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Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased
oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of
a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of
cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for
the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment
of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been
widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative
stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of
active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.

1. Introduction

According to the World Health Organization (WHO) statis-
tics, cardiovascular diseases (CVDs) were responsible for the
highest number of deaths in 2019 [1]. Increasing and aging
populations further complicate the situation, and 22.2 mil-
lion CVD-related deaths are expected to occur in 2030 [2].
There is an important link between complex oxidation reac-
tions and the development of atherosclerosis [3, 4]. Increas-
ing levels of oxidative stress contribute to the subsequent
formation and progression of atherosclerotic plaques [5]. A
lack of endogenous antioxidants is another important cause
of coronary heart disease [6]. The use of traditional medicinal
plants has rapidly expanded in recent years. Medical plant
research is no longer limited to chemical composition and
pharmacology and now encompasses the study of metabolo-
mics and underlying mechanisms of action [7]. Studies
employ approaches ranging from simple chemical compo-
nent separation and drug efficacy tests to transcriptomics
and pathway research. The underlying mechanisms of the

remarkable curative effects of medicinal plants are being
revealed. Technological advances have greatly contributed
to the increased use of medicinal plants. 25% of drugs in
the global medical market are phytomedicines [8]. Further,
60% of anticancer drugs and 75% of drugs for the treatment
of infectious diseases originate from medicinal plants [9].
Between 1984 and 2014, 9.1% of FDA-approved drugs were
medicinal plants, while 21% were natural product derivatives
[10].

Finding safe and effective drugs derived from natural
products is a hot topic in the CVD field [11]. Medicinal
plants have great advantages for the treatment of cardiovas-
cular disease owing to their safety profiles [12]. Favorable
effects of medicinal plants have been described for diseases
such as hypertension, hyperlipidemia, atherosclerosis, and
chronic heart failure, as well as for the overall reduction of
cardiovascular risk [13]. Cardiovascular disease patients
being informed about the benefits of medicinal plants could
improve their health. Medicinal plant-containing diets may
be used to effectively control hypertension, for example
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[14]. The sufficient intake of fruits, vegetables, nuts, red wine,
coffee, and others can also effectively prevent the occurrence
of CVD [15]. This is due to such foods often having antioxi-
dant biological activities. Similarly, medicinal plants possess
antioxidant pharmacological effects, making them likely drug
candidates. Within medicinal plant research for CVD, oxida-
tive stress inhibition is a very advanced research line. Accu-
mulating evidence suggests that flavonoids, phenolics, and
saponin from medical plants could reduce oxidative stress
[16]. Our studies have evaluated the active ingredients of 20
different natural compounds, including ginsenoside, resvera-
trol, astragaloside A, and quercetin. The therapeutic mecha-
nisms of these different active ingredients were addressed in
the context of CVD. Herein, we provide an overview of the
oxidative stress reduction mechanisms of medicinal plants
for the treatment of CVD. The questions addressed include
the following: (1) which medicinal plant components have
antioxidative pharmacological effects? (2)What is the regula-
tory role of antioxidant medicinal plant components in
CVD? (3) What is the mechanism of action of antioxidant
medicinal plant components in CVD?

2. Methodology and Strategy

In this review, we performed a literature search for informa-
tion on the bioactive components of medicinal plants and
their effect on oxidative stress. The Institute for Scientific
Information (ISI) Web of Knowledge, MEDLINE, PubMed,
Scopus, Google Scholar, and the China National Knowledge
Infrastructure (CNKI) databases were searched using rele-
vant keywords and phrases, including “natural drugs and
oxidative stress”, “natural active ingredients and oxidative
stress”, “traditional Chinese medicine and oxidative stress”,
“phytochemistry/medicinal plant extracts and oxidative
stress”, “medicinal plants and cardiovascular diseases”, and
“natural active ingredients and cardiovascular diseases”.
From the search results, we manually selected original arti-
cles discussing natural medicines or their active ingredients
and their effect(s) on oxidative stress or CVDs. Our search
selection criteria were mainly based on the following:

(1) Different Mechanisms Used by Natural Medicines and
Active Ingredients to Treat Cardiovascular Diseases. For
example, total flavonoids of matsuba can dilate the coronary
artery, increase blood flow, and reduce abnormal electron
transfer of the myocardial cell membrane and the production
of oxygen free radicals, thereby improving myocardial ische-
mia and treating coronary heart disease [17]. Orientin can
protect red blood cells from oxidative damage by reducing
oxidative stress, increasing the activity of antioxidant
enzymes, and maintaining the structural integrity of red
blood cells [18].

(2) Different Categories of Natural Medicines and Active
Ingredients with Therapeutic Efficacy in Cardiovascular Dis-
eases. The active ingredients of natural medicines including
flavonoids, saponins, polyphenols, polysaccharides, and
anthraquinones can exert different therapeutic effects. For
example, saponin-based active ingredients have multiple
functions such as antiviral activity, scavenging oxygen free
radicals, expanding blood vessels, strengthening the heart,

and reducing the synthesis of reactive oxygen species (ROS)
and malondialdehyde (MDA) [19]. Polyphenols inhibit the
formation of hydroxyl free radicals, increase endogenous
superoxide dismutase (SOD) activity, inhibit lipid peroxida-
tion, and increase cellular energy metabolism [20].

(3) Different Therapeutic Targets of Natural Medicines
and Active Ingredients. For example, berberine can regulate
adenosine 5′-monophosphate- (AMP-) activated protein
kinase (AMPK) and mammalian target of rapamycin
(mTOR) signaling pathways [21]. Curcumin can inhibit
phosphatidylinositol 3-kinase- (PI3K-) serine/threonine pro-
tein kinase- (AKT-) mTOR signal transduction [22]. Further,
some active ingredients can regulate multiple signal path-
ways and can also regulate the growth, proliferation, differen-
tiation, migration, and apoptosis of a variety of cells.

3. Oxidative Stress and Cardiovascular Disease

Oxidative stress refers to the pathological state of reactive
oxygen species (ROS) accumulation caused by the excessive
production of oxygen radicals or a compromised intracellular
antioxidant defense system [23]. Oxidative stress plays an
important role in the regulation of the cardiovascular system
and has become a new target for CVD prevention and treat-
ment. Oxidative stress can cause severe functional damage to
endothelial cells and cardiomyocytes [24, 25]. In addition,
oxidative stress is involved in the pathogenesis of hyperten-
sion, myocardial ischemia-reperfusion injury, atherosclero-
sis, and other associated diseases by regulating
inflammation and stimulating vascular smooth muscle pro-
liferation [26–28].

As shown in Figure 1, there are various biological
markers of oxidative stress, among which ROS are the most
closely linked to oxidative stress. In the normal physiological
state of the human body, relatively small levels of endogenous
ROS are produced, and, at a certain level, ROS play an impor-
tant role in the protection of myocardial cells [29, 30]. How-
ever, in a pathological state, as ROS are scavenged at a rate
that is much lower than the rate of their production, ROS will
accumulate, directly leading to oxidative stress. Increased
oxidative stress causes lipid peroxidation, protein and
enzyme denaturation, DNA damage, and other events dam-
aging the myocardial cell membrane or cardiovascular epi-
thelial cells [31]. Further, oxidative stress and inflammation
will cause myocardial injury and remodeling, leading to the
occurrence and aggravation of CVD.

