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Abstract: The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolu-
tionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype
has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical
function of the mitochondrial PHB complex remains elusive, but it has been shown to affect mem-
brane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a
broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support
the notion that PHB modulates, at least partially, worm longevity through the moderation of fat
utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a
systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.

Keywords: mitochondrial prohibitin complex; metabolism; ageing

1. Introduction

Prohibitin proteins are strongly conserved from yeast to humans [1] and are related to
bacterial HflKC, with which they share functional similarities [2]. In eukaryotes, prohibitins
form a large multimeric complex called the mitochondrial prohibitin (PHB) complex [1,3,4].
The PHB complex is composed of 12–16 PHB-1/PHB-2 heterodimers assembled in a ring-
shaped-like structure in the inner mitochondrial membrane facing the intermembrane
space (reviewed in [5]). Both PHB-1/-2 subunits are ubiquitously and abundantly ex-
pressed, and are interdependent for protein complex formation, as the absence of either
one of them leads to the absence of the full PHB complex [1,3,6]. Despite decades of
work by many laboratories, the molecular function of the PHB complex is far from being
clarified. It has been proposed to function as a chaperone-like protein that holds and
stabilises mitochondrial proteins (reviewed in [1]) and as a lipid scaffold-like protein [7,8].
Although more work is still needed to better clarify its exact molecular function, evidence
is accumulating for a direct impact of the PHB complex on mitochondrial functionality.
In the yeast Saccharomyces cerevisiae, knockdown of the PHB complex leads to defects in
mitochondrial membrane potential and to changes in mitochondrial morphology without
an observable growth phenotype [6,9]. In multicellular eukaryotes, however, the PHB
complex is essential for survival [3,7]. In mice, the post-natal tissue-specific absence of PHB
in neurons results in neurodegeneration [10], and in β cells, PHB ablation impairs metabolic
mitochondrial function and glucose homeostasis, leading to severe diabetes [11]. Further-
more, loss of PHB in podocytes results in kidney failure [12], and ablation in Schwann
cells causes demyelinating neuropathy [13]. The mitochondrial phenotypes observed in
these tissues and in mouse embryonic fibroblasts (MEFs), upon PHB ablation, include
altered mitochondrial morphology, distribution, and dynamics, as well as aberrant cristae
morphology [7,10–13]. In the nematode C. elegans, the postembryonic RNAi depletion of
the PHB complex affects mitochondrial ultrastructure in muscle cells [3]. Moreover, worm

Metabolites 2021, 11, 636. https://doi.org/10.3390/metabo11090636 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-1126-0492
https://doi.org/10.3390/metabo11090636
https://doi.org/10.3390/metabo11090636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11090636
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11090636?type=check_update&version=3


Metabolites 2021, 11, 636 2 of 13

tissues that rely heavily on mitochondrial function are more susceptible to PHB loss [3,14].
For example, the PHB complex is essential for somatic and germline differentiation in the
larval gonad, resulting in its depletion in decreased fertility or even complete sterility. In
addition, postembryonic PHB depletion leads to developmental delay, reduced body size,
and slowed pharyngeal pumping and defecation [3]. PHB proteins play an important
role in mitochondrial quality control, and their depletion induces the mitochondrial un-
folded protein response (UPRmt), a stress response mechanism that reduces mitochondrial
stress [15]. Likewise, PHB senses mitochondrial stress, and treatments that induce the
UPRmt increase PHB protein levels [1,3,16,17]. Importantly, PHB complex deregulation and
mitochondrial dysfunction have been associated in different systems with physiological
processes such as cancer, degenerative disorders, obesity, and ageing [18–21].

