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Abstract 

Today’s most troublesome population health challenges are often driven by social and environmental determinants, 
which are difficult to model using traditional epidemiological methods. We agree with those who have argued for the 
wider adoption of agent-based modelling (ABM) in taking on these challenges. However, while ABM has been used 
occasionally in population health, we argue that for ABM to be most effective in the field it should be used as a means 
for answering questions normally inaccessible to the traditional epidemiological toolkit. In an effort to clearly illustrate 
the utility of ABM for population health research, and to clear up persistent misunderstandings regarding the meth-
od’s conceptual underpinnings, we offer a detailed presentation of the core concepts of complex systems theory, and 
summarise why simulations are essential to the study of complex systems. We then examine the current state of the 
art in ABM for population health, and propose they are well-suited for the study of the ‘wicked’ problems in popula-
tion health, and could make significant contributions to theory and intervention development in these areas.
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Introduction
Health policy-making is, at the root, an attempt to under-
take principled decisions in an environment of high 
uncertainty and high risk, in which competing pressures 
and interests from stakeholders have a significant effect 
on the actions ultimately taken [1]. The rise of causal 
inference methods (CIM), has attempted to address this 
by providing a framework under which we may predict 
the outcomes of proposed interventions.

However, CIM as applied in epidemiology today, has 
coalesced around a set of tools with certain limitations 
when applied to complex systems. For example, directed 
acyclic graphs (DAGs) are frequently used in CIM, but 
DAGs are unsuitable for modelling systems containing 
feedback loops (given they are acyclic), a common feature 

of complex social systems. Critics of CIM also suggest it 
takes an overly linear view of the decision-making pro-
cess leading from evidence to decision-making, and have 
called for alternative concepts of cause that are not solely 
based on probabilistic statements about population out-
comes in alternative worlds [2]. Decisions over causality 
can be based on pragmatic pluralism [3], or inference to 
the best explanation [2, 4] (often characterised as a form 
of abductive reasoning). Decision-makers ultimately 
must make decisions, even while accepting that their evi-
dence is incomplete or flawed or both, and that the exact 
causal process underlying the system of interest is still 
uncertain.

Here we propose that the addition of Agent-Based 
Modelling (ABM) and related complex-systems-based 
approaches to the population health toolkit will enable 
better-informed and more robust decision-making in 
population health. ABMs allow for the representation of 
causal processes in systems that include feedback loops 
and multiple layers of complex, interacting components. 
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ABMs can model explicitly the individual-level decision-
making that can lead to unexpected emergent effects 
at the population level. The necessity of constructing 
informed conceptual models of system processes when 
building an ABM also opens up new avenues for co-pro-
duction of models with decision-makers, while also facil-
itating the inclusion of both quantitative and qualitative 
data. Taken in combination, these properties of ABMs 
enable them to serve as a complementary approach to the 
current population health toolset, and in turn to enable 
both scientists and policy makers to better navigate the 
non-linear abductive process leading from scientific evi-
dence to policy action.

A new paradigm for complex public health
While ABMs offer great promise for the population 
health community, we suggest that their utility is too 
often evaluated from the viewpoint of mainstream tradi-
tional epidemiological methods [5, 6]. In addition, some 
population health models described as ‘agent-based’ 
would be better categorised as ‘individual-based’, as indi-
viduals are represented but display little or no capacity 
for agency or interaction [7, 8]. These issues have resulted 
in ABM studies being isolated experiments within the 
discipline, as their strengths are not being properly uti-
lised, rather than developing into a mature category of 
population health research in their own right.

However, ABMs can have important and distinct uses 
in public health, exploring research questions that tradi-
tional methods cannot usefully address. ABMs allow us 
to understand how the combination of agent interactions 
and non-linear causal effects give rise to system-level 
patterns. Such an approach falls outside the traditional 
epidemiological toolkit, but developing our understand-
ing of these patterns is essential for improving the health 
of the public. With this in mind we would concur with 
Auchincloss and Diez-Roux, who outlined how regres-
sion approaches can limit our enquiries:

Too often, the exclusive use of regression approaches 
constrains not only the answers we get but also the 
types of questions we pose and the hypotheses and 
even theoretical explanations that we develop. In 
our search for what is ‘tractable’ in empirical obser-
vational research (essentially that which mimics the 
perfect experiment), our questions have the tendency 
to become narrower and narrower and perhaps less 
relevant to understanding or intervening in the real 
world [9, p. 6].

Long after this paper was first published, the methodo-
logical debate in population health continues to discuss 
the relative merits of ABMs compared to regression in 
the presence of interference or dynamic processes [10]. 

In our view, the debate should acknowledge that the 
primary advantage of a model-centred approach is that 
it allows us to answer fundamentally different types of 
questions. Consider the ability of ABMs to integrate vari-
ables of disparate nature, including qualitative, narrative, 
and anecdotal [11]; to enable the inclusion of geographic 
and social space at multiple levels of resolution—embed-
ding feature-rich GIS representations, for instance, or 
sophisticated social network structures; and to simulate 
multiple complex processes simultaneously, all while 
remaining tractable (to a certain extent).

These features enable the exploration of processes in 
a fundamentally different way, and the examination of 
fundamentally different questions of wider scope and 
breadth. Simply put, adopting ABMs requires not just a 
change of methods, but a change of mindset and concep-
tual framework.

The need for a new approach to decision‑making
Research in population health has to its credit a num-
ber of major successes over the years, due to concerted 
action on communicable diseases through improved 
sanitation and mass immunisation programmes, prompt-
ing major progress on serious health problems such as 
lung cancer and heart disease and a steady increase in 
life expectancy until recently [12]. More recently, sig-
nificant progress has been made on noncommunicable 
diseases through tobacco control and lifestyle education. 
However, ‘despite major investment in both research and 
policy, effective action to tackle pressing contemporary 
public health challenges remains elusive’ [13]. The most 
intractable health problems are those that spring fun-
damentally from more complex causes: behavioural and 
social influence; and environmental interaction. Some 
notable ‘wicked’ problems [14] include obesity, alcohol 
and drug misuse, and the persistence of health inequali-
ties, among others.

