y), a radioactive isotope of Yttrium, is a β-emitter with a half-life of
64.1 h and a maximum radiant energy of 2.27 MeV. It can affect water equivalent tissues
within a range up to 12 mm, leading to the production of crossfire effect [15]. Thera-
peutic potential of 90Y-conjugated antibodies against EGFR as a combination treatment
with external radiotherapy for HNSCC cells has been, therefore, investigated. Preclinical
studies showed an enhanced cytotoxic effect upon the combined treatment, i.e., increased
number and complexity of DNA double strand breaks (DSB), elevated cell death, and
reduced proliferative capacity [14,16,17]. Finally, our previous preclinical trials in HNSCC
tumor xenograft models [11,12] demonstrated that the combined treatment with external
and molecular targeted radiotherapy using 90Y-Cetuximab substantially enhanced tumor
control probability and reduced radiation dose to control 50% of tumors (TCD50) relative
to the combination with unlabeled Cetuximab or external radiotherapy alone. Despite the
improved efficacy of the combined treatment in tumor control, the underlying molecular
effects supporting its clinical use remain elusive in preclinical experiments.

This study aims to elucidate the underlying molecular response induced by the dual
therapy of 90Y-Cetuximab and external irradiation, leading to the effective tumor control
shown in our previous preclinical trials [11,12]. Biological effects of exposure to radiation
are primarily attributed to DNA DSB generation and cell death induction. Hence, we
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investigated residual γH2AX foci (DNA DSB marker) determined at 24 h post irradiation,
mRNA expression of genes involved in DNA damage response (DDR), and the activation
of programmed cell death in a HNSCC tumor xenograft model, namely FaDuDD. This
study was designed and performed in parallel to our previously published study [12].

2. Materials and Methods
2.1. Animal Experiments

Ninety-four NMRI (nu/nu) mice (7–14 weeks old male and female, weighing 25–45 g)
were acquired from OncoRay National Center for Radiation Research in Oncology (Dres-
den, Germany). Animals were housed in a group of 8–10 animals in a conventional EU
Standard Type III cage with a filter top and a wire lid under controlled environment: tem-
perature (25–27 ◦C), humidity (50–60%), and light–dark cycle (12:12 h). Animals had access
to autoclaved dry feed and water ad libitum. The pathogen-free animal facility (OncoRay
National Center for Radiation Research in Oncology, Dresden, Germany) and the experi-
ments were approved by the regulatory authorities (AZ: DD24-5131/207/15) in accordance
with the European Parliament and Council (EU Directive 2010/63/EU) on the protection
of animals used for scientific purposes, the German animal welfare regulations, and the
local animal ethics committee. The experiments were performed and reported in adherence
to ARRIVE guidelines [18]. FaDuDD, an established human HNSCC tumor model, was
investigated in this study. The tumor characteristics were reported elsewhere [19,20]. The
xeno-transplantation of tumors was described previously [21]. In brief, animals were
whole-body irradiated with 4 Gy (X-rays, Maxishot 200 Y.TU/320-D03, Yxlon International,
Hamburg, Germany; 200 kV, 20 mA; 0.5 mm Cu filter; dose rate 1 Gy/min) prior to subcuta-
neous transplantation of FaDuDD tumor pieces (~ 2 × 2 mm) from a source tumor into the
right hind-leg of anesthetized animals using Ketamine (Ketamin 500 Curamed®, CuraMed
Pharma, Karlsruhe, Germany, 120 mg/kg) and Xylazine (Rompun®, Bayer Healthcare,
Leverkusen, Germany, 16 mg/kg). Histology and volume doubling time were assessed
in control animals (n = 4) and microsatellite analysis of the source tumors was carried out
to confirm the tumor identity. The animals were excluded from the experiment if they
showed no tumor growth, second nodules in proximity to the transplantation site, or health
issues subject to the exclusion criteria according to the German animal welfare regulations
(n = 15).