4. Application of Antioxidant Natural Drugs for
Cardiovascular Disease

In order to reduce oxidative damage in cardiovascular tissue,
an increasing number of medicinal plants are used as natural
antioxidants in the clinic [32]. Active components with anti-
oxidant activity can be isolated from various medicinal plants
[33, 34]. Examples include phenols, flavonoids, and polysac-
charides from traditional Chinese herbal medicine. As shown
in Table 1, natural antioxidant drugs can inhibit the produc-
tion of free radicals by enhancing specific and nonspecific
immune function or by directly preventing free radical-
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induced cellular and tissue damage. The modern clinical
treatment of CVD includes the use of natural drugs. Free rad-
icals contain unpaired electrons, which have a tendency to
pair. In the process of pairing, free radicals will generate more
radicals, forming a chain reaction. Active components of tra-
ditional Chinese medicine can terminate this chain reaction
both directly and indirectly. Further, these components can
also regulate oxidative stress by reducing lipid peroxidation
and free radical production, enhancing the scavenging of
radicals, improving the activity of antioxidant enzymes, and
upregulating the anti-inflammatory response [35]. Com-
pared to synthetic antioxidants, natural medicinal plants
with antioxidant properties have lower toxicity and thus a
more favorable safety profile. Through these advantages, nat-
ural antioxidant medicinal plants may be used for targeting
oxidative stress in the clinical treatment of CVD in the future.

4.1. Coronary Atherosclerotic Heart Disease. Coronary ath-
erosclerotic heart disease (CHD) is a CVD caused by stenosis
or obstruction of the coronary artery [36, 37]. It is character-
ized by the formation of lipid-filled atherosclerotic plaques
under the tunica intima of the great and middle arteries, lead-
ing to stenosis or occlusion of the arterial lumen, which then
causes myocardial ischemia and hypoxia [38, 39]. Various

factors that lead to CHD may cause lipid peroxidation dam-
age, promoting the occurrence and development of athero-
sclerosis [40, 41].

During early atherosclerosis, nutrients cannot pass freely
due to the reduced blood flow, which in turn leads to a
decrease in endogenous ATP levels, activates AMPK, inhibits
mTOR, and causes increased ROS, leading to oxidative stress.
Excessive ROS can cause endothelial and smooth muscle cell
dysfunction. It can also lead to the activation of inflammatory
signaling and cardiomyocyte mitochondria-mediated apo-
ptosis, accelerating the occurrence and development of ath-
erosclerosis and CHD [42]. ROS can also act as second
messengers, responding to the binding of extracellular signals
to cell surface receptors through changes in their concentra-
tion. Through Ca2+ signal transduction, the mitogen-
activated protein kinase signaling pathway, and the protein
kinase B signaling pathway, ROS play a regulatory role in
the process of cardiomyocyte signal transmission [43, 44].
Modern pharmacological studies have shown that various
Chinese herbal extracts can treat CHD through their antiox-
idant effects.

4.1.1. Ginsenosides. Ginsenosides are a group of nontoxic
bioactive components with antioxidant effects produced by
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Figure 1: The factors that cause cardiovascular disease are complex, including NADPH, NOX, eNOS, NO, and ROS. ROS is the most
obviously biological markers of oxidative stress. The increase in oxidative stress directly causes lipid peroxidation, protein and enzyme
denaturation, nucleic acid DNA damage, and other mechanisms of the myocardial cell membrane or cardiovascular epithelial cells. These
are also important pathways for the action of antioxidant drugs.
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Table 1: Detailed information on bioactive ingredients targeting oxidative stress.

No. Active ingredients Natural drug Mechanism of action Treatment disease

1. Ginsenoside Rb1 Panax ginseng

(1) Inhibits the expression of proapoptotic
genes Bax, Bad, and Fas

(2) Increases the activity of antioxidant enzyme
(3) Reduces the oxygen free radicals

(1) Coronary heart
disease

(2) Ischemia-reperfusion
injury

2. Ginsenoside Rg1 Panax ginseng

(1) Inhibition of caspase-3, Bax, and
ap-JNK expression

(2) Increases the expression of p-ERK
(3) Reduces ROS

(1) Coronary heart
disease

(2) Ischemia-reperfusion
injury

3. Ginsenoside Rg2 Panax ginseng

(1) Inhibition of CK and LDH
(2) Reduced LPO

(3) Increases the activity of SOD,
CAT, and GSH-Px

(1) Coronary heart
disease

(2) Ischemia-reperfusion
injury

4. Delphinidin-3-glucoside Anthocyanidin

(1) Inhibits the expression of NOX2/NOX4
and caspase-3

(2) Reduces ROS
(3) Induces autophagy through AMPK/SIRT1

(1) Coronary heart
disease

(2) Ischemia-reperfusion
injury

4.
Total flavonoids of

matsuba
Matsuba

(1) Reduce O2 and H2O2

(2) Inhibit the formation of LPO and MDA
(3) Increase the activity of SOD, GSH-Px, and CAT

(1) Coronary heart
disease

(2) Atherosclerosis
(3) Hyperlipidemia

5. Orientin Passiflora leaves
(1) Reduces ROS

(2) Increases the activity of antioxidant enzyme
(3) Regulating AMPK, Akt, mTOR, and Bcl-2

(1) Coronary heart
disease

(2) Atherosclerosis

6.
Hawthorn leaf
flavonoids

Genus
(1) Inhibit the formation of LPO

(2) Increase the activity of antioxidant enzyme
(3) Inhibit free radical reaction

(1) Coronary heart
disease

(2) Atherosclerosis
(3) Hyperlipidemia

7. Anemarrhenoside
Anemarrhena
asphodeloides

(1) Promoting the production of SOD
(2) Inhibit the expression of prooxidative

stress protein
(3) Reduce ROS

Ischemia-reperfusion

8. Hesperidin Citrus fruits
(1) Regulating Nrf2/ARE/HO-1 and
TGF-beta1/Smad3 signal transduction

(2) Regulating PI3K/Akt/mTOR signaling pathway
Ischemia-reperfusion

9. Resveratrol
Peanuts, red wine,
mulberries, etc.

(1) Inhibits the formation of oxygen free radicals
(2) Reduces ROS

(3) Increases the expression of eNOS by activating
SIRT1

(1) Hypertension
(2) Ischemia-reperfusion

10. Tea polyphenols Tea
(1) Increase the activity of SOD
(2) Inhibit the formation of LPO

(3) Downregulating Hcy metabolic enzymes

(1) Hypertension
(2) Ischemia-reperfusion

11.
Saponins of Panax

notoginseng
Panax notoginseng

(1) Inhibit the formation of LPO and MDA
(2) Increase the activity of SOD

(3) Upregulate the expression of GSH and CAT
Hypertension

12. Berberine Rhizoma coptidis Regulates the AMPK/mTOR signaling pathway Hypertension

13. Allicin Allium in Liliaceae
(1) Scavenging free radicals

(2) Inhibits the formation of ROS
(3) Increases the activity of antioxidant enzyme

Hypertension

14. Curcumin
Rhizome of a turmeric

plant

(1) Reducing the formation of peroxides
(2) Inhibiting the expression of Bax, beclin-1,

BNIP3, and SIRT1
(3) Inhibiting PI3K-AKT-mTOR signal

transduction

Hypertension

15. Astragaloside IV Astragalus propinquus

(1) Increases the activity of T-SOD,
GSH-PX, and CAT

(2) Inhibits the formation of MPO,
NADPH, MDA, and ROS

(3) Inhibits the activity of CPK and LDH

(1) Heart failure
(2) Heart remodeling

(3) Ventricular
dysfunction
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plants of the genus Panax [45, 46]. Ginsenosides Rb1, Rg1,
and Rg2 have antioxidant effects, scavenge free radicals,
improve myocardial ischemia and hypoxia, reduce intracel-
lular calcium overload, and protect the myocardium [19,
47]. A large body of evidence suggests that ginsenosides
Rb1, Rg1, and Rg2 possess protective abilities against CHD.