The ‘wicked’ health problems of the 21st century are 
driven by numerous influences where the causal links 
are not clearly defined, and the mechanisms that influ-
ence them are elusive [15]. Wicked problems in health 
are serious challenges for policy makers, given that such 
problems ‘are continually evolving; have many causal 
levels; have no single solution that applies in all circum-
stances and solutions can only be classified as better or 
worse, rather than right or wrong’ [16]. Behavioural risk 
factors underpin these wicked health problems, but the 
evidence is sparse as to how physical and social environ-
ments influence health behaviours, and what can be done 
to improve them.

Identifying, implementing and evaluating effec-
tive responses to major population health chal-
lenges requires a wider set of approaches beyond the 
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traditional methods of public health research and 
should involve a wider set of actors beyond the health 
services [17]. Population health is influenced by mul-
tiple interacting determinants, including social, politi-
cal, environmental, biological and behavioural factors. 
Current challenges to the health of the public, and the 
overarching inequalities in health within and across 
populations, are resistant to simple, linear, silver-bullet 
approaches [13].

Traditional epidemiological methods face the most dif-
ficulties in these types of population health challenges, in 
which determinants of illness and disease are multifac-
eted, inter-related and non-linear [18]. Unravelling the 
complex interactions of social and environmental deter-
minants is challenging when using statistical methods in 
which individuals and their actions may not be explicitly 
represented. Individual-based modelling practices such 
as microsimulation can model some of these behavioural 
and spatial effects, but the effects of interactions between 
individuals and environmental factors are still hard to 
capture.

We claim that the study of ‘wicked’ health problems 
necessitates the investigation of human society as a com-
plex system, and that public health itself can be concep-
tualised as the systemic emergent outcome of a complex 
system. Complex systems in this context can be defined 
as systems composed of interacting adaptive agents. 
More precisely, the dynamics of a complex system are 
driven by the interaction taking place at the level of its 
components, and the components’ adaptations to the 
environmental changes they mutually generate. As such, 
social systems display some characteristic properties 
which do not lend themselves to reductionist approaches, 
but instead necessitate the adoption of ‘bottom-up’ mod-
els, i.e. models that generate aggregate patterns starting 
from an explicit representation of the behaviour of the 
components of the system—in this case, individuals; the 
direct interactions between the components; and interac-
tions between the components and their environment.

Consequently, we propose that complex systems sim-
ulation methods, in particular various forms of agent-
based modelling (ABM), are a critical component in the 
fight against the ‘wicked’ health problems facing us in the 
21st century and should become a key part of the toolkit 
for tackling public health problems. These modelling 
techniques allow us to represent individual behaviours 
and their interactions, study the tangled web of causal 
relationships among environmental, physical and social 
factors affecting health-related behaviours, and simulate 
the effect of these relationships on the dynamics of public 
health problems at the population level.

Ultimately, we take the view that decision-making 
related to complex, ‘wicked’ health problems must 

include the use of simulation in order to address these 
issues in a coherent way.

Challenges from complexity in public health
In line with our claim that public health is an emergent 
property of a complex system, in this section we explain 
the key characteristics of complex systems, the ways in 
which human society fulfills these characteristics, and 
the resultant impact on research efforts related to human 
social systems.

Emergence
A fundamental property of complex systems is emer-
gence, which philosopher Mark Bedau divided into strong 
and weak forms in the context of complex systems [19]. 
Frequently, references to emergence in the natural sci-
ences and philosophy are referring to strong emergence, 
which describes properties of systems that are not deduc-
ible from the behaviour of their component parts. To 
paraphrase Bedau’s example, the inscrutable phenom-
enon of consciousness is clearly a consequence of neural 
activity, yet our knowledge of the behaviour of neurons 
does not provide us with any insight into the function 
of consciousness [19]. Consciousness is not a property 
exhibited by individual neurons, and appears distinct 
from any particular neural property or behaviour, and 
still it arises from neural activity. Consciousness can also 
change our neural activity, despite being distinct from it; 
this is downward causation, meaning that an emergent 
property can alter the behaviour of the component parts 
from which it emerges.

Strong emergence, while successfully capturing the 
idea of a macro-level property that is distinct from and 
yet capable of influencing its own components—as 
opposed to a macro-property that is merely an interest-
ing consequence of micro-level activity—is philosophi-
cally problematic. Strongly emergent properties appear 
to be essentially autonomous from their components, 
and yet are able to exert strong causal influence on those 
same properties.

Consequently, Bedau’s exploration of weak emergence 
has become an important concept for complex systems 
science:

Macrostate P of S [system composed of micro-level 
components] with microdynamic [micro-level 
behaviour] D is weakly emergent iff [if and only if ] 
P can be derived from D and S’s external conditions, 
but only by simulation [19, p. 4]

In other words, the behaviour of a system composed of 
interacting micro-level components is ultimately derived 
from its micro-level behaviours and the influence of 
its environment. If we can simulate these interactions 
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explicitly, we can simulate the dynamic that generates the 
emergent property, and thus we can replicate the emer-
gent macrostate of that system. Weakly-emergent prop-
erties are accordingly more accessible to scientific study, 
in that their emergence can be replicated via step-by-step 
simulation of the interaction of their constituting compo-
nents and the surrounding environment. Conversely, if 
we do not simulate this dynamic, we cannot replicate the 
weakly-emergent behaviour.

This latter point is particularly important, as the 
macro-level emergent outcomes of a system’s micrody-
namic cannot be straightforwardly predicted, even with 
perfect knowledge of a system’s initial state and the rules 
driving its microdynamic. Bedau illustrates this using the 
Game of Life, a famous computational system in which 
cells on a grid change state according to the states of 
their neighbours. Cells in Life have only two states—alive 
or dead—and their future states are determined by very 
simple rules according to how many of their neighbour-
ing cells are alive or dead.1 Despite this simplicity, even 
very simple starting configurations in Life can produce 
remarkably complex behaviour (see e.g. Fig. 1), and Life 
can even play host to patterns capable of replicating any 
possible computation (a property known as computa-
tional universality) [20, 21]. As Bedau notes, this has pro-
found implications:

With few exceptions, it is impossible without simula-
tion to derive the macrobehaviour of any state in a 

Life configuration even given complete knowledge of 
that configuration. In fact, since a universal Turing 
machine can be embedded in Life, the undecidabil-
ity of the halting problem proves that in principle 
there can be no algorithm for determining whether 
the behaviour exhibited in an arbitrary Life world 
will ever stabilize. Yet all Life phenomena can be 
derived from the initial conditions and the birth-
death rule. [19, p. 14]

Thus, the only way we can replicate the weakly-emergent 
macrostates of the Game of Life is to simulate its behav-
iour step-by-step. By extension, given that most complex 
systems will have significantly more complicated micro-
dynamics than the Game of Life, replicating the mac-
rostates of weakly-emergent systems requires the use of 
simulation to replicate their microdynamics.

