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Abstract: Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells
for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a
sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity,
and exhibit stringent response. These attributes help M. tuberculosis to manage the host response,
and successfully establish and maintain an infection even under nutrient-deprived stress conditions
for years. In this review, we will discuss the importance of mycobacterial stringent response under
different stress conditions. The stringent response is mediated through small signaling molecules
called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are
mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all
central dogma processes—DNA replication, transcription, and translation—in addition to regulating
virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent
infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in
mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as
antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.

Keywords: Mycobacterium; alarmones; (pp)pGpp. Rel; RelZ; stress response; drug resistance; biofilm;
virulence; stringent response

1. Introduction

Bacteria encounter constantly changing environments that may threaten their sur-
vival and existence; hence, it is particularly important to study their survival strategies in
different model systems [1–3]. These strategies include several sensory mechanisms and
signaling pathways that are required to overcome such threats [4–9]. These mechanisms
help bacteria to sense the environmental cues and generate an appropriate adaptive re-
sponse. The adaptive response is usually multilayered and may affect some or all aspects
of metabolism, replication, transcription, translation, and post-translational modifications
in bacteria [5,10–13]. Hence, a prompt adaptation to such abrupt changes becomes a ne-
cessity for bacterial survival. The stringent response is one such evolutionarily conserved
mechanism, through which bacteria can thrive in hostile conditions [13]. It is mediated
through small molecules called alarmones, which include tetraphosphate guanosine and
pentaphosphate guanosine, collectively referred to as (p)ppGpp [14] (Figure 1). Stringent
response affects all the central dogma processes—replication, transcription, and transla-
tion [15]. It helps bacteria survive the stress conditions by regulating important processes,
such as biofilm formation, antibiotic resistance, persistence, and virulence in bacterial
pathogens [15–17].
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Figure 1. Synthesis and degradation of alarmones: (A) Domain architecture of RSH-Rel and SAS-
RelZ proteins involved in synthesis and hydrolysis of alarmones (pp)pGpp. Rel is composed of two
enzymatic (hydrolase and synthetase) and two regulatory (TGS and ACT) domains. RelZ has N-
terminal RNaseIII domain, which is followed by the synthetase domain. (B) Metabolism of alarmones
by Rel and RelZ enzymes. The synthesis steps utilize ATP and guanine nucleotides as precursors.
The hydrolysis results in the formation of the same guanine nucleotide in addition to di-phosphate
or pyrophosphate.

The mediators of stringent response, (p)ppGpp, were first identified in 1969 when
the nucleotide extracts of the amino-acid-starved cultures of Escherichia coli K-12 were
resolved by thin-layer chromatography [18]. While native culture extracts showed two
spots corresponding to ppGpp and pppGpp, these so-called “magic spots” were absent
in the extracts from a mutant that had unregulated rRNA synthesis. Since this particular
strain, a methionine auxotroph, then known as “58-161” mutant, exhibited the unregulated
or relaxed synthesis of rRNA even during the amino acid starvation, the associated locus
was called “relA” [19]. Classically, the stringent response has been associated with the syn-
thesis of alarmones to stop rRNA production during amino acid starvation in E. coli [20–23].
However, subsequent research has shown that several bacterial phyla, including actinobac-
teria, produce alarmones, (p)ppGpp, upon amino acid starvation [13,16,24–28]. Addi-
tionally, in recent years, a third alarmone, pGpp, has been discovered in several bacteria,
which has further expanded the repertoire of stringent response [29–34]. Thus, the three
alarmones—pGpp, ppGpp, and pppGpp—are now collectively referred to as (pp)pGpp
and are mediators of stringent response in bacteria.