Ageing is a multifactorial process characterised by a progressive loss of functionality
at the organelle, cellular, tissue, and organ levels that consequently will have an impact on
the whole organism leading ultimately to death [22,23]. In recent decades, there has been a
consistent trend of an increase in the world population age [24,25]. Massive changes in the
age stratification structure of a country’s population necessary lead to economic, social, and
health challenges [26,27]. Model organisms have been instrumental to shed light on the
complex process of ageing and on age-related pathologies, leading to the identification of
several conserved molecular pathways regulating ageing [23]. The insulin/insulin growth
factor 1 (IGF-1) signalling pathway (IIS) is well conserved among species and a universal
longevity regulator that was first identified to modulate ageing in C. elegans [28–30]. The
IIS is activated by the binding of insulin-like peptides to its receptor, encoded by daf-2
in C. elegans. DAF-2 activates AGE-1, and the downstream kinases AKT-1, AKT-2 and
SGK-1 [31–34]. Activation of these kinases results in the phosphorylation of the transcrip-
tion factor DAF-16 which is retained in the cytoplasm [35–37]. Upon inhibition of the IIS
cascade, DAF-16 is activated [37–39] and triggers the expression of a plethora of genes
involved in the regulation of lifespan [40]. The nematode C. elegans is one of the premier
model organisms on ageing research due to its short life cycle and lifespan, its small size
and transparency, the ease of its laboratory maintenance, and genetic manipulation. More-
over, fundamental eukaryotic cell biology and biochemistry processes are largely conserved
between C. elegans and humans, including a wide spectrum of metabolic genes covering
core metabolic pathways [41–45]. In fact, this is of particular relevance considering that
metabolic alterations associated with nutrient-sensing pathways and mitochondria are a
hallmark of ageing [46,47].

Prohibitins regulate replicative life span in yeast [9], senescence in mammalian fibrob-
lasts [48], and promote longevity in worms [49]. Several years ago, we postulated that the
PHB complex influences longevity through its effects on mitochondrial metabolism [5].
Later, PHB was found to modulate ageing in a metabolic-state dependent-manner [49–51].
Specifically, knockdown of the PHB complex shortens the lifespan of otherwise wild-type
worms, while it markedly extends the lifespan of a large variety of C. elegans mutants.
These include transforming growth factor-beta (TGF-β) signalling mutants, mutants with
altered fat metabolism, mitochondrial electron transport chain (ETC) mutants, dietary
restricted animals, and the long-lived IIS receptor daf-2 mutants. Although biochemical
data were largely lacking, the impact of PHB on longevity was suggested to be through
the modulation of fat metabolism [49]. Since then, different analyses based on 1H NMR
spectroscopy, liquid chromatography coupled with mass spectrometry (LC/MS), gas chro-
matography coupled with flame-ionisation detection (GC/FID), high-performance liquid
chromatography (HPLC), and thin-layer chromatography (TLC) added extremely valuable
molecular insights into the metabolic changes occurring in C. elegans upon PHB depletion
in wild-type and IIS daf-2 mutants [52,53]. Herein, we review these findings to provide a
concise and systematic overview of the more recent biochemical insights into the effect of
PHB on ageing regulation while setting the foundations for future studies.
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2. The PHB Complex and Lipid Metabolism

In C. elegans, the PHB complex modulates fat content, as assessed by different fixed
and live staining methods [49]. However, the complexity of the lipidome [54,55] is far
from being captured through fat visualisation using dyes, as each of them has its own
limitations [42,56]. In C. elegans, up to 35% of the dry body mass is composed of lipids,
including free fatty acids, phospholipids, and triglycerides [54,57,58]. Remarkably, PHB
deficiency has a wide impact on the C. elegans lipidome [52,53].