A well-known example of an agent-based model repli-
cating a weakly-emergent phenomenon from the inter-
action of micro-level entities is given by Schelling’s 
residential segregation model [22, 23]. In this model, very 
simple agents are living in a virtual grid-based world, and 
at each discrete step of the simulation are able to choose 
to move their location. Their decision to move is based 
on a preference for the group composition of their neigh-
bourhood; if the number of their neighbours belonging 
to a different group than themselves is above a certain 
threshold, the agent will move to a new random square 
on the grid. Here the agents’ segregation is the emer-
gent property of the system, while the preference for in-
group neighbours is the parameter driving the agents’ 
behaviour. Schelling showed that even a relatively low 
threshold generates a high degree of residential segre-
gation, a result that is not predictable solely by knowing 

Fig. 1  An example of the unexpected complexity of simple patterns in the Game of Life. This 7-cell pattern is called an ‘acorn’ and stabilises after 
5206 steps with a population of 633 live cells

1  Life’s rule is often expressed simply as B3S23: cells are (B)orn when they 
have exactly three live neighbours, and (S)urvive if they have two or three live 
neighbours. In all other circumstances, cells die or remain dead.
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the agents’ behavioural rules (see Fig.  2). Thus we can 
describe Schelling’s model as weakly emergent, given that 
its macrostate is derivable only by simulating the system 
step-by-step, despite its known and very simple behav-
ioural rules.

Similarly, the phenomena of interest in public health 
research—from the development of health inequalities to 
the spread of obesity in certain communities—are con-
sequences of complex interactions between individuals 
and their physical and social environments. Successful 
interventions may seek to influence the phenomena by 
altering individual, low-level behaviours through a num-
ber of different routes, in the hope that the population-
level picture which emerges from those actions changes 
for the better—much like the simulation scientist tweak-
ing the preferences of Schelling’s agents in the hope of 
reducing segregation. Following Axelrod and Tesfatsion, 
we might align ourselves to using ABMs for normative 
understanding, or ‘evaluating whether designs proposed 
for social policies, institutions, or processes will result in 
socially desirable system performance over time’ [24].

If we accept that population-level health patterns are 
weakly-emergent phenomena deriving from the inter-
actions between individual, society and environment, 
then it follows that answering some questions about 
those properties will require simulating those interac-
tions explicitly via simulation. Agent-based modelling, 
as a methodology tailored to the investigation of emer-
gent properties, is well-placed to provide insight into 
these phenomena by explicitly modelling both individual 

behaviours in response to an intervention and interac-
tions between individuals and with their environment.

Non‑linearity
In the context of complex systems science, there are two 
extant definitions of ‘non-linearity’. The first, which we 
will refer to as causal non-linearity, encompasses the 
manner in which complex systems tend to be character-
ised by cyclic, relational and mutual causal relationships 
between the variables describing the system’s state. This 
characteristic of complex systems means that popular 
causal inference methods like directed acyclic graphs 
(DAGs) cannot be used to characterise complex systems, 
as DAGs cannot include feedback loops.

The Schelling model again provides a useful example of 
this concept. Schelling’s simple agents change the local 
environment of both their previous and current neigh-
bours, thereby affecting the probability that those neigh-
bours may move to another location. In this way, the 
agents are affecting the actions of other agents indirectly 
via their shared environment.

Applying this concept in the context of public health, 
we might imagine an ABM that examines how unhealthy 
behaviours propagate in a social network by explicitly 
representing agents with their characteristics, social rela-
tions and interactions. For example, a simulation can 
explore the spread of unhealthy habits (such as smoking, 
drinking, and drug use) among socially-related individu-
als, and evaluate the effectiveness of various strategies 

Fig. 2  Sample run of the Schelling segregation model
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of network intervention that intend to induce desirable 
behavioural change across the social network.

Complex systems are characterised by a tangled web of 
non-linear causal relationships, which blurs the distinc-
tion between exogenous and endogenous variables. The 
non-linear causal relationship among the system’s com-
ponents and between the components and their envi-
ronment is the fundamental reason behind our inability 
to forecast the system’s dynamics from the components’ 
behavioural rules: the web of causal relationships is sim-
ply too tangled for our limited cognitive capabilities to 
take all of them into account when trying to run a mental 
simulation of the system.

The second definition of ‘non-linearity’ refers to the 
kind of relationship between one or more exogenous var-
iables and one endogenous variable: in this case, saying 
that the relationship is not linear means that variations 
in the exogenous and the endogenous variables are not 
proportional. In the Schelling model, we may change the 
agents’ tolerance for different neighbours without notic-
ing any significant change in residential segregation at 
the population level, as long as we are below or above 
a threshold level. Once we reach this level, however, a 
slight change in the agents’ tolerance changes the system 
from a mixed state to a segregated one. Thus, the rela-
tionship between the agents’ tolerance and the system’s 
level of residential segregation is a non-linear one.

A similar relationship is found in the dynamics of 
infectious disease. The spread of an infectious disease 
is defined by the basic reproduction number, which is 
the average number of new cases caused by an infected 
individual during his infectious period. The basic repro-
duction number is a threshold that dictates whether the 
infection will persist over time. When the reproduction 
number is lower than one, the infection can not persist in 
the population, whereas if it is greater than one the infec-
tion will spread and persist. Non-linearity is significant to 
both the Schelling model and in infectious disease model-
ling, since it demonstrates how past trends may abruptly 
change once a certain threshold is crossed, producing a 
qualitative change in the state of the system: from mixed 
to segregated and from a non-persistent infection to an 
epidemic.