Mycobacteria comprise various obligate human pathogens such as M. tuberculosis
(Mtb), M. leprae, non-tuberculous species (NTM) pathogens, such as M. chelonae, M. avium,
M. fortuitum, and M. abscessus and soil-saprophyte such as M. smegmatis (Msm) [35]. Among
these diverse mycobacterial species, M. tuberculosis is a leading cause of mortality in humans
as it causes tuberculosis (TB) [36]. The tubercle bacillus can not only infect but also persist
within the host for several years. To establish the long-term infection, M. tuberculosis
employs stringent response as one of its tools [24]. TB treatment consists of at least six
months of antibiotic therapy [37]. However, the treatment may last up to two years in the
case of drug-resistant TB. Drug-resistant TB also poses a serious threat to public health due
to its contagious nature and spectrum of drug-resistance [8,38–40]. Hence, there is an urgent
need to shorten the duration of TB treatment and contain the threat of drug-resistant TB.
These two aims can be rapidly achieved by targeting the stringent response, which regulates
persistence, drug resistance, and biofilm formation in several bacterial pathogens [16,41,42],
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though there is limited information on mycobacteria. Pathogenic and non-pathogenic
mycobacteria express enzymes that metabolize (p)ppGpp [43]. Therefore, investigating
the stringent response in all clinically relevant mycobacterial species is important. The
majority of studies on mycobacterial stringent response have been carried out using either
M. tuberculosis or M. smegmatis species. In this review, we present an overview of the
stringent response in mycobacteria and describe the metabolism of all three alarmones—
ppGpp, pppGpp, and the recently discovered pGpp (Figure 1).

We have also described how stringent response regulates long-term survival, patho-
genesis, virulence, antibiotic resistance, and biofilm formation in M. tuberculosis and
M. smegmatis. We have also delved into the literature pertaining to the chemical inhi-
bition of stringent response in mycobacteria and made a case for (p)ppGpp analogs that
can inhibit stringent response and can be used as antimycobacterial compounds.

2. Metabolism of (p)ppGpp in Mycobacteria

The genes encoding the enzymes for (p)ppGpp metabolism have been found in all
sequenced bacterial genomes—except the phyla Chlamydiae, Verrucomicrobia, Planc-
tomycetes, and a few obligate intracellular symbiotic bacterial species—which makes
stringent response a nearly ubiquitous phenomenon in bacteria [43]. In Gram-negative bac-
teria, the stringent response is governed by two enzymes—RelA and SpoT. RelA, encoded
by the relA gene, is a monofunctional synthetase responsible for the synthesis of (p)ppGpp.
On the other hand, the bifunctional SpoT, encoded by the spoT gene, acts primarily as a
hydrolase responsible for the degradation of (p)ppGpp. SpoT can also synthesize (p)ppGpp
in response to stress, which does not activate RelA. In mycobacteria, the alarmones are
synthesized and degraded by a dual-function enzyme, Rel [44]. It is believed that RelA and
SpoT have evolved from the same ancestral Rel protein, and the hydrolase domain has been
inactive in RelA. Thus, RelA, SpoT and Rel proteins have similar domain architecture and
have been characterized as the RelA Spo Homology (RSH) superfamily of proteins [43].

Both pathogenic and non-pathogenic mycobacterial genomes have a rel gene, which
encodes bifunctional Rel protein [43]. In M. tuberculosis, the gene rv2583c encodes this
bifunctional Rel, which is a 790 amino acid long multidomain protein, comprising catalytic
N-terminal domain (1–394 aa) and a regulatory C-terminal domain (395–790 aa). The N-
terminal domain harbors both the hydrolase activity (1–181 aa) and the synthetase activity
(87–394 aa) [43,45,46]. Amino acid residues 87–181 are shared between the hydrolase and
synthetase activities of the N-terminal domain and form a three-helix bundle. Both the
enzymatic activities require Mn2+ or Mg2+ cations as co-factors [27,44,46] (Figure 1A).

Several bacteria including mycobacteria also encode homologs of RSH proteins, which
are smaller in length. These proteins are usually single-domain proteins and possess either
synthetase or hydrolase activity. Hence, they are called small alarmone synthetases (SASs)
or small alarmone hydrolases (SAH) [47–50]. The genomes of both M. tuberculosis and
M. smegmatis contain one copy of SAS [30,47,51,52] (Figure 1A). In M. tuberculosis, the
gene rv1366 was predicted to encode a potential SAS. However, the Rv1366 protein was
shown to be catalytically inactive as it could not synthesize (p)ppGpp [51]. The saprophytic
M. smegmatis encodes RelZ, a SAS protein, which can synthesize the third alarmone,
pGpp, unlike its M. tuberculosis ortholog Rv1366 (Figure 1). RelZ protein also possesses
N-terminal RNase HII domain, which removes RNA–DNA hybrids generated during DNA
replication [52]. The presence of both RNase HII and pGpp synthetase domains is needed
for the RelZ catalytic activity, as individual domains have been shown to be enzymatically
inactive. The catalytic inactivation of one domain does not impair the enzymatic activity
of the other domain [52]. RelZ prefers GMP as substrate, unlike RelMtb, which prefers
GDP/GTP as the substrate. Although no SAH has been identified in mycobacteria, RelMsm
cleaves pGpp to GMP and pyrophosphate [30] (Figure 1B).
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3. Mycobacterial Stringent Response and Its Role in Survival during Stress