Ginsenoside Rb1 can reduce the occurrence of cardio-
myocyte apoptosis, inhibit oxidative stress, inhibit the
expression of apoptosis-promoting genes Bax and Fas,
and upregulate mTOR signaling [48]. A recent study indi-
cated that Rb1 could enhance the activity of antioxidant
enzymes and reduce free radical-induced damage to the
myocardium via activation of the PI3K/Akt/Nrf2 signaling
pathway [49, 50].

Ginsenoside Rg2 could reduce oxidative stress injury
and improve myocardial ischemia and hypoxia by regulat-
ing the activities of serum creatine kinase (CK), lactate
dehydrogenase (LDH), lipid peroxides (LPOs), superoxide
dismutase (SOD), and glutathione peroxidase (GPX) in
rats [51]. Ginsenoside Rg2 was also shown to reduce oxi-
dative stress in human epidermal keratinocytes [52].

Ginsenoside Rg1 may play a role in antioxidant defense
by upregulating the AMPK/Nrf2/HO-1 signaling pathway.
In addition, it exhibited protective effects against STZ-
induced cardiac dysfunction [53]. Further studies indicated
that Rg1 increased cell survival, promoted the expression of
antioxidant proteins, and reduced ROS and apoptosis
through the Nrf2/ARE signaling pathway [54]. Thus, it is

Table 1: Continued.

No. Active ingredients Natural drug Mechanism of action Treatment disease

16. Tetramethylpyrazine Ligusticum chuanxiong
(1) Increased the expression level

of microRNA-499a
(2) Upregulation of sirtuin1

(1) Heart failure
(2) Coronary heart

disease

17. Gastrodin Gastrodia elata
(1) Inhibits the formation of LPO

and oxygen free radicals
(2) Increases the activity of SOD

Heart failure

18. Safflower Crocus sativus L.
(1) Inducing autophagy

(2) Increasing the expression of
Nrf2/HO-1/NADPH/NQO1

Heart failure

19. Ferulic acid Angelica sinensis

(1) Inhibition of CK and LDH
(2) Activating the PI3K/Akt/mTOR

signaling pathway
(3) Reduces ROS

Heart failure

20. Paeonol Paeonia suffruticosa
(1) Increases the activity of SOD
(2) Inhibits the formation of LPO

and oxygen free radical

(1) Arrhythmia
(2) Coronary heart

disease

21. Matrine Sophora flavescens Increases the activity of antioxidant enzyme Arrhythmia

22.
Astragalus

polysaccharide
Astragalus propinquus

(1) Increases the activity of SOD
(2) Inhibits the formation of LPO,

ROS, and oxygen free radical
(3) Increased the expression of 8-OH-AD

(1) Coronary heart
disease

(2) Acute myocardial
infarction

23. Quercetin Dendrobium nobile

(1) Inhibits the expression of aldose reductase
(2) Inhibits the formation of MPO and NADPH

(3) Inhibits the oxidation of low-density
lipoprotein (LDL)

(1) Acute myocardial
infarction

(2) Ischemia-reperfusion

24. Tanshinone II-A Salvia miltiorrhiza
(1) Upregulation of Nrf-2

(2) Regulates the autophagy genes ATG and LC3

(1) Coronary heart
disease

(2) Acute myocardial
infarction

25. Gypenoside Gynostemma pentaphyllum
(1) Increases the activity of SOD

(2) Inhibits the formation of oxygen free radical
Acute myocardial

infarction

26. Soybean isoflavone Glycine max
(1) Increases the activity of SOD and GSH-Px
(2) Inhibits the activity of NADPH and NOX

(1) Acute myocardial
infarction

(2) Hyperlipidemia

27.
Hydroxy safflower

yellow
Carthamus tinctorius L.

(1) Activating the PI3K/Akt signaling pathway
(2) Increases the expression of NADPH and NQO1

Acute myocardial
infarction

ROS: reactive oxygen species; ap-JNK: C-Jun N-terminal kinase- (JNK-) c-Jun/activated protein (AP); p-ERK: protein kinase R- (PKR-) like endoplasmic
reticulum kinase; CK: creatine kinase; LDH: lactate dehydrogenase; LPO: lipid peroxidation; SOD: superoxide dismutase; CAT: catalase; MDA:
malondialdehyde; GSH-Px: glutathione peroxidase; eNOS: endothelial nitric oxide synthase; NADPH: nicotinamide adenine dinucleotide phosphate; NOX2:
NADPH oxidase 2; NOX4: NADPH oxidase 4; AMPK: adenosine 5′-monophosphate- (AMP-) activated protein kinase; SIRT1: sirtuin1; PI3K:
phosphatidylinositol 3-kinase; Akt: serine/threonine kinase Akt; mTOR: mammalian target of rapamycin; Nrf2: nuclear factor erythroid 2-related factor 2;
ARE: antioxidant response element; HO-1: heme oxygenase 1; TGF-beta1: transforming growth factor beta 1; NQO1: NAD(P)H quinone dehydrogenase 1.
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suggested that Rg1 may be beneficial for the survival of cardi-
omyocytes via the inhibition of oxidative stress.

4.1.2. Delphinidin-3-glucoside. Delphinidin-3-glucoside (DPg)
is a bioflavonoid with strong antioxidant effects. DPg could
decrease the expression of NOX2/NOX4 and caspase-3
induced by oxidized LDL (oxLDL), while reducing ROS pro-
duction, p38 MAPK phosphorylation, NF-κB p65 activity,
and, importantly, the damage induced by oxidative stress [55].

Further, studies reported that DPg could induce autoph-
agy through the AMPK/SIRT1 signaling pathway, thus pro-
tecting human umbilical vein endothelial cells (HUVECs)
from oxLDL-induced oxidative stress [56].

4.1.3. Total Flavonoids of Matsuba. Total flavonoids of
matsuba are a natural extract from pine needles. It pos-
sesses antioxidant, anti-inflammatory, and antibacterial
activities [57, 58]. The total flavonoids of matsuba can inhibit
oxidative stress by upregulating the activity of SOD, GSH-
PX, and CAT, while reducing malondialdehyde (MDA) con-
tent. In addition, the total flavonoids of matsuba can reduce
the oxidative modification of LDL, directly capture and
remove O2 and H2O2 radicals, and block the free radical-
induced oxidative stress chain reaction, while also inhibiting
the formation of toxic substances such as LPO and copolylu-
diene [17]. Therefore, the total flavonoids of matsuba may be
a promising agent for treating CHD.