Of course, these two kinds of ’non-linearity’ are strictly 
related. Complex systems are characterized by non-linear 
causal relationships between their components, and thus 
we often observe a non-linear relationship between exog-
enous and endogenous variables at the aggregate level.

Adaptive behaviour
Adaptive behaviour refers to the capacity or propensity 
for an agent to change its state following a change in its 
environment (including the behaviour of its neighbours).2 
This fundamental characteristic of complex systems 
allows for non-linear causality: an environmental vari-
ation prompts the agents’ behavioural responses, which 
then feed back into additional environmental variations, 
and so on. In other words, the system’s components may 
affect each other both directly and indirectly through 
changes in their common environment.

For example, consider the development of a new road 
that passes through a neighbourhood that will increase 
traffic, noise and air pollution in the area. As a result, res-
idents who can afford to move may leave, and local hous-
ing prices may decline. The decline in housing prices may 
attract a less affluent population to the area. In this situ-
ation, individuals are adapting to new conditions in the 
environment, and the system—and thus the neighbour-
hood—self-organises as a result. In the new order that 
emerges an increasingly deprived population is located 
in a neighbourhood with poor environmental conditions 
and exposed to greater health risks.

Given that the components are the ‘engines’ of the co-
evolutionary process driving the system’s dynamics, the 
behavioural model of these components is the funda-
mental building block of any complex systems model. As 
these are weakly-emergent phenomena, we cannot repli-
cate the dynamics of the system unless we simulate it as 
the result of the interaction between the system compo-
nents and their environment.

Human societies are characterised by adaptive behav-
iour of the most complex kind, as human beings are able 
to recognise that they are in a complex system, identify 
the system’s emergent properties and develop models 
that take them into account to drive their own actions. 
This phenomenon of second-order emergence, or the 
fact that emergent social institutions become part of 
the agents’ models driving their behaviour, create direct 
causal relationships between the components’ behaviour 
and the system’s dynamics, which further compounds the 
complexity of the system [25].

2  We should note here that adaptive behaviour is an area of study in its own 
right within complex systems, with a particular focus on embodiment and 
embodied cognition—the theory that the cognition and behaviour of living 
systems are shaped by the interaction between their physical form and the 
surrounding environment, not just the workings of the brain itself. In this 
framework, a complete description of the behaviour of an organism requires 
study not just of the organism itself, but the entire brain-body-environment 
system. This area of work has a strong computational tradition and is closely 
tied to work in complex systems, dynamical systems and artificial life. Here we 
use the term adaptive behaviour in a more general sense. For more on embod-
iment, the works of Francisco Varela et  al. (The Embodied Mind: Cognitive 
Science and Human Experience) and Andy Clark (Being There: Putting Brain, 
Body and World Together Again) are excellent starting points.
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The complex systems challenge to traditional 
epidemiology
Having outlined the defining characteristics of complex 
systems, we can better understand why they pose a chal-
lenge to the statistical approach typically adopted by epi-
demiology and how ABM can help epidemiology to rise 
to this challenge. Public health problems can be seen as 
the emergent outcomes of the complex social system that 
is human society. As such, to understand their dynam-
ics we need to develop models based on the explicit rep-
resentation of the components of society—individual 
human beings.

Individuals’ adaptive behaviour and the resulting web 
of causal relationships between agents and their envi-
ronment mean that non-linear relationships between 
system variables are pervasive in human social systems. 
This means that a very small variation of system inputs 
can generate a big variation in system outcomes, or vice 
versa. We can visualise a non-linear complex system as 
one where the space of possible outputs is very rough 
along the many input dimensions: because of the num-
ber of factors affecting the relationship between any two 
variables, points that are very near to each other in the 
space of any input can be far apart in the space of out-
comes. While the traditional statistical approach can be 
used in principle to shed light on the causal mechanism 
through which variable X affects variable Y (and in fact 
much epidemiological research consists of the addition 
of confounders and mediators to the original theoreti-
cal model to enhance our understanding of how variable 
X affects variable Y), success relies on the availability of 
a ‘sufficient’ number of observations for the analysis to 
have enough statistical power, a threshold that increases 
with the number of confounding variables in the causal 
model. This represents a limit to the complexity of the 
theoretical model that can be statistically analysed.

With respect to complex systems like human society, 
this creates two major problems. First, a complex system 
may contain variables for which it is difficult or impos-
sible to gather empirical values. Second, even if our theo-
retical model does not contain such variables, in complex 
systems the number of potentially conditioning variables 
is typically very large, so we may have too few observa-
tions to conduct a meaningful statistical analysis of the 
relationship between the variables of interest, or reach 
the limits of analytic tractability of a mathematical model 
with dozens of variables.

Thus, we see the reason why most causal models in tra-
ditional epidemiology are relatively simple compared to 
ABMs: the number of observations must be large enough 
for the analysis to have the desired statistical power, while 
remaining analytically solvable. In other words, our tools 
force us to assume that numerous variables which we 

may ideally want to include in our models do not affect 
the relationship between X and Y. We call this the stabil-
ity assumption, in that it requires that the relationship of 
interest is unaffected by changes in contextual variables.

Statistical approaches suffer further when data 
is sparse, as is often the case in human social sys-
tems. Properly-specified theoretical models can still 
be applied in these cases as means for increasing our 
understanding of system behaviour; such models can 
form the basis for the examination of ‘what if ’ scenarios 
and for probing system behaviour via sensitivity analy-
sis. We propose that ABM can be very effective in this 
regard, as the approach requires us to formally codify 
our theoretical knowledge of a system in the form of an 
explicit computational model of the processes under-
lying it. Through simulations we can produce coun-
terfactuals, allowing us to evaluate which contextual 
variables we may exclude as conditioning variables, and 
whether the stability assumption is tenable. If the sta-
bility assumption does not hold, we can examine the 
effects of the conditioning variables on the relationship 
of interest. All the while we are able to model system 
processes explicitly, including non-linearities and feed-
back loops.