Animals bearing tumor with a diameter of 6–8 mm were allocated into nine treatment
arms i.e., untreated, monotherapy of external tumor irradiation with 0, 2 or 4 Gy, 90Y
labeled or unlabeled Cetuximab (Erbitux®; Merck KGaA, Darmstadt, Germany), or the
combination therapy. The overview of experimental design is illustrated in Figure 1.
Randomization of animals could be achieved as FaDuDD tumors reached the expected
size asynchronously [19,22]. 90Y (2.8 MBq) labeled or unlabeled Cetuximab (13 µg) was
administered intravenously into the tail vein of animals 3 days prior to external tumor
irradiation. Cetuximab was acquired from the local hospital pharmacy. The radiolabeling
procedure of Cetuximab with 90Y is described in detail elsewhere [12,17]. Due to the local
radioprotection regulations, investigators could not be blinded as to whether the animal
was injected with 90Y labeled or unlabeled Cetuximab. One hour before external radiation
exposure, animals were intraperitoneally injected with pimonidazole (hypoxia marker;
Natural Pharmacia International, Burlington, MA, USA; 0.1 mg/g animal body weight)
and bromodeoxyuridine (BrdU, proliferation marker; SERVA electrophoresis, Heidelberg,
Germany; 3.75 mg). For the single dose external tumor irradiation under ambient blood
flow condition, animals were immobilized in plastic tubes, which were placed on an acrylic
plate, and a custom-made clipper was used to position the tumor-bearing leg within the
irradiation field. Animals were sacrificed 24 h post external tumor irradiation; tumors were
excised and cut in half. One half of the tumor was snap-frozen in liquid nitrogen and the
other half was formalin-fixed and embedded in paraffin (FFPE).
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Figure 1. Overview of the animal experiment. Schematic illustration of the animal experiment. The experiment was
carried out in two cohorts in parallel to the preclinical trial testing treatment efficiency published in [12]. Upon reaching a
tumor diameter of 6–8 mm, animals were allocated to nine different treatment arms. Drugs were injected intravenously
3 days prior to irradiation. Pimonidazole (hypoxic marker) and bromodeoxyuridine (BrdU; proliferation marker) were
administered intraperitoneally 1 h before tumors were locally exposed to external irradiation with 0, 2 or 4 Gy. Tumors were
fixed 24 h post irradiation and the fixed samples were used for further molecular analysis. The total number of animals in
each treatment arm is shown in Table S1.

Due to the residual radioactivity, the formalin fixation and the dehydration in a grade
ethanol series were conducted in a radiation protection area and the tissue processing
duration was extended to approx. 24 h for each step. In total, 75 animals were allocated
to the respective treatment arms as shown in Table S1. The experiment was designed and
conducted in parallel to the previously published study on the therapeutic efficiency of
the combined treatment between 90Y-Cetuximab and external beam radiation with tumor
control as curative endpoint [12].

2.2. Radioactivity Measurement of 90Y in Tumors and Organs

Radioactivity in tumors, spleen, liver, and kidney of animals treated with 90Y-labeled
Cetuximab were measured at the day of sacrifice by using a calibrated automated gamma
counter (Packard Cobra II, Canberra, IL, USA). The relative uptake in organs was calculated
as the ratio of the decay corrected organ activity and the injected activity.

2.3. Immunofluorescence, Immunohistochemistry and Histological Staining

All stainings were carried out on FFPE samples with a section thickness of 3 µm.
Standard hematoxylin and eosin (H&E) staining was performed on tumor sections. Two
consecutive sections of tumors were stained for pimonidazole/BrdU (Immunohistochem-
istry: IHC) using ARKTM Kit (Animal Research Kit; Agilent Technologies Deutschland,
Hamburg, Germany) and γH2AX (Immunofluorescence: IF) using Alexa FlourTM 488
Tyramide Signal Amplification Kit (Invitrogen, Darmstadt, Germany) [23]. The tumor
sections were probed for p21cip1/waf1 and cleaved caspase-3. IHC and IF staining were
counterstained with hematoxylin and 4′,6-diamidino-2-phenylindole (DAPI), respectively.
The list of antibodies and kits used in this study is provided in Table S2.