4.2. Ischemia-Reperfusion Injury. Ischemia-reperfusion
injury refers to the increase in ROS and oxidative stress
and the further damage of the mitochondrial ultrastructure
function and metabolism due to the reoxygenation of tis-
sue that has had its oxygen supply temporarily disrupted
[59]. At present, it has become one of the decisive factors
affecting the prognosis and survival of patients with CVD.
The main contributors to the ROS increase are xanthine oxi-
dase formation, neutrophil respiratory burst, mitochondrial
single-electron reduction, catecholamine autoxidation, and
intracellular Ca2+ overload [60]. The excessive production
of ROS in the myocardial ischemic area can directly trigger
myocardial cell apoptosis, inflammatory reactions, and
energy metabolism disorders [61]. Several studies have
shown that the active components of various CHMs can pro-
tect myocardial cells by regulating oxidative stress and have a
good therapeutic effect on ischemia-reperfusion injury.

4.2.1. Orientin. Orientin is a flavonoid component present in
natural plant extracts. Orientin has been demonstrated to
have antioxidant and anticancer properties, while also con-
tributing to cardiac remodeling and the prevention of myo-
cardial ischemia-reperfusion injury through enhanced
antioxidant defense [62]. Studies have shown that orientin
can inhibit the oxLDL-induced increase in TNF-α, IL-6,
and IL-1β, as well as reducing levels of ROS [63]. Orientin
also protects red blood cells from oxidative damage by reduc-
ing oxidative stress, increasing the activity of antioxidant
enzymes, and maintaining the structural integrity of red
blood cells [18]. Studies have also reported that orientin can
regulate apoptosis via AMPK, Akt, mTOR, and Bcl-2 signal-
ing and the maintenance of autophagic balance. In addition,

orientin protects myocardial cells against hypoxia-
reoxygenation injury [64]. Overall, orientin’s protective
effects are related to the inhibition of oxidative stress.

4.2.2. Hawthorn Leaf Flavonoids. Hawthorn leaf flavonoids
are the extract of the hawthorn dry leaves of Rosaceae. It pos-
sesses antioxidant, anti-inflammatory, and hypolipidemic
activities [65]. Hawthorn leaf flavonoids were found to
enhance the activity of antioxidant enzymes and inhibit the
oxidative modification of LDL-C, while also improving oxi-
dative stress-induced damage to the rat myocardium through
the PKC-alpha signaling pathway. Further, the extract was
shown to activate PPAR-α signaling to reduce blood triglyc-
erides and regulate the vascular pathological response [66]. It
was also found that hawthorn leaf flavonoids could protect
vascular endothelial cells from free oxygen radicals by reduc-
ing lipid peroxidation and enhancing the activity of antioxi-
dant enzymes and radical scavenging [67]. Therefore,
hawthorn leaf flavonoids may be used for the prevention of
myocardial injury induced by oxidative stress.

4.2.3. Anemarrhenoside. Anemarrhenoside is a steroidal
saponin monomer extracted from the dried rhizome of
Anemarrhena asphodeloides, while also being its most
abundant component [68–70]. Saponins E-I, E-II, B-II,
B-III, and A-III of Anemarrhena asphodeloides can promote
the production of SOD. Anemarrhenosides E-I and E-II can
also inhibit the expression of prooxidative stress proteins
and the abnormal aggregation of platelets [71]. It is reported
that 35 different metabolites related to oxidative stress can be
found in the H2O2-induced oxidative stress injury model of
PC12 cells, and Anemarrhenoside B-II may play a protective
role against oxidative stress by decreasing the formation of
free radicals via regulation of oxidative stress-related metab-
olites [72]. In addition, Anemarrhenoside A-III has been
reported to regulate the formation of ROS in cells and
increase SOD and catalase (CAT) in a concentration-
dependent manner, thus regulating intracellular oxidative
homeostasis [73].

4.2.4. Hesperidin. Hesperidin is a flavonoid widely found
in lemon or citrus fruits and has strong antioxidant activ-
ity [74]. Hesperidin has been reported to have a wide
range of pharmacological effects, such as regulation of lipid
metabolism abnormalities, protection of cardiovascular
endothelial cells, antioxidant activity, and regulation of
autophagy [75, 76]. Research shows that hesperidin can
inhibit oxidative stress by regulating Nrf2/ARE/HO-1 and
TGF-beta1/Smad3 signal transduction [77]. The Nrf2/ARE-
HO-1 axis mediated by ERS-PERK signaling is a new target
for the treatment of myocardial ischemia-reperfusion injury
[78]. Moreover, hesperidin can inhibit autophagy by activat-
ing the PI3K/Akt/mTOR signaling pathway, contributing to
its myocardial protective effect on ischemia-reperfusion
injury. Hesperidin’s mechanism of action is related to the
inhibition of oxidative stress [79].

4.3. Hypertension. Hypertension is a clinical syndrome char-
acterized by high blood, which may be accompanied by func-
tional damage of the heart, brain, and kidney [80, 81]. It has
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been proven that ROS play an important role in the path-
ophysiological process of hypertension. Increased oxidative
stress is an important mediator of endothelial damage in
hypertension, which is related to the increased synthesis
of oxidants, such as hydrogen peroxide (H2O2) and nitric
oxide (NO), and decreased antioxidant bioavailability [82,
83]. During hypertension, plasma myeloperoxidase levels
and oxidative stress are significantly increased. Treatment
with antioxidants inhibiting NADPH oxidase and ROS
can effectively prevent the abnormal increase in blood
pressure [84, 85].

ROS, as regulatory signaling molecules, can regulate
the endothelial function of blood vessels as well as the
relaxation and growth of vascular smooth muscle cells.
In addition, ROS can stimulate cells to produce growth
factor-like cell responses [86, 87]. MAPK signal transduc-
tion is a major mechanism that mediates vascular damage
in hypertension. ROS-induced oxidative stress can inhibit the
activity of tyrosine phosphatase and enhance the activity of
MAPKs. Overexpression of MAPKs causes the abnormal
activation of NF-κB and HIF-1α, induces vascular damage
caused by lipid peroxidation, and thus aggravates the vascu-
lar remodeling, which occurs during hypertension [88–90].
Recent studies have found that polyphenols in medicinal
plants can slow down the progress of lipid peroxidation-
induced vascular damage by regulating oxidative stress.
These observations provide new options for the treatment
of hypertension.

4.3.1. Resveratrol. Resveratrol is a natural polyphenol present
in peanuts, wine, mulberries, and other plants. It is an antiox-
idant compound that may be used to prevent and treat CVD
[91–93]. Resveratrol can scavenge free oxygen radicals in the
body [94], and studies have reported that it can prevent and
treat hypertension by inhibiting oxidative stress [95, 96].

Resveratrol inhibits the formation of oxygen free radicals
and reduces oxidative stress and blood pressure by enhancing
the ability of redox proteins to alter the redox environment
of cells [97]. Moreover, resveratrol can increase the expres-
sion of endothelial nitric oxide synthase (eNOS) by activat-
ing SIRT1 [98] and can effectively inhibit the uncoupling of
eNOS and the generation of superoxide radicals through
the inhibition of oxidative stress and ROS formation, thus
maintaining normal vascular function and reducing blood
pressure. The interaction between resveratrol and SIRT1
can also inhibit the expression of the angiotensin-II recep-
tor, hindering vasoconstriction caused by angiotensin-II,
resulting in blood vessel relaxation and a lower blood pres-
sure [99].

4.3.2. Tea Polyphenols. Tea is a traditional drink in China and
one of the most popular drinks in the world. Tea polyphe-
nols, the most important bioactive components of tea, also
have beneficial effects for the prevention and treatment of
hypertension [20]. Tea polyphenols can enhance endogenous
SOD activity, inhibit lipid peroxidation, increase ATP levels,
and inhibit the formation of free radicals [100].