In this context, ABM can be seen as a complemen-
tary tool to assess the limits of statistical approaches as 
applied to a complex system, and to investigate system 
behaviour when quantitative data is too scarce to per-
form robust statistical analyses. While the traditional 
modelling of epidemiology is statistical—hypotheses 
relating to the causes of a health outcome are tested in 
a mathematical framework against observed data—the 
modelling approach for an ABM involves taking theo-
ries and assumptions underlying population health 
research and instantiating them in a computational 
framework.

Towards model‑based science
The change of modelling mindset required by agent-
based modelling, and the related shift in emphasis 
toward theory and assumptions over quantitative data, 
may partially explain why the uptake of ABMs in popu-
lation health is so minimal (systematic reviews dig up 
mere tens of papers, despite ABMs having been used 
to study human social systems for nearly 50 years [26]). 
These factors alone are not enough to explain the lack 
of engagement with ABM, however; other systemic 
and practical reasons contribute to the current state of 
affairs.

We suggest there are three main factors driving this 
lack of enthusiasm for the approach. Firstly, claims of 
what ABM can offer above traditional methods are 
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contested. Newer statistical models may be capable of 
estimating causal effects in the presence of dynamic 
processes, treatment interference or spatial and net-
work autocorrelation [10], thus removing some jus-
tifications for choosing ABMs over an alternative 
approach with which the community is already familiar.

Secondly, computer programming,3 simulation mod-
elling and complexity science are relatively uncommon 
skills in population health practice and research—unlike 
statistical theory, data management, and quantitative 
analysis. This is due to the traditional epidemiologi-
cal focus on Positivist hypothesis-testing approaches to 
identify causal processes and intervention effectiveness. 
Adoption of ABMs, in contrast to novel statistical tech-
niques which build on existing conceptual frameworks 
and skill sets, may require substantial retraining and 
changes in the way in which people think about and char-
acterise population health challenges.

Finally, as mentioned above, there is a third crucial fac-
tor: ABMs within population health are frequently com-
pared like-for-like with approaches designed to answer 
fundamentally different research questions. As a conse-
quence, the methodology is perceived as imprecise and 
intractable in comparison to statistical methods, when in 
reality ABM is simply better-suited for different types of 
questions.

For example, a recent study compared ABMs and the 
parametric G formula in terms of how well they esti-
mated the effect of a single treatment variable (anti-retro-
viral therapy) on a mortality outcome, when the decision 
to treat is dependent on two other variables [6]. Using 
ABMs for narrowly defined questions of causal inference 
is not the best use of the ABM method and, as we high-
lighted in our introduction, may not be the best sort of 
question to ask for complex population health challenges. 
Rather than identifying the causal effect of the treat-
ment, alternative questions could be explored with ABM: 
what social factors could explain inequality in treatment 
adherence? What promotion strategies could facilitate 
faster uptake of treatment within communities?

In order to address these factors, population health 
researchers will need more exposure to ABMs applied 
to relevant problems, more opportunities to develop the 
skills needed to build simulations, and will need to apply 
their models to appropriate problems that leverage the 
strengths of ABMs while managing their weaknesses. We 
propose that a realignment of the discipline’s approach 
to data and modelling methodologies more generally will 

be needed, in order for ABMs to sit comfortably amongst 
the other methods in population health’s toolbox.

The conceptual challenges of model‑based science
Similar to other statistically-focused and empirically-
inclined disciplines like demography [27], population 
health has progressed methodologically in a cumula-
tive fashion. New statistical methodologies have spurred 
significant changes in research practices, yet each new 
methodology is fundamentally related to the previous, 
and no new method has completely replaced older ones. 
Each statistical tool still has its place in the metaphorical 
population health toolbox.

Agent-based modelling, however, does not fit this pat-
tern as cleanly. ABMs are not a statistical methodology, 
and thus cannot simply be added to the methodological 
toolbox and applied to the same problems in the same 
way. If we take up multi-level modelling, for example, 
previous data can still be used and the methods them-
selves provide some guidance about what new data may 
prove useful. ABMs, however, have a more complex rela-
tionship with data, and in general what keeps the mod-
eller awake at night is not a lack of data but instead the 
need for sensible parameter values for specifying agent 
behaviour.

So the newly-minted ABM researcher in population 
health must think not only about data sources, but some 
new topics as well:

•	 Social and behavioural theories: what should our 
agents be doing, and why?

•	 Uses beyond prediction: what can the ABM add to 
our knowledge of population change?

•	 Seeking out more diverse forms of data: can we alle-
viate our parameter problems using a wider variety of 
data sources, like qualitative data, GIS information, 
or participatory group model building?

This kind of shift in practice requires not only knowledge 
of a new approach and its epistemological and compu-
tational limitations, but a new perspective on how and 
when the approach should be used, and where it should 
fit in the overall scientific spectrum of population health.

Given the significant epistemological and practical 
implications of adopting agent-based methods, we pro-
pose that the relationship between ABMs and popula-
tion health needs to change substantively before their 
usefulness becomes apparent. The development of a the-
ory-based, model-centric approach to certain problems 
is needed, and in so doing we will uncover areas where 
ABMs are more suitable.

In our view, ABMs would best serve the interests 
of population health by being applied to areas where 

3  We refer to computer programming in the sense of using general-purpose 
programming languages, like C/C++, Python or Java, to construct self-con-
tained computer programs. This is a distinct skill set from using domain-spe-
cific scripting languages, like R or Stata, to construct statistical models.
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individual behaviour and interactions between individu-
als and their environments are influential in determin-
ing the success of interventions. In the next sections, we 
will discuss in more detail the potential role ABMs can 
play in a model-centric vision of population health, pre-
sent some methods to mitigate the weaknesses of the 
approach, and finally illustrate some key areas of research 
where we believe ABMs can make a strong contribution.

Roles for simulation in population health
Some of the most challenging ‘wicked’ problems in popu-
lation health involve complex, interacting processes that 
are difficult to characterise in a traditional epidemiologi-
cal framework. These challenges are likely to benefit from 
ABM research, given that they can model the social and 
environmental aspects of population health explicitly.

However, this still begs the question: what would these 
models actually do? How would our quest to reduce or 
eliminate a ‘wicked’ problem benefit from an ABM, and 
how would it add to our knowledge? Here we illustrate 
a few ways in which ABM approaches can enhance our 
efforts.