2.4. Determination of RNA Expression

The isolation of total RNA from frozen tumor samples was carried out using RNeasy
micro kits (#74004, Qiagen, Hilden, Germany) and the total RNA concentration was de-
termined using QubitTM RNA HS Assay Kit (#Q32852, Invitrogen, Darmstadt, Germany).
A microarray with custom-made codesets for 223 DDR genes and 7 housekeeping genes
was purchased from the manufacturers (Nanostring Technologies, Seattle, WA, USA; In-
tegrated DNA Technologies, Leuven, Belgium) and mRNA expression was determined
with nCounterTM (Nanostring Technologies, Seattle, WA, USA) according to the manu-
facturer’s protocol. The list of custom-made gene sets is provided in the Table S3. To
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validate mRNA expression assessed by nCounterTM, real-time qRT-PCR of a set of 18 genes
was carried out. RNA was reverse-transcribed to cDNA. PCR reaction mix was prepared
by mixing cDNA, TaqMan® Master Mix (#4444556, Applied Biosystems, Waltham, MA,
USA), TaqMan® assays (Applied Biosystems, Waltham, MA, USA), and nuclease-Free
water (#129114, Qiagen, Hilden, Germany). Real-time qRT-PCR was performed on 96-well
plates in StepOnePlusTM Real-Time PCR System (#4376600, Applied Biosystems, Waltham,
MA, USA) with the following run conditions: 2 min at 50 ◦C, 2 min at 95 ◦C, and 40 cycles
of 1 s at 95 ◦C and 20 s 60 ◦C. The list of genes and primers is provided in the Table S4.
Genes that showed significant up- or downregulation upon treatments were used for a
functional annotation analysis and protein network analysis using an online tool (DAVID
Bioinformatics Resources 6.8 [24]). KEGG database [25] was used as the reference.

2.5. Immunoblotting

Proteins were isolated from FFPE tumor samples. Depending on the size of the tumors,
several sections with a thickness of 3 µm (30–50 sections) were prepared. FFPE tumor
sections were deparaffinized in xylene, rehydrated with a graded series of ethanol, and
briefly air-dried under a fume hood. Tissue lysis buffer (0.1 M Tris-HCl, pH 8.0, 0.1 M DTT,
4% (w/v) SDS) of 50–100 µL was added and incubated while agitating at 100 ◦C for 20 min
and 90 ◦C for 100 min. The whole tissue lysate was centrifuged and protein concentration
was determined by the tryptophan fluorescence assay, as previously described [26]. SDS
PAGE (12% SDS gel concentration) was performed and resolved proteins were transferred
to a nitrocellulose membrane using a wet-blotting system (Mini Trans-Blot® Cell, Bio-Rad
Laboratories, Feldkirchen, Germany). Membranes were probed for p21cip1/waf1, GADD45α
and β-tubulin. The immunoblotting was documented using Vilber FsusionFX system
(Vilber Lourmat Deutschland, Eberhardzell, Germany) or ChemiDoc MP Imaging sys-
tem (Bio-Rad Laboratories, Feldkirchen, Germany). The densitometry of the blots was
determined with a Fiji ImageJ built-in function—Gel analysis (Version 1.53k) [27].

2.6. Image Acquisition and Analysis

H&E images were acquired using a wide-field slide scanner (Axioscan Z1; Carl
Zeiss, Jena, Germany) with a 10× objective (Plan-Apochromat 10×/0.45, Carl Zeiss, Jena,
Germany). Whole section scanning of IHC images and IF images were carried out with a
10× objective (Plan-Apochromat 10×/0.45, Carl Zeiss, Jena, Germany) using wide-field
fluorescence microscopes (Axio Imager Z2 or Axio Imager M1; Carl Zeiss, Jena, Germany)
equipped with dual cameras (digital color camera: Axiocam MRc, and monochrome
camera: AxioCam MRm; Carl Zeiss, Jena, Germany). For acquisition of IF images stained
for γH2AX, Axio Imager M1 with a 40X objective (Plan-Apochromat 40×/0.45; Carl Zeiss,
Jena, Germany) was used. Microscopes were controlled by ZEN software (Version 3.1; Carl
Zeiss, Jena, Germany) or AxioVision (Version 4.9; Carl Zeiss, Jena, Germany). During IF
acquisition, exposure time was kept constant for an entire staining batch.