Tea polyphenols have no regulatory effect on normal
blood pressure but can significantly reduce the abnormal

increases in blood pressure. The underlying mechanism is
related to the increase in antioxidant enzyme activity and
the decrease in oxidative stress [101]. It has been reported
that intravenous injection of tea polyphenols can reduce
blood pressure in rats with acute hypertension while also
effectively inhibiting ROS formation, downregulating
homocysteine-metabolizing enzymes and related metabolites
in the rat aorta, and effectively reducing hypertension [102].

4.3.3. Saponins of Panax notoginseng. Saponins of Panax
notoginseng (SPN) have significant antioxidant effects on
hypertension [103]. SPN can inhibit the formation of free
oxygen radicals and regulated erythrocyte rheology in
patients with hypertension. SPN can also significantly reduce
MDA, increase the expression of SOD, increase the deform-
ability, and reduce the aggregation of red blood cells [104].
Panax notoginseng, a medicinal plant, also contains ginseno-
side Rb3, which can increase the endothelium-dependent
relaxation of spontaneously hypertensive rats in vitro. The
regulatory pathways behind this mechanism are related to
antioxidant signaling [105]. SPN can also reduce the content
of LPO in the brain and blood, allowing for enhanced resis-
tance against aging and oxidative stress. Further, it increases
the levels of GSH and CAT in serum, enhancing antioxidant
defenses and lowering blood pressure [106]. Thus, SPN rep-
resents a novel option for the treatment of hypertension.

4.3.4. Berberine. Berberine is a natural extract from Rhizoma
coptidis. It is reported that berberine has therapeutic effects
on a variety of CVDs. Further, berberine has antioxidant,
anti-inflammatory, antiatherosclerosis, and antihypertensive
effects [107–109].

The antihypertensive activity of berberine is due to inhi-
biting the activity of cholinesterase, thus activating the M-
receptor on vascular endothelial cells and promoting the
release of the vasodilator NO from endothelial cells, which
results in peripheral vascular smooth muscle relaxation. This
mechanism may also contribute to the antioxidant effect of
berberine [110, 111]. In addition, it has been reported that
berberine can regulate AMPK signaling and inhibit the over-
expression of p-mTOR. Further, berberine can reduce the
levels of CRP, TNF-α, and IL-6 in plasma. This extract is also
able to reduce myocardial autophagy and apoptosis through
the AMPK/mTOR pathway, thus alleviating myocardial
injury [21]. In conclusion, berberine may be used to regulate
blood pressure and prevent myocardial injury.

4.3.5. Allicin. Allicin is a sulfur-containing compound
extracted from the bulb of Allium (Liliaceae). Allicin is mod-
ified by alliinase and has strong hydrophobicity. It can
quickly reach the intracellular space through the cell mem-
brane [112, 113]. Allicin can exert an antioxidant effect by
scavenging free radicals, reducing reactive oxygen species,
inducing glutathione production, and regulating NOS. It
has also been described as a potential drug for the prevention
and treatment of hypertension [114, 115].

Studies have reported that allicin can strongly inhibit the
formation of ROS, reduce H2O2-induced apoptosis, and
increase SOD and NO levels, as well as the expression of
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eNOS. It is suggested that allicin protects vascular endothelial
function through its antioxidant activity, thus reducing vas-
cular endothelial damage caused by oxidative stress [116].
Studies have revealed that allicin can reduce the vascular
response to angiotensin-II, downregulate the expression of
AT1R/KEAP1, increase the expression of Nrf2, upregulate
antioxidant enzymes, reduce oxidative stress, and relieve
the high tension of blood vessels [114]. Therefore, allicin
may be another promising agent for treating hypertension.

4.3.6. Curcumin. Curcumin is a polyphenol compound
extracted from the rhizome of a turmeric plant. Curcumin
has anti-inflammatory, antioxidant, antifibrosis, and antitu-
mor pharmacological activities [117–119]. Experimental
studies have demonstrated curcumin’s strong antioxidant
effect. Curcumin inhibits oxidative stress by reducing the
formation of peroxides in blood vessels, reduces vascular
resistance, restores vascular reactivity, and inhibits the occur-
rence and development of hypertension [120]. Curcumin can
also inhibit H/R-induced apoptosis and autophagy in H9c2
cardiomyocytes by upregulating Bcl-2 and inhibiting the
expression of Bax, BECN1, BNIP3, and SIRT1 [22]. Curcu-
min regulates autophagy by inhibiting PI3K-AKT-mTOR
signal transduction, promoting the dissociation of BECN1
and Bcl-2, preventing FOXO1 acetylation, and reducing oxi-
dative stress, thus protecting vascular endothelial cell func-
tion and controlling blood pressure [121].

4.4. Heart Failure.Heart failure is considered the end-stage of
various heart diseases, and cardiomyocyte apoptosis caused
by oxidative stress has been described as the most important
factor in heart failure [122]. Since the discovery of SOD in
1969, animal experiments and clinical trials have strongly
supported the close relationship between oxidative stress
and heart failure. Antioxidant drugs can prevent some of
the pathological processes leading to heart failure, including
cardiac hypertrophy, cardiomyocyte apoptosis, and
ischemia-reperfusion injury [123]. Research by Liu et al.
revealed that during the stage of compensatory cardiac
hypertrophy, SOD and GSH-PX levels increased, LPO
decreased, animal blood flow was stable, and the enhanced
activity of the endogenous antioxidant system could effec-
tively resist damage induced by exogenous ROS and reperfu-
sion [124, 125]. It has been reported that in animal models of
compensatory cardiac hypertrophy, the production of ROS
by NADPH oxidases will gradually increase to a peak, which
is at the level of heart failure decompensation [126].

Research has also reported that the increase in oxidative
stress is related to the increase in autophagy during heart fail-
ure following pressure overload. In H9c2 cardiomyocytes,
high concentrations of H2O2 increased autophagy. There-
fore, the autophagy and oxidative stress may contribute to
heart failure after chronic pressure overload [122]. Active
components of CHM can regulate oxidative stress and
autophagy and, thus, may be helpful in the treatment of heart
failure [127, 128].

4.4.1. Astragaloside IV. Astragaloside IV (As-IV) is a natural
saponin purified from Astragalus membranaceus. As an

exogenous antioxidant, As-IV can significantly protect myo-
cardial cells and mitochondria during the process of heart
failure [129–131]. This protective effect is mainly achieved
by an increase in the reserve respiratory capacity of cardio-
myocytes and mitochondrial ATP after oxidative stress
injury, as well as through the increased activity of T-SOD,
GSH-Px, and CAT in cardiomyocytes [132, 133]. As-IV can
also improve the metabolic rate of cardiomyocytes, reduce
the release of MDA and NOS, and inhibit the generation of
free oxygen radicals, alleviating damage to the membrane of
cardiomyocytes and thus improving their viability [134].

As-IV has also been reported to inhibit ROS and NADPH
production by upregulating PGC-1α and TFAM, as well as to
promote mitochondrial autophagy and mitochondrial bio-
genesis, contributing to the protection of damaged mito-
chondria through its antioxidant activity [135]. As-IV can
also reduce the activities of CPK and LDH, reduce the loss
of mitochondrial membrane potential, and ultimately slow
down cardiomyocyte apoptosis [136–138].