Alarmones (p)ppGpp control cellular processes by affecting DNA replication, tran-
scription, and translation, and thus, bring about timely changes in bacterial physiology.
In this regard, there are excellent reviews that provide detailed information on other
bacterial species such as E. coli [26,53–59]. M. tuberculosis faces several stresses, such as
oxidative, nitrosative, and nutrient stress upon infecting the host. However, it overcomes
these potentially fatal stresses and successfully establishes chronic infection [38,60,61]. The
adaptation to such stresses requires a large-scale transcriptional reprogramming, which
eventually lets M. tuberculosis not only infect the macrophages but also survive for years in
granuloma [38,61,62].

The hallmark of stringent response is downregulation of rRNA and ribosomal protein
synthesis with concomitant upregulation of amino acid biosynthetic operons to supply
necessary amino acids for survival [63,64]. The M. tuberculosis strain H37Rv, like other
bacteria, also shows these signature transcriptional changes upon nutrient deprivation.
Microarray analysis of H37Rv and H37Rv∆relMtb mutant strains, starved for six hours,
showed differential expression of several genes [65]. The study found that 54 genes en-
coding ribosomal proteins were downregulated in the parental H37Rv strain compared
to H37Rv∆relMtb mutant. Moreover, the parental H37Rv strain also showed the downreg-
ulation of 5 genes involved in transcription and 16 genes involved in protein synthesis.
Late-log phase cultures of H37Rv∆relMtb showed at least five-fold more ribosomes per unit
protein when compared to the parental H37Rv strain. Thus, in the absence of (p)ppGpp,
M. tuberculosis fails to regulate the synthesis rRNA and ribosomal protein, which are needed
for adaptation to the stationary phase. This aspect of mycobacterial stringent response is
similar to E. coli. However, some aspects of stringent response are mycobacteria specific
such as CarD-based regulation and inorganic polyphosphate (polyP)-based regulation.

CarD is a conserved essential transcriptional regulator found in actinobacteria and
its depletion in M. tuberculosis and M. smegmatis impaired the stringent response [66].
Stringent response in mycobacteria is also regulated by a feedback loop between (p)ppGpp
and inorganic polyphosphate [67–70]. PolyP is synthesized and degraded by polyphos-
phate kinases (PPK) and exopolyphosphatases (PPX), respectively. A signaling cascade
between two-component system MprAB, alternative sigma factor SigE and Rel protein
governs the levels of (p)ppGpp and polyP in mycobacteria. PolyP functions as a phosphate
donor to MprB, a stress-responsive histidine kinase. Subsequently, the phosphorylated
MprB transfers its phosphoryl group to MprA, a response regulator. The phosphorylated
MprA then activates the transcription of alternative sigma factor SigE, which eventually
upregulates the transcription of relA gene [68,71–73]. Thus, apart from carbon starva-
tion, nutrient starvation and hypoxia, phosphate starvation can also trigger the stringent
response in mycobacteria. In the absence of stringent response, the long-term survival
of both M. tuberculosis and M. smegmatis during stress conditions is impaired [24,74,75].
H37Rv∆relMtb mutant exhibited a slower growth rate than the parental H37Rv M. tuberculo-
sis in synthetic media and failed to survive long-term starvation (4 months). Moreover, the
H37Rv∆relMtb mutant failed to survive the oxygen limitation and increased temperature
of 42 ◦C, and lost viability sooner than the parental M. tuberculosis H37Rv strain [74]. A
subsequent study showed that H37Rv∆relMtb has very low levels of heat-shock protein
HspX, which is needed for the adaptation to heat shock, and its low expression explains
the inability of H37Rv∆relMtb mutant to grow at 42 ◦C [76]. Thus, the presence of Rel offers
a survival advantage to M. tuberculosis during stress conditions. Similarly, in M. smegmatis,
the deletion of the rel gene compromises long-term survival during nutrient starvation
or grows slowly when subjected to cold shock [42,75]. Taken together, stringent response
is important in both M. tuberculosis and M. smegmatis for the adaptation to stress condi-
tions; otherwise, mycobacteria cannot survive under these hostile conditions in the host or
environment (Figure 2).