2.1. PHB Modulates the Whole-Worm Fatty Acid Composition

PHB depletion alters fatty acid (FA) composition, as assessed by GC/FID analysis.
The effect of PHB depletion on FA composition is visible in developing L4 larvae. How-
ever, at the young adult (YA) stage, these changes become more noticeable, suggesting
a more pronounced effect during adulthood or the accumulated consequence of altered
FA metabolism. Overall, there is a trend towards an increase in shorter and monounsat-
urated FAs with a concomitant decrease in larger and polyunsaturated FAs upon PHB
depletion. Surprisingly, while FA composition is clearly different between wild-type and
daf-2 mutants, the effect of PHB depletion on FA composition follows the same general
trend in both genetic backgrounds—namely, an increase in the content of palmitoleic acid
(C16:1), and a decrease of eicosapentaenoic acid (C20:5n3) and dihomo-γ-linolenic acid
(C20:3n6) [53]. Previously, it was reported that the FA chain length and susceptibility to
oxidation decreases sharply in long-lived mutants of the IIS pathway, correlating extremely
well with the increased lifespan of these worms [59]. The lifespan increase that occurs in
daf-2 and in PHB-depleted daf-2 mutants is accompanied by changes in the FA composition
that overall follow this trend. However, the FA composition of PHB-depleted wild-type
worms, which are short-lived, is altered in a similar fashion. Therefore, the whole-worm
FA composition at the YA stage cannot, on its own, account for the effect of PHB on the
worm’s longevity [53]. One possible explanation is that large changes in FA composition,
which follow the same trend, mask other relevant changes in lifespan determination. Alter-
natively, the trend observed, although the same, might result from different contributions.
For example, alterations in different cellular compartments and/or different lipid classes.
In particular, alterations in lipids or lipid-related molecules implicated in ageing regulation,
such as triglycerides (TAGs) or ascarosides [60–62]. Although purely speculative, the
observed changes in FA metabolism could have an impact on ascaroside metabolism and,
in this way, modulate ageing.

2.2. Sphingolipids and Glycerophospholipids Respond to PHB Depletion in a Genetic Background
Dependent-Manner

An LC/MS analysis of whole worms at the YA stage identified many lipid species—
namely, sphingolipids, such as sphingomyelin (SM) and ceramide (CER), and glycerophos-
pholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE), with an
altered content in response to PHB deficiency and/or in response to daf-2 mutation [53].
Specifically, both the SM pool, which, in other organisms, is mainly localised to the outer
leaflet of plasma membranes [54], and the CER pool, important as a structural membrane
lipid and required for surveillance of mitochondrial function [63], decrease their abundance
upon PHB depletion. Similarly, PC and PE pools decreased in response to PHB depletion.
Curiously, while daf-2 also reduces the SM, CER, PC, and PE pools, PHB depletion in daf-2
mutants only perturbs the CER pool with a further decrease. Of relevance, young daf-2
mutants have much lower levels of PC + PE pool, compared to matching wild-types [53].
A complementary HPLC analysis of ageing worms showed that the glycerophospholipid
pool of PC and PE, the two most abundant membrane lipids [64,65], is largely unaffected
in PHB-depleted daf-2 mutants, while it decreases markedly in PHB-depleted animals [53].
The differential effects identified on a whole worm basis, both at the YA stage and during
ageing, could reflect a differential impact on the lipid composition of different organelles.
The lipid composition of mitochondrial membranes is essential for the proper structure
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and function of the organelles. Membrane lipid biosynthesis occurs in an intimate inter-
action between the endoplasmic reticulum (ER) and mitochondria, as well as between
mitochondrial membranes (Figure 1) [66]. In yeast, PHB genetically interacts with genes
modulating mitochondrial phospholipid biosynthesis, in particular cardiolipin (CL) and
PE, affecting the distribution of CL and PE by clustering them at distinct sites of the in-
ternal mitochondrial membrane [8,67,68]. Additionally, in MEFs, PHB cooperates with
the mitochondrial cochaperone DNAJC19, for which DNJ-21 is the worm homolog, in
the remodelling of mitochondrial membrane phospholipids. Specifically, lack of PHB
complexes alters CL acylation, while the transcriptional response of PHB deficient cells
shows altered lipid metabolism, most prominently cholesterol [69]. The PHB complex has
been, therefore, suggested to act as a membrane organiser affecting the distribution of
mitochondrial membrane lipids [8,67–69].
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Figure 1. Metabolic rewiring in PHB-mediated ageing regulation. The PHB complex modulates mitochondrial membrane
lipid composition, presumably by altering the balance of PL, leading to deregulation of mitochondrial function, including
oxidative phosphorylation (OXPHOS). Mitochondrial dysfunction affects amino acid and carbohydrate metabolism in
an IIS dependent-manner. Concomitantly, mitochondrial dysfunction reverberates, in an IIS-dependent manner, in other
organelles such as yolk, lipid droplets, and the endoplasmic reticulum, leading to opposing ageing phenotypes.