4.4.2. Tetramethylpyrazine. Tetramethylpyrazine (TMP) is
the main active alkaloid ingredient of Ligusticum [139,
140]. TMP can reverse the PI3K/Akt signal pathway inactiva-
tion caused by hypoxia and reduce oxidative stress-induced
cardiomyocyte apoptosis by downregulating miR-499a and
upregulating SIRT1 signaling [141]. Oxidative stress induced
by oxygen deficiency after heart failure causes great damage
to cardiomyocytes, and TMP can directly enhance myocar-
dial protection by reducing oxidative damage. Further, it
can also inhibit cardiomyocyte apoptosis by regulating the
expression of apoptosis-related proteins such as Bcl-2, Bax,
and caspase-3 and the NF-κB pathway [142].

Recent studies show that TMP could relieve vascular ten-
sion and counteract oxidative stress by scavenging ROS,
downregulating ERK1/MAPK signaling, and inhibiting NF-
κB. TMP can also protect vascular endothelial cells from
H2O2-induced injury by increasing the content of phosphati-
dylcholine, reducing the release of arachidonic acid, and
inhibiting the phosphorylation of cytosolic phospholipase A
[143, 144]. TMP, as an NADPH oxidase inhibitor and ROS
scavenger, may be a potential antioxidant drug for the treat-
ment of heart failure [145].

4.4.3. Gastrodin. Gastrodin is a glucoside extracted from
the rhizome of Gastrodia elata Blume [146]. It was found
that gastrodin could inhibit the formation of and scavenge
oxygen radicals as well as inhibiting LPO in the myocar-
dium during the decompensated stage of heart failure
[147, 148]. Further, gastrodin was found to inhibit oxida-
tive stress by activating ERK1/2 signaling and reducing
GSK-3β overexpression [149].

Gastrodin can also mitigate myocardial injury caused by
myocardial ischemia-reperfusion and improve the morphol-
ogy of damaged myocardial tissue. These effects were related
to the enhancement of SOD-mediated inhibition of oxidative
stress [150]. In addition, during myocardial ischemia-reper-
fusion, free oxygen radical production occurs along with
the outflow of potassium ions, resulting in the overexpression
of inflammatory cytokines and subsequent injury of
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myocardial cells. Reduced numbers of inflammatory and red
blood cells in the interstitial space were observed in myocar-
dial ischemia-reperfusion injury after gastrodin pretreat-
ment. Further, the degree of myocardial cell damage was
also lower, which may be related to the antioxidant mecha-
nism of gastrodin [151].

4.4.4. Safflower. Safflower is an extract of Crocus sativus L.
and is commonly used in the treatment of CVD. Clinical
studies have shown that safflower has antioxidant and
antiarrhythmic effects, as well as protective effects on dam-
aged myocardium [152–154]. Thus, safflower is an antiox-
idant with potential for the prevention and treatment of
heart failure. It has been reported that safflower can signif-
icantly inhibit the overexpression of proapoptotic genes
Bad and Bax by inducing autophagy. Further, safflower
treatment reversed apoptosis induced by angiotensin-II
(Ang-II) in H9c2 cells [155]. Safflower also inhibited
H2O2-induced oxidative stress injury by upregulating
Nrf2/HO-1/NADPH/NQO1 signaling and Akt phosphory-
lation [156]. Therefore, safflower may have potential for
the treatment and prevention of heart failure through its
antioxidant and antiapoptotic activities.

4.4.5. Ferulic Acid. Ferulic acid (FA) is a phenolic acid found
in Angelica sinensis, chuanxiong, and other medicinal plants.
FA has strong antioxidant capacity and not only inhibits free
radical production but also downregulates free radical activ-
ity [157]. It has been found that FA can reduce the myocar-
dial infarction area and LDH, CK, and cardiac troponin
levels in a dose-dependent manner. FA protects myocardial
tissue by activating PI3K/Akt/mTOR signaling and restoring
autophagic flux, as well as through its antioxidant activity
[158]. It can also increase the expression of Beclin-1/LC3-II
and ATG5, while protecting cardiomyocytes from caspase-
dependent and caspase-independent apoptosis by activating
HSP70 and Bcl-2 [159]. At the same time, FA can counteract
excessive ROS production and induce autophagy, thus inhi-
biting cell apoptosis [160]. Therefore, the antiapoptotic effect
of FA may be mediated by its antioxidant and autophagy-
inducing activities.

4.5. Arrhythmia. Arrhythmia is caused by abnormal sino-
atrial node activity. Studies have shown that the mechanism
of arrhythmia is closely related to oxidative stress [161]. Slow
activation of the sinus node caused by oxidative stress or
abnormal conduction can lead to arrhythmia [162]. Studies
have shown that ROS, MDA, and other oxidative stress
markers in the serum of patients with tachyarrhythmia were
significantly increased, while the expression of SOD, TAC,
GSH, and other antioxidant markers was decreased. In addi-
tion, oxidative stress can promote the occurrence of atrial
fibrillation, a vicious circle that will eventually lead to the
aggravation of arrhythmia symptoms [163]. These observa-
tions suggest that oxidative stress plays an important role in
the pathogenesis of arrhythmia. At present, traditional anti-
oxidants cannot achieve the desired therapeutic effect. How-
ever, active components derived from medicinal plants can

regulate the heart rate by inhibiting oxidative stress, sugges-
tive of their potential as an antiarrhythmic drug in the future.

4.5.1. Paeonol. Paeonol is an extract of the rhizome of Paeo-
nia suffruticosa, which has antibacterial, anti-inflammatory,
and antioxidant effects [164, 165]. Paeonol can prevent the
occurrence of arrhythmia, shorten the duration of atrial
fibrillation or the conduction block, and protect against
ischemia-reperfusion myocardial injury. It has been reported
that ischemia-reperfusion causes an increase in free radicals,
a decrease in SOD activity, and an increase in MDA content,
in parallel to accelerated myocardial injury and increased
instability of cardiac bioelectrical conduction, leading to
arrhythmia. However, paeonol can enhance SOD scavenging
of endogenous radicals and reduce LPO levels, potentially
exerting antiarrhythmic effects and improving myocardial
injury. Paeonol can also block calcium channels of cardio-
myocytes, inhibit the transient outward potassium current,
selectively block the fast sodium channel, reduce the range
of phase 0 depolarization, and shorten the time course of
action potential in ventricular muscle [166]. These outcomes
may be related to paeonol’s ability to inhibit oxidative stress.

4.5.2. Matrine. Matrine is a natural extract from Sophora
flavescens. It possesses antioxidant, antiviral, and antiar-
rhythmic activities [167–169]. Matrine can directly inhibit
the flow of sodium ions outside the myocardial cell mem-
brane and maintain the normal heart rhythm [170]. It can
also reduce cardiomyocyte stress and improve ectopic
heartbeats by affecting the potassium and sodium ion
transfer system at the cardiomyocyte membrane [171].
Research has shown that matrine can prolong the refrac-
tory period of the atrium and ventricle by inhibiting oxi-
dative stress, can reduce the excitability of the atrium
and the ventricular muscle, and can pace the conduction
system. Further, matrine stabilizes the heart rhythm by
inhibiting oxidative stress and increasing endogenous anti-
oxidant activity, thus protecting the structure and function
of mitochondria in cardiomyocytes [172, 173].