Pathogens 2021, 10, 1417 5 of 14

1 
 

 

 

 
Figure 2. Pathways and genes affected by alarmones (pp)pGpp in mycobacteria: Alarmones
(pp)pGpp (orange square) and associated Rel proteins regulate several processes in mycobacteria.
Regulation of these processes results in the alteration of specific genes and their cognate pathways.
The figure shows four major schemes—(i) virulence and pathogenicity, (ii) antibiotic resistance,
(iii) stress, and (iv) cell envelope-related processes. The specific pathways and genes under these
schemes have been depicted.

4. Stringent Response Regulates Mycobacterial Virulence

Most of the TB infections remain asymptomatic as M. tuberculosis can successfully
establish a latent chronic infection. It has been shown that the virulence of M. tubercu-
losis is also regulated by the stringent response [65,77]. The H37Rv∆relMtb mutant can
establish an infection in the mice model and during the first few weeks post-infection, its
growth is indistinguishable from the parental H37Rv strain. However, after five weeks of
infection, the viability of the mutant starts dropping, and four months post-infection, the
bacterial load in both lungs and spleen is 500-fold lower than the parental M. tuberculosis
H37Rv [65]. The lungs of mice infected with the parental strain showed the presence of
several granulomas, which covered almost one-third of lung tissue. In contrast, lungs
infected with H37Rv∆relMtb strain showed significantly fewer granulomas, and almost
normal lung architecture [65]. Thus, stringent response is necessary for the maintenance of
chronic M. tuberculosis infection.

Transcriptomic analysis through microarray showed that several genes associated
with mycobacterial virulence and antigens were differentially expressed in H37Rv∆relMtb
mutant compared to the parental H37Rv strain [65]. These included groEL2 and groES, the
19-kDa antigen LpqH, and members of the PE_PGRS family. Secreted antigens such as
esat6, the antigen 85 complex, mpt83, and cfp7 were also found to be differentially expressed
in H37Rv∆relMtb mutant. The expression of Lipoprotein LpqH decreases in H37Rv∆relMtb
mutant. LpqH is known to inhibit cytokine secretion, decrease the antigen presentation to
macrophage and promote macrophage apoptosis [78] (Figure 2). The PE_PGRS proteins
modulate antigenic variation in clinical isolates of M. tuberculosis [79,80]. Moreover, these
proteins also contribute to the survival of M. tuberculosis in granuloma [81]. Recently,
it was shown that PE_PGRS3, localized on the mycobacterial cell surface, is expressed
during phosphate limitation, a condition which also triggers the stringent response in
M. tuberculosis and M. smegmatis [82]. The C-terminal of PE_PGRS3 is arginine-rich and,
hence, positively charged. This helps M. tuberculosis to establish contact with negatively
charged phospholipids on the host cell membrane. The expression of PE_PGRS3, which
is dependent on (p)ppGpp, is needed for interaction between M. tuberculosis and the host
cell, and to eventually establish the infection [83]. Thus, at the molecular level, stringent
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response regulates mycobacterial persistence inside the host by modulating the expression
of important genes involved in virulence and antigen presentation.

The effect of stringent response on mycobacterial survival has also been assessed
in guinea pigs, as the granulomas in guinea pigs resemble those found in humans in
terms of architecture, composition, and caseation necrosis [77]. There was a reduced
burden in the lungs of guinea pigs infected with H37Rv∆relMtb strain compared with the
parental H37Rv strain, which indicated that impairment of the stringent response reduces
M. tuberculosis survival during infection in lungs. Moreover, the guinea pig lungs infected
with the H37Rv∆relMtb strain showed considerably fewer tubercle lesions and caseous
granulomas. Thus, in the absence of the stringent response, M. tuberculosis cannot establish
a chronic infection, as (p)ppGpp is needed for the expression of key virulence proteins and
maintenance of long-term infection inside the host (Figure 2).