The in vivo γH2AX foci assay was carried out as previously described [23,28]. Briefly,
in each tumor section, seven to fifteen regions of interest (ROI) with a single, pimonidazole
negative blood vessel surrounded by BrdU positive cells were selected for the following
acquisition of γH2AX. For each ROI, focus z-stack images (17 images with a focus interval
of 0.25 µm) covering a distance of 250 µm from the nearest perfused vessel were acquired.
An extended depth focus image using the maximum projection method was generated from
the z-stack images for the further image analysis. Within a ROI, the distance to the nearest
perfused vessel was classified into three categories i.e., <50 µm, 50–100 µm, and >100 µm.
Within 50 µm distance from the nearest perfused vessel, pimonidazole remained negative
for every ROI [28]. Analyzable cells within the three distance categories were numbered
and five cells per category were randomly selected for the manual foci enumeration.
Gamma H2AX foci size and mutual distance among foci was determined in cells within the
distance of up to ~100 µm from the nearest perfused vessels using an extended version of a
Fiji ImageJ compatible macro (FociCounter; https://github.com/jo-mueller/FociCounter,

https://github.com/jo-mueller/FociCounter
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accessed on 12 March 2021) [29] developed for this study. In brief, cells were segmented [30]
and foci were detected using Fiji’s maximum finder method. The script then counts the
number of foci per cell, size of each focus and the mutual distance between all foci within a
given nucleus. The latter is defined as the median Euclidian distance between all present
foci. Corrected foci (cfoci) were calculated as described previously [31]. Briefly, the mean of
the nucleus area was multiplied by the quotient of foci number and area of an individual
nucleus. The means of nucleus area were calculated in a distance category- and tumor-
specific manner. Tumors which were BrdU and Pimonidazole negative were excluded
from the analysis (n = 9). For analysis of p21cip1/waf1, cleaved caspase-3 positive cells,
and necrotic fraction, QuPath, an open-source bioimage analysis software [32], was used.
For the evaluation of necrotic fraction, several annotations of necrotic fraction, tumor
fraction, and stroma on each individual tumor were performed manually as training data
for the automatic segmentation using the built-in random forests classifier, which predicts
the percentages of each component. Cleaved caspase-3 and p21cip1/waf1 positive cells
were segmented and classified into three categories based on the fluorescence intensity.
The thresholding method for the classification of fluorescence intensity is described in
the Supplementary Materials. The number of positive cells was normalized with total
cell number.

2.7. Statistical Analysis

Linear mixed-effects model or analysis of variance (ANOVA) were applied. For
multiple comparison and post-hoc test, Sidak’s correction was carried out. Statistical
analyses were conducted with SPSS Software (Version 27, IBM Deutschland, Ehningen,
Germany). Data visualization was performed using GraphPad Prism (Version 7, GraphPad
Software, San Diego, CA, USA) and Rstudio [33] with ggplot2 package. Data of mRNA
expression from nanoStringTM were analyzed using nSolverTM software (Version 4.0;
Nanostring Technologies, Seattle, WA, USA).

3. Results

The total uptake of radionuclide observed in FaDuDD xenograft tumors, livers, kidneys
and spleens of animals treated with 90Y-Cetuximab is shown in Figure S1. To investigate
the effect of 90Y-Cetuximab inflicting DNA DSB damages, residual γH2AX foci were
determined manually in nuclei located within three distance categories based on the
distance from the nearest perfused vessel (<50 µm, 50–100 µm, and >100 µm, respectively).
The outputs of descriptive statistics and linear mixed-effects model are shown in Tables S5
and S6. On average, 350 cell nuclei/distance categories were analyzed for γH2AX foci in
each treatment arm. Injection of 90Y-Cetuximab without external tumor irradiation caused a
significant increase in residual γH2AX foci up to 100 µm compared to unlabeled Cetuximab
or untreated control (Figure 2A). Upon the combination treatment with 90Y-Cetuximab and
external beam radiation, a significant increase in residual γH2AX foci, depending on the
distance to the nearest perfused vessel, could be observed, while this increment could not
be detected in tumors treated with the combination of external irradiation with unlabeled
Cetuximab or radiation alone. A reduction of residual γH2AX foci in a distance-dependent
manner could be found solely in 90Y-Cetuximab-treated tumors, indicating that a DNA
DSB infliction of 90Y-Cetuximab decreased gradually with distance to the nearest perfused
vessel (Figure S2).