2.3. PHB Depletion Strongly Alters the Triacylglycerides Pool

In worms, the PHB complex alters glycerolipids at the YA stage. As assessed by
whole worm LC/MS analysis, and similar to daf-2 mutants [70,71], PHB depletion increases
the content of the large majority of glycerolipids species, while further increasing diacyl-
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glyceride (DAG) and TAG pools in daf-2 mutants. Strikingly, PHB depletion increases,
mostly, TAG species with a longer average chain length, while in daf-2 mutants, lack of
PHB mostly increases TAG species with a shorter average chain length. Additionally, while
PHB depletion increases TAGs irrespective of the average degree of unsaturation, the effect
of knocking down PHB in daf-2 mutants is restricted to TAGs with a low average degree of
unsaturation. The FA composition of the TAG pool of whole worms, separated by TLC,
indicates that PHB-depleted animals have a reduced content of shorter monounsaturated
FAs than PHB-depleted daf-2 mutants, which concomitantly have a higher content of longer
saturated FAs. Opposite to the glycerophospholipid pool, the TAG pool in PHB-depleted
animals increases during ageing, while in PHB-depleted daf-2 mutants, it is much less
affected [53]. The TAG pool is modulated by PHB in an IIS-dependent manner, which
suggests a differential balancing and mobilisation of the TAG pool during ageing (Figure 1).

2.4. PHB Deficiency Affects Different Lipid-Related Organelles

Lipid homeostasis within a cell is achieved through the dynamic interaction between
different organelles such as mitochondrion, ER, lipid droplet (LD), and yolk particle
(YP) [72–76]. Mitochondria are particularly tightly connected with the ER but also with
LDs [72,75,76]. In the worm’s intestine, neutral fat is accumulated in LDs, ubiquitous
fat storage organelles, which are then mobilised according to the organism’s needs for
membrane synthesis and energy [77,78]. Interestingly, in young animals PHB and DAF-2
affect LDs homeostasis differently, compared to wild-type animals, daf-2 mutants have
higher LD intestinal coverage, whereas there is a much weaker effect in PHB-depleted ani-
mals. Strikingly, PHB depletion in daf-2 mutants synergistically increases the LD intestinal
coverage of larger LDs [53]. Consistently, protein levels of ATGL-1, the worm homolog of
the mammalian rate-limiting lipolytic enzyme ATGL and required for daf-2 longevity [79],
are higher in wild-type worms than in daf-2 mutants during ageing. Moreover, while PHB
depletion does not affect ATGL-1 levels in wild-type animals, it consistently further lowers
ATGL-1 levels in daf-2 mutants. In parallel, PHB depletion differentially deregulates yolk
homeostasis in wild-type and in daf-2 mutants [53]. YPs, produced through vitellogenesis,
carry lipids such as TAGs and PLs to the gonad, where they are taken up by developing
oocytes. Particularly during the reproductive period, vitellogenesis has a major impact
on lipid homeostasis [80–85]. The PHB complex is essential for germline function, and its
depletion leads to sterility [3]. Maybe as a consequence, PHB depletion accumulates large
amounts of displaced yolk through the worm body during ageing. Strikingly, PHB-induced
yolk accumulation is suppressed by daf-2 in aged worms (Figure 1). The ER is involved in
the formation of LDs [86,87] and of YPs [88]. Mitochondrial contacts with the rough ER are
important for lipoprotein secretion and systemic lipid homeostasis [88,89]. Importantly,
PHB genetically interacts with genes involved in mitochondria-ER contact sites [90]. Inter-
estingly, PHB depletion disrupts ER homeostasis, as assessed by a UPRER stress reporter,
suggesting deregulation in the interaction between mitochondria and ER [53]. A recent
publication shows that mitochondrial dysfunction caused by PHB deficiency leads to ER
stress in Schwann cells of conditional knockout mice [13]. Curiously, daf-2 mutants are
protected against ER stress, which has been linked to its longevity phenotype [91,92]. In-
deed, while PHB depletion induces ER stress in otherwise wild-type worms, daf-2 mutant
animals are protected, providing a plausible link between the ER and the PHB complex in
ageing determination (Figure 1) [53].