4.6. Acute Myocardial Infarction. Acute myocardial infarc-
tion (AMI) is a disease with high mortality and is caused by
persistent ischemia and hypoxia of the coronary artery. Early
reperfusion following myocardial infarction is the most
essential form of treatment. However, when blood supply is
restored, excessive free oxygen radicals will damage tissues
leading to ischemia-reperfusion injury. Studies have shown
that myocardial ischemia-reperfusion injury is closely related
to oxidative stress and myocardial autophagy. Autophagy
can protect cardiomyocytes from ischemia and accelerate cell
death during reperfusion [174, 175]. Moreover, trimetazidine
treatment can reduce the oxidative stress and autophagic flux
induced by acute myocardial infarction, thus reducing infarc-
tion size. Studies have indicated that cardiomyocytes, oxida-
tive stress, and autophagy are involved in the pathological
process of AMI and ischemia-reperfusion injury. In AMI,
the increase in ROS/autophagy and the decrease in SOD
can enhance oxidative stress and aggravate myocardial
injury. The induction of autophagy may be related to the
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activation of the ROS-ATM-LKB1-AMPK signal axis [176].
This axis could represent a new therapeutic target in the
treatment of AMI through CHM active components.

4.6.1. Astragalus Polysaccharides. Astragalus polysaccharides
(APS) are water-soluble polysaccharides with biological
activity, extracted from Astragalus. APS are increasingly con-
sidered potential exogenous antioxidants. It is reported that
APS have antioxidant, antiviral, and anti-inflammatory
pharmacological effects [177, 178]. APS can remove superox-
ide anions and hydrogen free radicals, improve the activity of
SOD, GPX, and CAT, and reduce the levels of LPO. APS can
also reduce cell apoptosis, the production of DHE, cytosolic
nitrotyrosine products, and nuclear oxidative stress (8-OH-
AD), while reducing ROS generation [179]. APS can also
reduce the troponin and creatine phosphokinase, as well as
the mRNA expression of Bcl-2, Bax, caspase-3, p53, Apaf-1,
and AIF, leading to an improved antioxidant capacity and
enhanced protection against cardiac injury caused by myo-
cardial cell apoptosis [180].

4.6.2. Quercetin.Quercetin is one of the most well-known fla-
vonoids. It can form complexes with superoxide anions (O2

-)
to reduce the production of oxygen radicals and couples with
Fe2

+ to prevent the formation of Fenton radicals. Quercetin
also reduces the consumption of NADPH by inhibiting
aldose reductase, improving the body’s antioxidant capacity
[181]. Quercetin can also scavenge free radicals produced in
macrophages, inhibit the oxidation of LDL, protect tocoph-
erol, and regenerate oxidized α-tocopherol [182].

According to a previous report, quercetin can maintain
proper ST segment elevation in myocardial infarction model
rats, reduce the level of LPO products in the rat serum and
heart, and protect the damaged myocardium [183]. Querce-
tin could reverse the increase in NO, MDA, MPO, and
caspase-3 activity, while decreasing GSH and SOD activity
in the ischemia-reperfusion group. It has also been suggested
that quercetin can alleviate tissue injury induced by AMI
through its antioxidant and antiapoptotic effects [184].
Moreover, quercetin protects vascular endothelial cells and
reduces blood pressure through antioxidant activity [185].
Thus, quercetin is a potential drug for the treatment of
AMI and hypertension in the future.

4.6.3. Tanshinone II-A. Tanshinone II-A is a lipid-soluble
phenanthraquinone extracted from the rhizome of Salvia
miltiorrhiza. It possesses antioxidant properties, regulates
autophagy, and has certain advantages in the protection of
myocardial cells [186, 187]. Tanshinone II-A can alleviate
oxidative stress injury of H9c2 cells induced by DOX,
enhance autophagy in H9c2 cells, and mitigate myocardial
injury [188]. Tanshinone II-A exerts its antioxidant effects
through NRF-2, reducing DOX cardiotoxicity. These antiox-
idant properties of tanshinone II-A play an important role in
protecting myocardial cells after AMI [189]. Autophagy is a
protective mechanism allowing cells within plaques to fight
against and resist oxidative stress. An excessive reduction or
increase in autophagic activity will affect the extent of oxida-
tive stress-induced damage and atherosclerotic plaque devel-

opment. Tanshinone II-A can also affect autophagic activity
by regulating autophagy genes ATG and LC3, contributing
to its antioxidant effects [190].

4.6.4. Gypenoside. Gypenoside (GPS) is a commonly used
drug for the prevention and treatment of CVDs [191]. Its
benefits include antioxidant and antiatherosclerosis proper-
ties, as well as protection of the damaged myocardium. GPS
can enhance the antioxidant capacity of aging rats by increas-
ing SOD activity and can promote c-sis gene expression in
endothelial cells, as well as the synthesis and release of NO,
while also improving blood circulation of the coronary
artery. GPS has also been reported to restore the normal
redox state of ox-LDL in HUVECs through antioxidant reg-
ulation via PI3K/Akt. Further, GPS upregulated the ratio of
Bcl-2 to Bax and inhibited the expression of caspase-3, lead-
ing to apoptosis [192]. GPS has protective effects on myocar-
dial ischemia and systolic function in rats and exerts its
cardiotonic and central inhibitory effects by inhibiting the
activities of Na+/K+-ATPase in the heart [193]. GPS contrib-
utes to the resistance of oxygen radical damage to the heart,
protects the integrity of the myocardial cell membrane, and
supports normal diastolic function of the heart during acute
myocardial ischemia [194].

4.6.5. Soybean Isoflavones. Soybean isoflavone (SI) is a bio-
active secondary metabolite formed during soybean
growth. Studies have shown that SI can protect the cardio-
vascular system through its antioxidant effects [195–197].
SI enhanced the activity of SOD, decreased the level of thio-
barbituric acid reactant in plasma, and enhanced the antiox-
idant capacity of plasma, as well as the activity of GSH-PX in
erythrocytes [198]. Moreover, SI inhibited the production of
peroxides and the activity of NADPH oxidase in ischemia
injury [199]. Studies have reported that different concentra-
tions of SI can inhibit the apoptosis of vascular endothelial
cells in a concentration-dependent manner, thus reducing
vascular endothelial damage [200].

4.6.6. Hydroxy Safflower Yellow. Hydroxy safflower yellow
(HSYA) is a natural active component of Carthamus tinctor-
ius L. of Compositae, which has significant anticoagulant and
antioxidant activity. HSYA reduces the level of LDH and
caspase-3 in the heart of ischemia-reperfusion injury models,
indicative of lower apoptosis rates [201]. HSYA can also
inhibit the apoptosis of myocardial cells after AMI by
increasing the level of Bcl-2/Bax [202], improve the dysfunc-
tion of mitochondrial energy metabolism by activating the
PI3K/Akt signaling pathway, and play a protective role for
the myocardium [203]. HSYA is a water-soluble antioxidant
active component, capable of clearing oxygen radicals and
inhibiting LPO generation, thus protecting the myocardial
cell membrane. It has also been found that HSYA has a chal-
cone structure and various phenolic hydroxyl groups.
HSYA’s antioxidant effect may be related to the action of
these phenolic hydroxyl groups [204]. HSYA can also
increase the expression of NADPH and NQO1, increase the
phosphorylation of Akt, and inhibit H2O2-induced oxidative
stress injury by activating Nrf2/HO-1 [156]. Overall, there is
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a growing body of evidence for the antioxidant properties of
HSYA.