In the second analysis, γH2AX foci were automatically analyzed using an updated
version of the FociCounter in the cell nuclei located within a distance of approx. 0–100 µm
from the nearest perfused blood vessel. Statistical analysis with a linear mixed-effects model
of corrected residual γH2AX foci analyzed by the algorithm showed a similar outcome as
the manual evaluation (Figure S3). The mutual distance among residual γH2AX foci in the
individual cell nuclei became narrow in tumors exposed to 90Y-Cetuximab. Its combination
with external beam radiation generated more cells with higher residual γH2AX cfoci and
smaller distance among foci compared to the combination of external tumor irradiation
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with unlabeled Cetuximab or untreated control (Figure S4). This suggests complex residual
DNA DSB damages introduced by the combination treatment of external irradiation and
90Y-Cetuximab. A significant increase in cell nucleus area, which was located in the
distance to the nearest perfused vessel up to 100 µm, upon 90Y-Cetuximab treatment could
be determined compared to monotherapy of unlabeled Cetuximab or control, independent
of irradiation (Figure 2B). Overall, combination treatment of 90Y-Cetuximab and external
irradiation increased the presence of residual DNA DSB and induced complex DNA DSB.
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Figure 2. Analysis of DNA damage and cell nucleus area determined by γH2AX foci assay upon monotherapy or
combination therapy. Corrected foci (cfoci) and nucleus area of FaDuDD xenograft tumors treated with monotherapy
or combination therapy of external tumor irradiation (0, 2, or 4 Gy) plus Cetuximab or 90Y-Cetuximab. FFPE tumors
were stained for γH2AX and counterstained with DAPI. The range for γH2AX foci enumeration was classified into three
categories based on the distance from the nearest perfused vessel (<50 µm, 50–100 µm, and >100 µm). Five analyzable
nulcei per distance category were randomly selected for manual assessment of γH2AX foci counts (A) and nucleus size
measurement (B). cfoci were calculated and a linear mixed-effects model was performed on square root transformed cfoci
and log transformed nucleus area. (*: p < 0.05, **: p < 0.01, ***: p< 0.001).

To study the molecular responses of FaDuDD tumors upon the combination treat-
ment with 90Y-Cetuximab and external irradiation, mRNA expression of DDR genes was
assessed on RNA isolated from cryopreserved tumors using the nanoStringTM platform.
The outcome of nanoStringTM was validated by real time qRT-PCR on 18 selected genes.
Expression determined by nanoStringTM showed a good degree of correlation with the
result from real time qRT-PCR (r2 = 0.7276; Figure S5). The heatmap shows a distinct mRNA
expression pattern among the treatment arms, except for the group with unlabeled Cetux-
imab single treatment and its combination with external irradiation, where a similar pattern
of expression could be observed (Figure 3A). According to the differential expression anal-
ysis, the comparison between untreated control and tumors treated with 90Y-Cetuximab
and external irradiation (Figure 3B) demonstrated that several genes were significantly
upregulated (GADD45A, CDKN1A, MDM2 and LIG4) or downregulated (PTEN, RAD23A,
RPA1, RAD51C and PARP1). The top 20 genes that were significantly altered in each treat-
ment arm compared to untreated tumors are shown in Table S7. Functional annotation
analysis of genes that are significantly upregulated showed a significant enrichment in p53
signaling pathway as well as cell cycle upon monotherapy of 90Y-Cetixumab (Table S8).
Tumors treated with the combination of 90Y-Cetuximab and external irradiation exhibited
a significant gene enrichment in nucleotide excision repair and p53 signaling pathway for
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upregulated genes, and base excision repair, cell cycle and Fanconi anemia pathway for
downregulated genes (Table S9).

Cancers 2021, 13, x 9 of 17 
 

 

 

Figure 3. mRNA and protein expression of DDR genes upon mono- and combination treatment with external irradiation 

and 90Y-(un-)labeled Cetuximab. Heat map of mRNA expression of DDR related genes determined by nCounterTM (n = 5) 

(A). Differential mRNA expression of the combination treatment using external irradiation (4 Gy) with 90Y-Cetuximab 

relative to control (B). Log2Counts of two candidate genes: CDKN1A and GADD45A under different treatment arms (C). 