3. PHB Has a Broad Impact on the C. elegans Metabolome

The metabolic effect of PHB depletion is not restricted to fat but has a much broader
effect on the metabolic network [52]. Indeed, the 1H NMR metabolic profiles of whole
worm extracts show the same general patterns evidenced by lipid analyses—namely, the
metabolic changes due to PHB depletion become more pronounced throughout devel-
opment. Strikingly, the metabolic profiles at the YA stage, reveal that PHB depletion
has a stronger effect in wild-type animals than in daf-2 mutants. Specifically, the 1H
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NMR metabolic profiles uncover changes in carbohydrate and amino acid metabolism
(Figure 1) [52].

3.1. PHB Adjusts the Content of Essential and Non-Essential Amino Acids

PHB depletion perturbs the abundance of a large spectrum of amino acids at the L4
and YA stages. At the YA stage, both, PHB deficiency and daf-2 mutation alter the content
of amino acids, leading to PHB depletion in daf-2 mutants to a further readjustment of
amino acid metabolism [52]. It has been described that supplementation of different amino
acids can modulate C. elegans lifespan [2]. Interestingly, PHB depletion, specifically in
otherwise wild-type animals, decreases the content of two branched-chain amino acids,
leucine and valine, to the levels of daf-2 mutants, in which these changes are entirely
DAF-16 dependent [93]. Although mild, wild-type worms have a higher content of alanine
than daf-2 mutants. Strikingly, upon PHB depletion, alanine content is further increased in
wild-type animals and further reduced in daf-2 mutants. Importantly, an inverse correlation
between alanine levels and yeast chronological lifespan has been reported [94]. Similar
to its effect on wild-type worms, PHB depletion in daf-2 mutants decreases the content of
glutamate, while it increases the content of glutamine. Among other metabolic pathways,
glutamate/glutamine metabolism is important for replenishing the tricarboxylic acid
(TCA) cycle through their oxidative deamination [95]. Curiously, glutamate/glutamine
metabolism has been described to be adjusted in impaired mitochondrial mutants with an
altered lifespan [96]. The widespread impact of the PHB complex on amino acid metabolism
(Figure 1), both in nutritionally essential and non-essential amino acids [97], reinforces the
idea of a broad reorganisation of the metabolic network [52].