Models as policy sandboxes
ABMs enable us to build a policy sandbox; a place to 
explore what evidence would be useful for taking certain 
decisions; to develop collaboratively a theory for why a 
certain policy will or will not work; and to test out how 
interventions could have an effect, if these theories hold 
true. Di Paolo, Noble and Bullock propose that while 
ABMs are often approached as a method to develop 
‘realistic simulacra’ of the physical world, they may be 
best placed as platforms for the exploration of theoreti-
cal relationships within a system, their interactions and 
consequences [28]. Such conceptual exploration can be 
very useful for building theory. An approach that facili-
tates the apprehension of concepts in an abstract, rather 
than data-driven sense is useful for the precise reason 
that it differs from the data-driven approach of orthodox 
epidemiology.

In essence, traditional epidemiology focusses on risk 
factors and outcomes, with the link between them being 
an opaque black box [29]. However, in order to develop 
interventions to change the relationship between risks 
and outcomes, what is within that black box itself needs 
to be changed. This requires understanding mechanisms 
and having a theory of change in order to modify them. 
Statistical methodology does not provide the tools to 
model mechanisms, so researchers tend to focus on tasks 
that statistical methods can solve, which is the descrip-
tion of inequalities identified by the data without neces-
sarily providing solutions. ABMs, in contrast, require 
people to model mechanisms explicitly, at least in the 

abstract, and provide a set of tools that encourages peo-
ple to focus on the parts of the system where change 
might occur and could have the greatest impact. This 
leads us more toward solutions-focused research.

As Marshall notes, ABMs also provide a means to make 
use of a wider range of evidence:

Agent-based modeling represents one (but not the 
only) method to synthesize prior knowledge of a 
population—and the causal structures that act on 
this population—to understand how an interven-
tion could affect the public’s health. In this man-
ner, agent-based modeling is a science of evidence 
synthesis. Specifically, ABMs (and other simulation 
approaches) represent a platform for the integra-
tion of diverse evidence sources, including inconsist-
ent or inconclusive scientific information, to support 
decision making for complex public health problems 
[30].

Further, the ability of ABMs to serve as theoretical explo-
ration tools and intuition pumps when data is sparse can 
prove to be a significant advantage [31], as modellers 
would be able to investigate theories about population 
health using ABMs even in the absence of the expensive, 
difficult-to-collect data upon which statistical approaches 
depend. Engaging in this kind of ‘model-based science’ 
can enable the evaluation of complex policy interventions 
amongst simulated populations, with outcomes serving 
as guides to decision-making under complexity rather 
than as point predictions of intervention outcomes.

There are additional pragmatic benefits to data-light, 
model-based investigations of interventions. Health data 
can be expensive to collect, as well as legally challeng-
ing due to strict data protection laws. Being able to cir-
cumvent these problems and use generative approaches 
to understand complex health problems would allow 
for potentially fruitful investigations of potential policy 
interventions when data is hard to obtain. Further, the 
outcomes of our simulations may help us identify where 
future data collection is needed.

Investigating assumptions
ABMs have provided a method to run in silico interven-
tions to inform policy makers about options, based on 
counterfactual model scenarios featuring agent popula-
tions using the same decision rules under varied environ-
mental conditions. This scenario-based approach could 
be further augmented by allowing policy-makers direct 
input into which elements of proposed interventions are 
implemented, and the behavioural mechanisms underly-
ing agent behaviours.

Traditional analysis of data is agnostic to the audi-
ence. ABMs in contrast provide a means to conduct 
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post-normal science, or a scientific enterprise conducted 
in a context where ‘the puzzle-solving exercises of normal 
science (in the Kuhnian sense) which were so successfully 
extended from the laboratory to the conquest of Nature, 
are no longer appropriate for the resolution of policy 
issues of risk and the environment’ [32, p. 750]. Post-nor-
mal science acknowledges the pivotal role of input from 
the public and policy makers when dealing with envi-
ronments suffused with unavoidable uncertainty. In this 
context, generative theories of causation still privilege 
scientific knowledge, but also integrate and adapt to the 
expertise of knowledge-users. The post-normal paradigm 
allows evidence to inform policies to improve health, 
moving beyond a context-free evidence approach.

Post-normal science does not yield to the opinions, 
values or politics of knowledge-users, and still adheres 
to the principles of calibration, validation and verifica-
tion. The post-normal ABM approach provides oppor-
tunities for direct comparison of scenarios that include 
broader knowledge with those based solely on empirical 
data collection. Future research can examine how these 
approaches to model-building compare in their abil-
ity to inform health policy work and produce effective 
interventions.

From the perspective of post-normal science, ABMs 
function as a mechanism for reaching a collaborative 
agreement with knowledge-users about the emergence of 
population-level patterns in health from low-level inter-
actions in social and spatial environments. The model 
provides feedback on the validity of the shared assump-
tions underpinning our understanding of critical popu-
lation health issues. Exploring the model’s parameter 
space or implementing differing behavioural mechanisms 
enable us to compare different assumptions. In this para-
digm, the process of model-building itself is an avenue 
for generating, developing, and comparing knowledge, 
and in the process, informing empirical and practical 
work on the phenomenon being modelled.

Understanding ABMs
As we have outlined, ABMs have numerous advantages 
when one wishes to explore the behaviour of a complex 
system. However, as with any methodology, ABMs are 
not a panacea and have aspects that can present signifi-
cant challenges for the modeller.

One area in which ABMs remain opaque in some 
respects is in the analysis of their results. ABMs by their 
nature are suitable for modelling the behaviour and evo-
lution of systems that defy formal statistical analysis, 
and that very complexity means they can appear opaque, 
where inputs and outputs are present but the influence 
of processes within the model are tangled and unclear. 
As a consequence, finding suitable parameter values for 

a simulation can be a lengthy process of trial and error, 
leading to significant time investment and frustration for 
the modellers.

This is an area where cutting-edge advancements in 
statistical and machine learning can work in concert with 
simulation modelling to produce insightful results. The 
growth of the field of uncertainty quantification and the 
current accessibility of machine learning opens up new 
possibilities for making ABMs more transparent and 
reducing these barriers to wider adoption.