Solid lines and error bars denote mean and standard deviation, respectively. One-way ANOVA followed by post-hoc test 

with Sidak’s correction for the comparison between the treatment groups and control was performed (*: p < 0.05, **: p < 

0.01, ***: p < 0.001). Protein expression of CDKN1A encoding protein, p21cip1/waf1, and GADD45α assessed by immunoblot-

ting (n = 3) (D). Bars and error bars represent mean and standard error of mean, respectively. 
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and 90Y-(un-)labeled Cetuximab. Heat map of mRNA expression of DDR related genes determined by nCounterTM (n = 5)
(A). Differential mRNA expression of the combination treatment using external irradiation (4 Gy) with 90Y-Cetuximab
relative to control (B). Log2Counts of two candidate genes: CDKN1A and GADD45A under different treatment arms (C).
Solid lines and error bars denote mean and standard deviation, respectively. One-way ANOVA followed by post-hoc test
with Sidak’s correction for the comparison between the treatment groups and control was performed (*: p < 0.05, **: p < 0.01,
***: p < 0.001). Protein expression of CDKN1A encoding protein, p21cip1/waf1, and GADD45α assessed by immunoblotting
(n = 3) (D). Bars and error bars represent mean and standard error of mean, respectively.

As proteins encoded by GADD45A (GADD45α) and CDKN1A (p21cip1/waf1) are es-
sential components in cell cycle arrest and programmed cell death mechanisms, their
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expression was further investigated. The comparison among the treatment arms demon-
strated a significant increase in GADD45A and CDKN1A mRNA expression in tumors
treated with 90Y-Cetuximab (Figure 3C). Subsequently, protein expression assessed by
immunoblotting of GADD45α and p21cip1/waf1 was performed. p21cip1/waf1 expression
was in line with its mRNA expression. In contrast, protein level of GADD45α remained
unaltered in all the treatment arms compared to control (Figure 3D). The original images of
immunoblotting are provided in Figure S6.

To observe cell death and the activation of cell death mechanism in FaDuDD tumors
induced in each treatment arm, tumors were immunofluorescence stained for cleaved
caspase-3 and p21cip1/waf1, which are markers for apoptosis and cell cycle arrest, respectively.
(Figures S7 and S8). In addition, H&E staining was carried out to evaluated necrotic fraction.
The histological analysis of necrosis showed insignificant changes in the necrotic fraction
among the treatment arms (data not shown). Cleaved caspase-3 as well as p21cip1/waf1

positive cells could be observed in all conditions. A higher number of p21cip1/waf1 positive
cells with high intensity were observed in tumors treated with 90Y-Cetuximab (monotherapy
and combined with external irradiation) compared to control or unlabeled Cetuximab
(Figure 4A), which is in line with the immunoblotting outcome. Similarly, the highest
number of cleaved caspase-3 positive cells with high intensity can be seen in the combination
treatment of 90Y-Cetuximab with external irradiation of 4 Gy (Figure 4B). This suggests that
the combination treatment, where the radiation dose is higher relative to other treatment
arms, enhanced cell death induction as well as cell cycle arrest.
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Supplementary Method). Percentage of positive cells and total cell number were determined. Bars and error bars represent
mean and standard error of mean, respectively.



Cancers 2021, 13, 5595 10 of 16

4. Discussion

In previous preclinical trials, we could demonstrate that the combination treatment
of 90Y-Cetuximab and a single radiation dose [11] or fractionated external irradiation [12]
substantially increased the control rate and reduced TCD50 of FaDuDD xenograft tumors.
In the present study, we used tumor xenograft specimens from an experiment that was
conducted in parallel to the study on therapeutic efficacy of the combination treatment [12].
The molecular response upon the combined molecular targeted and external beam radio-
therapy was investigated via residual DNA DSB, mRNA expression of DDR genes and
the corresponding protein expression of the two candidate genes that showed the highest
upregulation upon the combination treatment, and the activation of cell death induction.
Overall, the results reflect the outcome of the tumor control experiment [12], suggesting
more extensive and complex residual DNA damages, and a pronounced induction of cell
cycle arrest and programmed cell death, in particular apoptosis, upon combination of
90Y-Cetuximab with external irradiation.