5. Role of Stringent Response in Mycobacterial Drug Resistance

Bacterial infections are treated through antibiotic therapy. However, the indiscriminate
use of antibiotics has led to the rise of several drug-resistant bacteria, and mycobacteria
are no exception. The rise of multidrug-resistant (MDR-TB) and extensively drug-resistant
(XDR-TB) bacteria is now posing a serious threat to public health worldwide [84–86]. Strin-
gent response has also been shown to regulate antibiotic resistance in different bacteria.
E. coli subjected to amino acid starvation show resistance to β-lactam antibiotics [87–89].
This was later corroborated when various strains of E. coli defective in (p)ppGpp signaling
were found to be sensitive to a wide range of antimicrobial compounds [90]. Furthermore,
activation of the stringent response—and thus, an increase in (p)ppGpp levels—are associ-
ated with antibiotic tolerance in Pseudomonas aeruginosa [91]. We will discuss a few studies
which show the relationship between stringent response, regulators of stringent response
and antibiotic susceptibility in mycobacteria.

Recently, it has been shown that the M. tuberculosis strain deficient of Rel has altered
metabolism and loses the ability to become quiescent [92]. Further, inhibitors targeting Rel
not only kill M. tuberculosis but also enhance the potency of isoniazid. These results show
the importance of the stringent response in persistence, and its therapeutic importance to
develop new drugs. The relationship between stringent response and antibiotic suscep-
tibility in M. smegmatis has been studied using high-throughput phenotype microarray
technology [41,93]. The phenotype microarray analyses showed that the ∆relMsm strain
was resistant to multiple antibiotics compared to the parental mc2155 M. smegmatis. The
results of phenotype microarray were subsequently verified by determining the minimum
inhibitory concentration (MIC) of representative antibiotics using the broth microdilution
assay. The ∆relMsm strain showed increased resistance to rifampicin in both MIC-based
assay and phenotype microarray [41,94]. However, the exact cause of increased resistance
to rifampicin by ∆relMsm could not be deciphered. It was proposed that changes in cell wall
lipid compositions of ∆relMsm might have hindered the uptake of rifampicin, thus contribut-
ing to increased rifampicin resistance [41]. Increased expression of genes encoding several
multidrug resistance-associated proteins that encode catalases and superoxide dismutase
was also proposed to be a possible cause of resistance shown by ∆relMsm to rifampicin and
other antibiotics [42,65] (Figure 2). Additionally, the qRT-PCR analysis of ∆relMsm showed
down-regulation of porins, which might contribute to its multidrug resistance [65].

Interestingly, the ∆relMsm strain is not a (p)ppGpp null mutant strain, as M. smegmatis
also encodes RelZ, a small alarmone synthase [47,52]. To elucidate the role of RelZ, the
SAS in M. smegmatis, the antibiotic sensitivity profile relZ knockout was studied. Unlike
the ∆relMsm strain, the ∆relZ strain was sensitive to several antibiotics such as bleomycin,
ofloxacin, and rifampin. The double knockout strain ∆relMsm∆relZ showed an antibiotic
sensitivity profile similar to that of the ∆relZ strain [30]. Thus, it appears that in M.
smegmatis, the relationship between (pp)pGpp levels and antibiotic resistance is more
complex than other bacteria. Moreover, the ∆relMsm∆relZ strain is also not a (p)ppGpp null
mutant strain, as it is predicted to possess another (pp)pGpp synthase. Hence, to completely
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decipher the role of (pp)pGpp in antibiotic resistance in M. smegmatis, a (pp)pGpp null
strain would be helpful.