Uncertainty quantification
The advent of the Bayesian Analysis of Computer 
Codes (BACCO) methodology has produced significant 
advancement in the analysis of model uncertainty and the 
impact of parameter values [33]. In particular, Gaussian 
Process Emulators (GPEs) have proven to be a promis-
ing method for analysing ABMs. In essence, a GPE takes 
a training set consisting of simulation outputs resulting 
from a wide range of input parameter values taken from 
across the parameter space, then develops a ‘surrogate 
model’—a statistical model of the original simulation 
model [34]. The result is a summary of the fraction of the 
final output variance accounted for by each input param-
eter, as well as their interactions. This gives us a much 
clearer picture of the impact of each input parameter.

GPEs have been applied successfully in ABMs of vari-
ous types, including models of social care [35], research 
funding allocation [36], and the effect of landscape 
changes on bird populations [37]. These analyses vastly 
increase the interpretability of ABM results, and provide 
much clearer guidance as to the function of each simu-
lation parameter. Much of this work has been facilitated 
by the availability of GEM-SA, a free software package 
for analysing simulation results using GPEs [38]. As this 
technique continues to mature, and additional user-
friendly means of implementation are created, variations 
of the GPE approach seem likely to become a common 
method for better understanding the internals of an 
ABM.

Machine‑learning surrogate models
Machine learning, similar to GPEs, can also be used to 
develop ‘surrogate models’ which can allow for a detailed 
examination of the model’s behaviour and parameter 
space without an explosion of computational demands 
[39, 40]. Machine learning methods can improve the 
theoretical understanding of the ABM, help calibrate the 
model, and facilitate interpretation of the results relevant 
to end-users, therefore achieving an overall model of 
complex health issues with greater empirical validity.

Deep neural networks can also be used to create surro-
gate models, by training a multi-layered neural network 
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on the output of numerous simulation runs [41]. Neural 
networks can approximate the output of any function, 
meaning that a trained neural network can approximate 
an ABM’s output to a high degree of precision with much 
lower computational requirements. Neural-network sur-
rogate models thus allow for much easier probing of an 
ABM’s behaviour, and enable detailed sensitivity analy-
ses to be performed. The surrogate model can also point 
us toward interesting areas of the parameter space that 
merit further exploration with the full simulation.

We should note that neural networks notoriously suf-
fer from the issue of low interpretability, due to their 
numerous parameters, the complex structure of multi-
ple hidden layers, and inherent non-linearity. However, 
we argue that interpretability is not a key requirement 
when using them as a surrogate of an ABM. If explaining 
the simulation result is of importance to the user, inter-
preting the ABM directly would be more suitable than 
explaining the prediction of the surrogate model. The 
trained neural network is intended to replicate the behav-
iour of the ABM to allow us to generate analyses of the 
model’s behaviour more quickly. In this pragmatic role, 
our primary concern is that the neural network provides 
significant computational savings, not the particular way 
in which the network learns to replicate the ABM.

With the advent of these sophisticated methods for 
investigating the outputs of ABMs, we can begin to 
reduce their opacity and use them more effectively to 
understand how complex systems operate. Using sur-
rogate models enables us to reduce an ABM’s computa-
tional demands, while also facilitating deeper analyses of 
the model’s underlying mechanisms. These analyses can 
then help us to understand how we can most effectively 
intervene at the micro-level of a population to produce 
positive changes at the macro-level.

Ways forward
As we have seen, ABMs and concepts drawn from the 
study of complexity could have a valuable role to play in 
future research in population health. The ‘wicked’ prob-
lems of the 21st century present a significant challenge to 
traditional statistical approaches, so approaching them 
from a complex systems perspective can enable us to 
characterise these problems in terms of the social and 
environmental interactions which lie at their core.

As with any field, not every tool is fit for every task, and 
this remains the case with ABMs and related methods. In 
the case of less ‘wicked’ issues in population health where 
causal links are more clearly defined, statistical meth-
ods already available and easily implemented can work 
quite well to generate the kind of effect estimates health 
researchers might seek. ABM should be a significant and 
powerful addition to the toolbox for population health 

modellers, used in harmony with the trusted epidemio-
logical methods already in evidence.

For efforts extending further into explanation and 
description of more complex problems, ABMs start to 
shine. Below we describe three areas of potential inter-
est population health researchers keen to experiment 
with ABMs, and note the difficulties facing traditional 
approaches in these contexts.

Health inequalities
Health inequalities, which are systematic differences in 
the health status of different population groups, remain 
a difficult problem even in countries with otherwise high 
levels of equality [42]. For example, Nordic countries, 
despite generous welfare states and generally excellent 
population health statistics, still have persistent health 
inequalities [43]. Likewise, health inequalities have per-
sisted in the United Kingdom even in the presence of free 
health care and systematic attempts by the New Labour 
government to reduce them [44].

A potential reason for this persistence is the sheer 
level of social reform that would be required to tackle 
this problem [44]. Wealth inequalities might need to be 
corrected, access to healthcare and hospital/clinic loca-
tions might need to be changed and optimised, and sig-
nificant educational efforts to encourage changed health 
behaviours might need to be undertaken, amongst other 
changes. In the real world, policy interventions on this 
scale are not only cost-prohibitive, but quite disconcert-
ing to policy makers, who are (perhaps understandably) 
reticent to restructure the whole of society on the basis of 
theories which in effect cannot be implemented without 
tremendous risk of unintended consequences [45]. These 
unintended consequences, or spillover effects, can poten-
tially impact negatively on other key areas of population 
health [46].

ABMs, however, provide a testbed of sorts. Genera-
tive approaches and virtual populations can provide a 
risk-free laboratory for implementing large-scale policy 
interventions on simulated populations. While we would 
not wish to claim these kinds of models necessarily pro-
vide strong predictive power, if given sufficient detail in 
relevant social and behavioural mechanisms they could 
provide important insights on potential unintended con-
sequences of these large-scale policy interventions.