5. Discussion

In the current review, the effects and mechanisms of action of
the active components of 27 natural extracts in various CVDs
were discussed with regard to oxidative stress. Previous stud-
ies found that oxidative stress regulation by these active com-
ponents is achieved through a variety of pathways. Evidence
shows that these active ingredients could be used for therapy
in the future. However, further experimental studies are
needed to elucidate the exact molecular mechanisms of com-
ponents before their implementation in clinical use. Overall,
compounds derived from medicinal plants work through
various mechanisms to counteract oxidative stress.

The therapeutic efficacy of natural drugs and their active
ingredients has been reported not only in cell and animal
models but also in the clinic. Recent clinical studies have
found that SI has therapeutic effects on heart failure caused
by ischemic cardiomyopathy (IC). SI was shown to increase
the expression levels of Nrf2 and SOD and to reduce the
expression of C-reactive protein, 8-isopropanol, MDA, IL-
6, and TNF-α in patients with heart failure, improving the
antioxidant capacity of patients with IC by upregulating
Nrf2 and treating heart failure [205].

Chekalina et al., through a clinical study of 85 patients
with coronary heart disease, found that quercetin can adjust
the central hemodynamic parameters of patients with stable
coronary heart disease and can improve myocardial ischemia
[206]. The results of previous clinical studies have shown an
improvement in left ventricular systolic function and left
ventricular ejection fraction (EF) of patients, after two
months of quercetin treatment. These clinical studies suggest
that quercetin had cardioprotective effects in patients with
coronary heart disease.

Clinical studies have also found that resveratrol had ther-
apeutic effects on central hemodynamic parameters and
myocardial ischemia in patients with stable coronary heart
disease. The studies showed that the left ventricular systolic
and diastolic function and the left ventricular ejection frac-
tion (EF) were improved in patients with coronary heart dis-
ease, after resveratrol treatment. The phase ratio of
conduction blood flow E/A also improved, and it was domi-
nant in the research group. After resveratrol treatment, the
DT value decreased significantly along with the number of
PACs and PVCs. This research suggested that resveratrol
has a significant protective effect on the heart in clinical set-
tings [207].

Recent studies have also shown that the active ingredients
of natural drugs combined with other drugs can result in syn-
ergistic therapeutic effects. A randomized controlled trial
(RCT) found that tanshinone II-A sodium sulfonate injec-
tion (STS) can be used to treat CHD. The results of the study
showed that the adjuvant treatment with STS significantly
reduced the incidence of cardiac shock, heart failure, and
arrhythmia, with no serious adverse events related to STS.
STS combined with conventional medication is more effec-

tive than conventional medication alone, with fewer side
effects [208].

Zhang et al. found that trimetazidine combined with
berberine can have a therapeutic effect on endothelial func-
tion in patients with CHD and essential hypertension
(CCP) [209]. eNOS mRNA expression (P < 0:05), NO level
(50:75 ± 2:75mol/l) (P < 0:05), and FMD value
(14:02 ± 2:39) were significantly higher after the combina-
tion treatment than before the treatment (P < 0:05). The
results suggested that the combination of trimetazidine and
berberine increased blood NO content, promoted the
endothelium-dependent relaxation function of the brachial
artery, and helped treat CCP.

In summary, since the multilevel, multichannel, and mul-
titarget action of natural medicines can effectively reduce the
side effects of single-chain action, there is great potential for
clinical efficacy. However, most of the research on the tar-
geted treatment of cardiovascular diseases using natural
medicines and active ingredients has been conducted in cell
and animal experiments, and only a few clinical studies exist.
A better understanding of the pathology of cardiovascular
diseases and the pharmacological effects of natural drugs
and active ingredients could aid future large-scale clinical
research studies on these drugs and their targets.

Recently, the clinical application of Chinese medicine has
attracted considerable attention. Traditional Chinese medi-
cine contains a variety of active ingredients with antioxidant
effects. Moreover, the active ingredients show network syn-
ergy or antagonistic effects. The clinical compatibility and
application of traditional Chinese medicine follow the tradi-
tional Chinese medicine theories, and various active ingredi-
ents contained in different traditional Chinese medicines
have different degrees of synergy and antagonism [210].
The interaction among several active ingredients will affect
the absorption, metabolism, efficacy, and toxicity of other
active ingredients. For example, the compound Huangdai is
used to treat granulocytic leukemia. The main ingredients
of the prescription are tetraarsenic tetrasulfide, indirubin,
and tanshinone II-A. Studies have found that the combina-
tion of these three drugs can synergistically enhance antican-
cer activity compared with each drug alone or in
combination of two drugs [211]. Danshen dripping pills
and Shensongyangxin capsules commonly used in the clini-
cal treatment of cardiovascular diseases contain Chinese
herbal medicines such as ginseng, Danshen, Panax notogin-
seng, and Ophiopogon japonicus. The active ingredients of
these drugs are ginsenosides, tanshinones, and total saponins
of notoginseng, each of which can regulate oxidative stress.
When combined, these active ingredients work together to
produce a synergistic effect [212, 213].

Chinese medicine is complex, with diverse chemical
components affecting organisms through various biological
reactions. This diversity determines whether the effects of
the different active ingredients in Chinese medicines will be
synergistic, additive, and antagonistic. However, it is yet
unclear which combinations of active ingredients have syner-
gistic effects and antagonistic effects or which combinations
may increase toxicity. At the effect level, avoid invalid and
negative action modes, and which active ingredients will

11Oxidative Medicine and Cellular Longevity



strengthen the primary pharmacological effect and which
will negate it, as well as effective/optimal doses of each active
ingredient in the combinations, need to be determined. The
similarities and differences between the antioxidant mecha-
nisms of medicinal plants and the mechanisms by which they
exert therapeutic effects on the human cardiovascular system
are also worth discussing. One of the advantages of medicinal
plants is the synergistic action of multiple plant chemical
components. Williamson first proposed the synergistic effect
of natural extracts in 2001 [214]. Synergistic effect refers to
multiple pathways being simultaneously targeted and
engaged. There are various pathways and targets involved
in oxidative stress signaling, and natural drugs or active
ingredients often act on multiple pathways and targets for
the effective treatment of the disease. “Synergy multitarget”
and “antagonistic multitarget” may explain the effects
observed from the combination of the active ingredients in
traditional Chinese medicine.

In order to elucidate the mechanism of action of tradi-
tional Chinese medicine, the pathways and targets acted
upon by each active ingredient alone and in different combi-
nations need to be studied. It is also necessary to find a suit-
able entry point and establish a reasonable pharmacological
model based on multiple omics researches such as genomics,
proteomics, and metabolomics. Determining the mecha-
nisms of action of the active ingredients can not only explain
how the various ingredients in Chinese medicines function
alone or in combination but more importantly may lead to
the discovery of new mechanisms of action and synergistic
effects of the active ingredients and lay a foundation for the
innovation of Chinese medicine and the development of Chi-
nese medicine theory.

6. Conclusions

Medicinal plants are used to treat cardiovascular disease
through their antioxidant properties, and remarkable effects
have been reported. The current review summarized the
mechanisms of active plant components in the treatment of
CHD, hypertension, heart failure, ischemia-reperfusion,
and arrhythmia. The dosing and timing of active component
administration require further study. Future research should
also investigate the synergistic effects of multiple bioactive
plant components. In addition, large-scale clinical studies
should be conducted to confirm the clinical effectiveness
and safety of natural medicines and their effective active
ingredients.
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