6. Stringent Response and Biofilm Formation

Biofilms are structured communities of bacteria embedded in self-produced polymeric
matrices and attached to an abiotic or living surface [95,96]. Biofilms protect bacteria from
antibiotics, host immune system, and other environmental insults; they are a common cause
of persistent bacterial infection [95,97]. NTMs or environmental mycobacteria have been
shown to form biofilms. These include M. chelonae, M. avium, M. fortuitum, M. abscessus
and M. smegmatis [42,98–102]. These mycobacterial biofilms have been found in both
natural and manufactured settings such as soil, showerheads, hospital water system and
medical equipment. NTMs cause skin and soft tissue infections, aseptic meningitis, lym-
phadenitis, and pulmonary infections [103–105]. Disseminated and mixed NTM infections
have been found in immunocompromised individuals suffering from cystic fibrosis, renal
failures, leukemia and organ transplant recipients [106]. The prevalence of M. abscessus in
patients with chronic lung infections is also rising steadily [107,108]. M. tuberculosis has
also been shown to form biofilms both in vitro and in vivo [109–111]. The mycobacterial
biofilm matrix comprises extracellular DNA, carbohydrates, lipids and proteins [112,113].
Biofilm formation, like a stringent response, is a way to survive in harsh or unfavorable
environments. Hence, it is likely that stringent response might also regulate biofilm for-
mation in mycobacteria. In the last two decades, the role of (p)ppGpp in the regulation of
biofilm formation, particularly in pathogenic bacteria, is becoming well understood. For
example, in Listeria monocytogenes, deletion of relA impairs biofilm formation and reduces
virulence [114]. In Streptococcus mutans, relA inactivation causes a reduction in biofilm
formation capacity [115]. Enterococcus faecalis lacking (p)ppGpp show diminished capacity
to form biofilms [116]. In Vibrio cholerae, the inactivation of stringent response results in
reduced ability to form biofilms [117]. In the ppGpp null mutant strain of P. aeruginosa,
the biofilms cells are more sensitive to antibiotics compared with the cells from wild-type
biofilms [91].

Given the important role stringent response plays in biofilm formation in several
bacterial pathogens, its role in mycobacterial biofilm formation has also been investigated.
In M. smegmatis, the stringent response has been shown to control biofilm formation [41] as
the ∆relMsm strain is deficient in biofilm formation, has reduced sliding motility and rough
colony morphology. These phenotypes are governed by glycopeptidolipids (GPLs), which
are a peculiar class of lipids, found in NTMs and M. smegmatis, and are needed for biofilm
formation [118]. The ∆relMsm strain has reduced levels of GPLs in its cell wall compared
to the parental mc2155 strain. This is indicative of the fact that the stringent response
may regulate biofilm formation and colony morphology in M. smegmatis by regulating
the synthesis of GPLs (Figure 2). Moreover, both ∆relMtb and ∆relMsm strains also exhibit
differential expression of several genes involved in cell envelope biosynthesis [42,65,119].
The deletion of small alarmone synthetase, RelZ, also impaired the biofilm formation in M.
smegmatis. However, the degree of impairment is not as strong as that seen for the ∆relMsm
strain. Moreover, the double knockout ∆rel∆relZ of M. smegmatis shows the strongest
inhibition of biofilm formation [30]. Based on these observations, it seems that RelMsm is
the principal mediator of stringent response, while RelZ has a relatively minor contribution
in this process. Thus, the stringent response regulates biofilm in mycobacteria by regulating
the expression of genes involved in GPL and other cell wall components. Since NTMs
utilize biofilm formation to establish infections, given their ability to form biofilms on
medical implants and water distribution systems, it is very important to also explore the
role of stringent response in NTM species [105,120,121].
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7. Chemical Inhibition of Stringent Response as a Therapeutic Tool

Since the stringent response is important for several processes, such as persistence,
virulence, antibiotic resistance, and biofilm formation, its chemical inhibition might be
an attractive way to address the problem of drug resistance. In this direction, relacin, a
synthetic (p)ppGpp analog, has been shown to inhibit stringent response in B. subtilis and
B. anthracis. Relacin binds to Rel protein near the active site, which inhibits (p)ppGpp
synthesis [122] and inhibits stringent response both in vivo and in vitro. Moreover, it
also blocks the sporulation process in both B. subtilis and B. anthracis, when added to
sporulating cultures, irrespective of the stage of sporulation. Since relacin blocks (p)ppGpp
synthesis, it also inhibits biofilm formation in Bacillus species. In an alternative approach,
an anti-biofilm peptide, 1018, was found to interact with (p)ppGpp [123]. The peptide was
identified in a screen and was previously labeled as an innate defense regulator due to
its immunomodulatory activities; 1018 was able to degrade (p)ppGpp, the mediator of
stringent response in several clinically important species. These include pathogens such
as P. aeruginosa, E. coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin-resistant
Staphylococcus aureus, Salmonella typhimurium, and Burkholderia cenocepacia, which when
treated with 1018, failed to form biofilms. A low dosage of 1018 triggered biofilm dispersal,
while the high dosage caused the death of bacterial cells in the biofilms. Additionally,
overproduction of (p)ppGpp in P. aeruginosa and S. aureus imparted resistance to 1018 [123].
These studies demonstrated that chemical inhibition of stringent response can be used to
inhibit pathogenic bacteria.