One of the major mechanisms of radiation-induced cellular cytotoxicity is the gen-
eration of reactive oxygen species. Their reduction in hypoxic tumor microenvironment
contributes to enhanced tumor radioresistance [34]. From blood vessels, the typical oxygen
diffusion distance is estimated to be 100–150 µm with a rapid drop in oxygen concentration
along the distance [35,36]. Although Cetuximab does not penetrate far into the tissue with
the dose applied in this study [12], the induction of DNA damage within a range up to
12 mm via 90Y is estimated due to the crossfire effect [15]. We showed that the combina-
tion treatment of 90Y-Cetuximab and external beam irradiation enhanced the numbers of
residual DNA DSB, which will eventually trigger cell death, in cell nuclei located beyond
100 µm distance away from the nearest perfused vessels. This effect was found to be statis-
tically significant in tumors treated with the combination of 90Y-Cetuximab and external
beam irradiation of 2 Gy, and a similar trend can be seen when the combined treatment
of 90Y-Cetuximab and external beam irradiation of 4 Gy was applied (Tables S5 and S6).
This suggests that the combination treatment could extend damages to cells located in an
area with low oxygen concentration. In addition, residual γH2AX foci detected in tumors
treated with 90Y-Cetuximab and external tumor irradiation were densely localized in con-
trast to tumors treated with monotherapy or unlabeled Cetuximab with external irradiation,
implying more complex, persistent DNA damages induced by the combined molecular
and external radiation treatment. Studies showed that chemo- or radiotherapy induced
the nuclear internalization of radionuclide-labelled and unlabeled EGFR [13,14,37,38], in-
creasing absorbed dose deposited within the tumor [39]. This supports the enhanced DNA
damage complexity upon the combined treatment shown in this study.

DDR genes are frequently altered upon exposure to radiation [9,40]. FaDuDD tumor
xenografts treated with 90Y-Cetuximab in combination with external irradiation showed the
most pronounced transcriptional alteration of DDR genes in contrast to the other treatment
arms. The functional annotation analysis of downregulated genes exhibited an enrichment
in DNA damage response pathways i.e., base excision repair, Fanconi anemia, cell cycle
progression, and nucleotide excision repair. These pathways are responsible for DNA
single strand break repair, and their dysregulations could lead to a subsequent formation
of DNA DSB [41]. Downregulated mRNA expression of RAD51C and RPA1, which encode
key proteins responsible for DNA DSB repair via homologous recombination (HR), as
well as PARP1, an essential regulator for single strand and double strand damage repair
mechanism, were observed, whereas the mRNA of genes involved in non-homologous end
joining (NHEJ) remained unaltered in the combined treatment group with 90Y-Cetuximab
and external irradiation relative to control (Table S9). Studies showed essential roles
of PARP1 in modulating DNA end resection [42] and recognizing DNA damages [43],
facilitating DNA DSB repair via HR. Based on this, we hypothesize that the combination
treatment of 90Y-Cetuximab and external radiotherapy impedes DNA DSB repair pathway
via HR, causing the high number of residual γH2AX foci [44].
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A microarray analysis of the syngeneic murine melanoma model B16F10 upon a dual
treatment of carbon-ion external radiotherapy and 131I-Benzamide showed an enrichment
of the genes PARP3, MDM2, GADD45A [9], which were also found to be upregulated in
our study. The FaDuDD model possesses a homozygous mutation of TP53 [20] and MDM2,
a central antagonist of p53. Since GADD45α, a crucial G2/M phase transition inhibitor,
is primarily regulated by p53 [45], these might explain the unaltered GADD45α protein
expression upon the combination treatment. In contrast, the induction of p21cip1/waf1 is
associated with cellular response mechanisms to genotoxic stress, i.e., cell cycle arrest [46],
apoptosis [47], senescence [48], and DNA damage repair [49], which can be mediated in
p53-dependent and -independent manners [50]. The upregulation of p21cip1/waf1 could
be observed on the mRNA level as well as protein level in the combined treatment group
of 90Y-Cetuximab and external irradiation but not in monotherapy or the combination
of external irradiation and unlabeled Cetuximab. Moreover, an increased expression of
cleaved caspase-3 was identified. This indicates an increased radiotoxicity and an enhanced
radiation-induced mitotic catastrophe upon the combination treatment of 90Y-Cetuximab
and external irradiation, which could be explained by the dose effect.