3.2. PHB Deficiency Rewires Carbohydrate and Energy Metabolism

Mitochondria are essential organelles in energy metabolism carrying out the TCA cycle
and oxidative phosphorylation (OXPHOS) [98,99]. In mice, knockdown of liver PHB leads
to an adjustment of whole-body energy homeostasis [100]. In aged worms, knockdown of
PHB selectively increases oxygen consumption in daf-2, indicating that these worms sustain
higher mitochondrial function in a long term [49]. PHB-depleted worms have a lower
content of the TCA metabolite succinate, compared to wild-type animals, in line with the
changes in TCA-related amino acids. Curiously, the amount of succinate is also reduced in
daf-2 mutants but unaltered upon PHB depletion, which suggests that PHB adjusts the TCA
cycle in wild-type animals but not in daf-2 mutants [52]. daf-2 mutants shift metabolism
away from the TCA cycle towards the glyoxylate cycle [93,101,102]. The glyoxylate cycle is a
variation of the TCA cycle that bypasses the decarboxylation steps and, among other things,
enables the interconversion of fats and carbohydrates [103]. In C. elegans, endogenous
glucose is stored in the form of trehalose, a non-reducing disaccharide, or glycogen, a
branched polysaccharide [97]. Trehalose presumably acts as a stress protectant against
multiple stresses [104–109] and as a longevity assurance sugar in C. elegans [107,110,111].
Although not to the same extent as daf-2 mutants, PHB depletion causes the accumulation
of large amounts of trehalose. Interestingly, depleting PHB in a daf-2 mutant has an
additive effect in trehalose accumulation [52]. Under a high sugar diet, shifting sugar
storage from glycogen to trehalose promotes lifespan and health span in a DAF-16/FOXO-
dependent manner. Specifically, lifespan increases as a result of high levels of internal
trehalose through autophagy upregulation [111]. Moreover, trehalose supplementation
from the YA stage significantly extends lifespan [107]. However, the requirement of
trehalose for daf-2 longevity has been recently brought into question, because a deficiency
in trehalose synthesis mildly shortened daf-2 lifespan [109], compared with previous
studies [107,111]. Similar to trehalose supplementation, exogenous addition of lactate,
which induces mitohormesis, leads to stress resistance and survival [112]. Lactate is an
important bioenergetic metabolite formed either from fermentation or through aerobic
glycolysis. Wild-type animals at the YA stage present larger amounts of lactate than daf-2
mutants. Moreover, similar to the effect on the pyruvate-related amino acid alanine, PHB
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depletion triggers an opposite effect on the content of lactate. While in otherwise wild-type
animals, PHB depletion showed a trend to increase the content of lactate, in daf-2 mutants,
PHB depletion showed a trend to decrease lactate content. This adjustment, as well as that
of the pyruvate-related amino acid alanine, suggests a tuning of fermentative metabolism
with possible implications in energy balance and longevity [52].

4. PHB-Mediated Ageing Regulation in a Metabolic Perspective

Mitochondrial function and metabolic homeostasis, crucial in ageing regulation [113],
is severely disturbed by PHB depletion in a metabolic-state-dependent manner. Indeed,
PHB depletion shortens the lifespan of wild-type animals, while enhancing the longevity of
a plethora of metabolically compromised mutants, including targets of rapamycin complex
2 mutants sgk-1 and rict-1, and of the IIS receptor daf-2 mutants [49,50,114], linking PHB
functions in mitochondria with cellular metabolism [2,31,52]. PHB deficiency also extends
the lifespan of both, nhr-49 and fat-7 mutants [49]. NHR-49 is a key regulator of fat mobili-
sation, modulating fat consumption and maintaining a normal balance of FA saturation,
while FAT-7 is required for the synthesis of monounsaturated fatty acids [115]. Collectively,
our data suggest that the excess of TAGs accumulated in PHB-depleted daf-2 mutants is
accommodated in larger intestinal LDs, which can be mobilised during ageing through
tighter regulation of ATGL-1 (Figure 1) [53]. Cardiac fatty acid oxidation (FAO) is impaired
in short-lived PHB2 cardiac-specific knockout mice through downregulation of carnitine
palmitoyltransferase, a rate-limiting enzyme in mitochondrial FAO, [116]. Moreover, PHB
deficient Schwann cells show reduced biosynthesis of fatty acids [13]. It would be interest-
ing to investigate if these mechanisms are conserved in the nematode and whether they
might be differentially regulated in daf-2 mutants, which could explain the differential effect
of PHB in gut LDs. Importantly, yolk production, at the expense of the gut by a process of
general autophagy, has been proposed as a major driver of worm senescence [117]. Lipotox-
icity through ectopic yolk accumulation has been suggested to contribute to the opposing
PHB ageing phenotype because PHB-induced yolk accumulation is suppressed by daf-2 in
aged worms [53]. Interestingly, the specific depletion of PHB in mice hepatocytes causes a
dramatic imbalance of lipid storage from adipose tissue to the liver [100]. We propose that
PHB modulates yolk accumulation and TAG storage lipids in an IIS dependent-manner
(Figure 1), reinforcing the connection between PHB and lipid metabolism in ageing reg-
ulation. Previously, PHB deficiency was shown to shorten the lifespan of aak-2 [49]. The
AMP-dependent kinase AAK-2 has been implicated in coupling energy levels with signals
from the IIS pathway to modulate lifespan in C. elegans [118,119]. The PHB complex is
also important for mitochondrial DNA maintenance [120] and stabilisation of respiratory
complexes and supercomplexes [121,122]. Strikingly, different OXPHOS mutants (gas-1,
mev-1, and isp-1) also extend their lifespan upon PHB depletion [49]. The gas-1, mev-1, isp-1
genes encode subunits of the mitochondrial electron transport chain complexes I, II, and III,
respectively, emphasising the importance of OXPHOS and PHB in lifespan regulation [53].