More broadly, ABMs can shed light on those areas 
where health effects at the population level appear to be 
at odds with our expectations, given our knowledge of 
individual-level behaviours and processes. The case of 
inequality in Scandinavian welfare states above is a good 
example: we would expect very equal societies with uni-
versal access to free healthcare to show minimal health 
inequalities at the population level but, in reality, health 
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inequalities are both still present and surprisingly signifi-
cant. ABMs and complex systems approaches could help 
population health researchers unravel these mysteries 
by modelling the social and environmental effects that 
might lead to differential health outcomes despite society 
being set up specifically to avoid those outcomes.

Alcohol use and misuse
In the UK, the harm caused by alcohol both to the indi-
vidual and to others is significantly higher than that 
caused by other drugs [47]. The role of psychological [48], 
social [49] and environmental factors [50] in influencing 
levels of substance use and dependence are increasingly 
recognised as key factors beyond biological addiction 
processes, both in terms of the risk processes, and for 
the most appropriate points of intervention. Scotland has 
recently implemented a minimum price per unit of alco-
hol [51].

Predicting the outcomes of population-level interven-
tions is far from straightforward. Price-based measures 
are more likely to be effective amongst drinkers on the 
lower end of the socioeconomic scale, whereas changes in 
pricing will have a greater impact on day-to-day spending 
habits [52], but the availability of alcohol (at any price) is 
strongly patterned by geography, with deprived areas of 
Glasgow having a greater density of alcohol, tobacco, fast 
food and gambling outlets, for example [53]. How alcohol 
retailers respond to minimum price legislation in areas of 
high compared to low supply may influence, and be influ-
enced by changes in purchasing behaviour. Traditional 
statistical approaches are limited in the extent to which 
they can study non-linear interactions such as those 
between individuals and local retailers.

ABMs and complexity-inspired approaches can make 
substantive contributions in this area. Statistical mod-
elling studies have looked in-depth at minimum unit 
pricing policies, but computational models could allow 
us to investigate how interactions between individu-
als, individuals and their neighbourhoods, and related 
effects such as socioeconomic differences [52]. Alcohol 
and drug abuse treatment outcomes are also affected by 
social factors [54, 55], and modelling these interactions 
and networks via ABMs could help in further fine-tuning 
interventions in this respect [56].

Obesity
Obesity is the target of substantial research and invest-
ment in population health worldwide, given that the 
condition is linked to such a wide range of health prob-
lems—both as an effect and a cause. Obesity stands out 
amongst the target research areas listed here, in that 
a number of simulation studies have already targeted 
obesity, and there have been some high-profile calls for 

systems-based modelling of the problem. The Institute 
of Medicine presented a book-length study of obesity 
prevention efforts in the United States, concluding that 
researchers and policy makers must take a ‘systems think-
ing’ perspective [57]. Chapter 4 provides a useful look at 
systems perspectives on the obesity epidemic—useful 
background for interested modellers [57]. Similarly, fore-
sight in the UK was commissioned to develop a strategic 
40-year plan to tackle obesity in the UK, and presented a 
whole-system approach to the problem advocating large-
scale societal, personal, and governmental changes [58].

Skinner et  al. outline nine properties that make obe-
sity well-suited as a target for systems-science-based 
modelling efforts, and present a systematic review of 
systems science models in obesity research [59]. While 
their review finds dozens of studies using systems sci-
ence perspectives and techniques, they conclude that 
the work done thus far has taken relatively limited views 
of the topic, investigating manageable portions of the 
overall obesity problem rather than tackling the larger, 
messier complex of societal and individual factors which 
drive obesity trends. Levy et al. take a similar view, not-
ing that obesity modelling efforts are ‘at a nascent stage 
of development’ and just focus on ‘one or two links in the 
process’, leading the authors to advocate a comparative 
modelling approach [60, p. 390].

Obesity is thus a highly relevant area for modellers of 
a complex systems background, and indeed work of this 
type is already underway [61]. Much of the conceptual 
work around the social, behavioural and environmen-
tal factors influencing the obesity epidemic has already 
been done by respected sources. The widespread agree-
ment that ambitious societal change at multiple levels 
will be required clears the way for similarly ambitious 
modelling projects to attempt to understand the inter-
play of the multitudinous factors at play in obesity, and to 
develop productive collaborations with population health 
researchers and governmental bodies.

Conclusion
While population health research has contributed to 
numerous high-profile health successes in modern times, 
there remain some highly complex, ‘wicked’ problems 
which defy traditional methods of epidemiological analy-
ses, and have resisted our attempts to develop effective 
interventions at the population level. These wicked issues 
in population health fall into the category of post-normal 
science—‘These issues are urgent and of high public and 
political concern; the people involved hold strong posi-
tions based on their values, and the science is complex, 
incomplete and uncertain’ [62, p. 163]. Whereas tradi-
tional epidemiological methods are designed to reduce 
uncertainty about specific causal relationships, reliance 
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purely on these methods inhibits the ability of the popu-
lation health research community to say anything about 
complex wicked issues that urgently require solutions 
and where the scientific voice is non-existent or over-
whelmed by caveats and uncertainty. Methods designed 
to illuminate complex interrelationships are unlikely to 
provide certain answers, but can provide an important 
contribution to the debate and may also provide a mech-
anism to bring together a range of alternative sources of 
knowledge.

As outlined above, there are numerous areas in which a 
complexity-inspired approach could contribute to efforts 
to develop more robust population health interventions 
for these wicked issues. These very brief examples dem-
onstrate that developing interventions in these areas will 
require a broader, systems-based perspective due to the 
significant societal and behavioural change required. 
The complex systems science community is notable 
for its ability to apply computational approaches to an 
enormous range of domains, from artificial chemistry to 
simulated societies, by modelling the unifying mechan-
ics and principles that describe the complex behaviour of 
these seemingly disparate systems. We suggest that this 
perspective makes this approach uniquely well-suited to 
undertake ambitious and challenging modelling projects 
aimed squarely at these wicked health problems.

Such efforts would require significant investment, 
not just in terms of time and finances, but in the form 
of interdisciplinary communication, which is no simple 
undertaking. Developing a common language between 
population health and complex systems will take time, 
but the potential benefit of efforts to enhance the health 
and wellbeing of millions of people seem worth the risk 
of occasional frustration and misunderstanding.
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