Recently, such approaches have also been applied to inhibit mycobacterial stringent
response [124,125]. In one such study, acetylated and benzoylated (p)pGpp—N2,2′,3′,5′-O-
Tetraacetylguanosine and N2,2′-O,3′-O,5′-O-Tetrabenzoylguanosine—were synthesized to
assess if these compounds can inhibit stringent response in mycobacteria. Both the com-
pounds significantly inhibited the activity of RelMsm protein in vitro and in vivo. These
compounds also inhibited biofilm formation in both M. smegmatis and M. tuberculosis. More-
over, these compounds were not toxic in cell culture assays, thus demonstrating a potential
to be used in in vivo studies in mice. Furthermore, vitamin C was also shown to be used as
a chemical inhibitor of stringent response in M. smegmatis [126]. Vitamin C-treated M. smeg-
matis cultures show lower levels of (p)ppGpp compared to untreated control. Vitamin C
also inhibited the activity of RelMsm, possibly leading to decreased synthesis of (p)ppGpp.
Interestingly, treatment with vitamin C also inhibited biofilm formation by M. smegmatis.
However, whether the inhibition of stringent response by vitamin C is responsible for the
disruption of biofilm formation remains to be elucidated. In another study, a chemically
synthesized compound called DMNP [4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-
yl)] Pentanoic acid—an analog of natural marine diterpene erogorgiaene—could bind to
RelMsm protein and inhibit its (p)ppGpp synthase activity. Moreover, when M. smegmatis
cultures were treated with DMNP, they failed to form biofilms and their persistence was
reduced [124]. Hence, these studies demonstrate that inhibition of stringent response is an
attractive target to design novel antimycobacterial compounds.

8. Outlook

The stringent response is an important survival strategy used by both non-pathogenic
and pathogenic bacteria. The mycobacterial genus includes important human pathogens
such as M. tuberculosis. M. leprae, M. ulcerans and opportunistic pathogens such as M. avium,
M. fortuitum, and M. abscessus. However, unlike other bacterial pathogens, the stringent
response remains an underexplored area for mycobacterial species. Given that the stringent
response regulates important processes of persistence, virulence, drug resistance, and
biofilm formation, its molecular mechanism would be important to study in all clinically
relevant mycobacterial species. Since mycobacterial species occupy diverse niches, it is
likely that some aspects of stringent response can be species-specific. Based on the current
literature, it can be proposed that the conserved Rel protein is likely the principal mediator
of stringent response in all mycobacterial species, while the species-specific differences
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in stringent response could be modulated through small alarmone synthetases and small
alarmone hydrolases. The chemical inhibition of stringent response in M. smegmatis and
M. tuberculosis by the same compounds points to the conserved nature of Rel-mediated
(p)ppGpp signaling [125]. On the other hand, small alarmone synthetases RelZ from
M. smegmatis and Rv1366 from M. tuberculosis show species-specific differences [30,51].
With the recent advancement in tools, it is possible to identify specific targets of alarmones.
For example, using photo-cross-linkable (p)ppGpp, its targets can be identified precisely.
Using this technique, it is possible to elaborate the molecular details of stringent response
in a species-specific manner [127]. Recently, an RNA-based fluorescent sensor for live-
cell imaging of (p)ppGpp was developed [128]. It can be applied to study (p)ppGpp
dynamics in real-time in mycobacteria, which may help unravel the interaction partners of
(p)ppGpp. Given the rise of antibiotic resistance and its close association with alarmones,
it is important to investigate the stringent response across all mycobacterial species.
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