A key determinant of structural and functional integrity of eukaryotic membrane-
bound organelles is membrane lipid composition [123,124]. As mentioned above, the PHB
complex is important for mitochondrial membrane maintenance. Interestingly, depletion
of DNJ-21, which physically and functionally interacts with PHB in remodelling mitochon-
drial cardiolipin, mimicked the differential effect of PHB deficiency on the lifespan of wild
type and daf-2 mutants [53]. It would be interesting to investigate if DNJ-21 phenocopies
other PHB phenotypes including effects on LD and YP, and lifespan extension in other
metabolically compromised mutants. Importantly, reduced sphingolipid and ceramide
synthesis extend the lifespan of worms and flies [125]. Recently, PHB was found to be re-
quired for the lifespan extension conferred by reduced sphingolipid synthesis in C. elegans.
Moreover, in the same study, PHB depletion was found to suppress the impaired mitochon-
drial homeostasis, lipogenesis, and yolk formation of sgk-1 [114]. In summary, the PHB
complex plays a crucial role in the determination of mitochondrial function by affecting,
directly or indirectly, the maintenance and composition of mitochondrial membranes and
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by leading to systemic changes in metabolism, which ultimately, differentially modulate
lifespan depending on the metabolic state of the animals (Figure 1).

5. Future Perspectives

Tremendous efforts have been made thus far to better characterise the effect of the PHB
complex on the C. elegans metabolic network. Still, to give a more refined perspective on
the broad metabolic alterations modulated by the PHB complex other levels of global data,
such as RNA sequencing or proteomics data, would be extremely valuable. In the near
future, it would be very interesting to assess the real relevance of several aspects raised so
far to the PHB-mediated regulation of ageing—namely, the perturbation of mitochondrial
membrane composition, the deregulation of yolk accumulation, the tight mobilisation of
fat stores, and the balance of sugars storage. Specifically, it would be relevant to assess the
role of yolk/lipoproteins on lifespan regulation and whether it is through vitellogenesis
and/or ectopic yolk accumulation. Similarly, in the context of the positive impact of PHB
depletion in the lifespan of daf-2 mutants, it would be interesting to determine whether
increased availability of storage lipids and sugars and/or a more efficient mobilisation
of these energy stores are relevant for lifespan regulation. Moreover, investigating the
implication of peroxisomes would be relevant considering their implication on FAO and
mitochondrial function in other life-extending paradigms [126]. Herein, we highlight some
lines of research we are currently pursuing aimed at understanding the intriguing ageing
phenotype of the PHB complex which is relevant to understand human ageing.
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