In this study, we showed the high number and complexity of residual γH2AX foci, the
alteration in DDR genes as well as the enhanced cellular cytotoxicity upon the combination
treatment with 90Y-Cetuximab and external irradiation. These effects could be induced
by the higher radiation dose applied in the combination treatment arm relative to other
treatment arms. Initially, the administration of 90Y-Cetuximab generates DNA damages.
The subsequent application of external beam radiotherapy introduces additional DNA
damages and might complicate the pre-existing damages caused by 90Y-Cetuximab. This
sequence of DNA damage induction could trigger cell cycle arrest and cellular cytotoxi-
city, leading to the high therapeutic efficacy of the combination treatment shown in the
preclinical trail focusing on efficacy which was conducted in parallel [12].

In a phase 3 multicenter randomized trial, the dual therapy of Cetuximab and fraction-
ated external beam radiotherapy in patients with advanced HNSCC led to prolonged 5-year
overall survival compared to external radiotherapy alone [51,52]. Molecular effects of the
combination therapy in HNSCC are contributed to by decreasing proliferation [53], induc-
ing cell cycle arrest [54], increasing apoptosis [55], improving tumor reoxygenation [56,57],
and impairing DDR [58]. Our study focused on DDR and cell death induction. No signifi-
cant molecular effects induced by unlabeled Cetuximab or its combination with external
irradiation could be identified. The results are consistent with our previous preclinical
trials, where only a slight improvement in TCD50 was determined in the treatment arms
with unlabeled Cetuximab combined with single-dose [11] or fractionated irradiation [12].
This could be explained by virtue of the dose of Cetuximab applied in our studies. As
this dose is determined by the prescribed activity of 90Y, it is only a fraction of the Cetux-
imab dose used in other preclinical settings, in which the cellular and molecular effects of
the combined treatment of Cetuximab with external irradiation were determined [53,59].
This suggests that clinical settings of the radioimmunotherapy, which often include the
application of some cold dose prior to injection of radiolabeled compounds [60,61], would
potentially enhance cellular cytotoxicity and, consequently, improve the treatment efficacy
in a combined treatment strategy.

The tumor and normal tissue uptake of 90Y-Cetuximab measured in our study was
comparable to reports from other preclinical experiments [9,62]. A study of the distribution
of 89Zr-Cetuximab in xenograft models of four different entities at 96 h post administra-
tion showed a range of uptake in tumors from 1 to 10%, depending on tumor models,
whereas the uptake in normal tissue was similar in all the models [62]. Interestingly, the
EGFR expression level of those models did not correlate with the positron emission to-
mography imaging (PET) signal acquired in vivo, suggesting complex mechanistic cues in
the uptake of Cetuximab in tumors [62,63]. Regardless of the underlying mechanisms, a
sufficient uptake of the radiolabeled compound is a prerequisite for the beneficial effect
of a combined molecular and external radiotherapy [4,11]. Thus, a theranostic approach
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using 86Y-Cetuximab to monitor the uptake of the antibody in HNSCC tumors with PET
prior to, or during the course of fractionated radiation treatment has to be introduced for
clinical translation. This may allow the stratification of patients that would benefit from
the combination treatment, facilitating personalized combination treatment [4,6,11,12].

5. Conclusions

Our study provides insights into the molecular response upon the combination treat-
ment of 90Y-Cetuximab and external irradiation in a preclinical setting. The distribution of
persistent DNA DSB damages to the area with low oxygen concentration, the enhancement
of DNA DSB complexity, and the increased cellular cytotoxicity underline the efficacy
of the dual treatment with 90Y-Cetuximab and external irradiation. This highlights the
promising potential in the clinical translation of combined molecular targeted radiotherapy
and external radiation treatment regimes.
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