
Review Article
The Role of the Antioxidant Response in Mitochondrial
Dysfunction in Degenerative Diseases: Cross-Talk between
Antioxidant Defense, Autophagy, and Apoptosis

Michael L.-H. Huang , Shannon Chiang , Danuta S. Kalinowski, Dong-Hun Bae,
Sumit Sahni, and Des R. Richardson

Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25),
University of Sydney, Sydney, New South Wales 2006, Australia

Correspondence should be addressed to Michael L.-H. Huang; michael.huang@sydney.edu.au,
Shannon Chiang; shannon.chiang@sydney.edu.au, and Des R. Richardson; d.richardson@sydney.edu.au

Received 13 November 2018; Revised 18 January 2019; Accepted 11 February 2019; Published 7 April 2019

Guest Editor: Livia Hool

Copyright © 2019 Michael L.-H. Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for
cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work
of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a
rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have
demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases
affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors
causing degenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s
disease, and Friedreich’s ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative
stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the
development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly,
this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.

1. Mitochondria and Oxidative Stress

Mitochondria are the major energy-producing organelle of
the cell via the process of oxidative phosphorylation
(OXPHOS). In addition to this important role, mitochondria
are also involved in a myriad of biological functions, from the
generation of vital cellular metabolites such as iron-sulfur
clusters (ISCs) and heme [1] to the regulation of cell death
[2, 3]. However, as a consequence of active oxidative metab-
olism, in particular complex I and III of the electron trans-
port chain, mitochondria are also a major source of reactive
oxygen species (ROS) in cells [3, 4], with superoxide anions,
hydroxyl radicals, and hydrogen peroxide being the predom-
inant forms of ROS [5]. Apart from its well-known role in
cytotoxicity, the generation of ROS has important signaling

functions, with their levels being regulated by a suite of cellu-
lar antioxidants [2].

When the rate of ROS production exceeds cellular anti-
oxidant capacity, the ensuing oxidative stress damages vital
components of the cell, resulting in oxidation of membranes,
proteins, and nucleic acids. Within the mitochondrion, ROS
can potentiate profound damage to mitochondrial energy
production by causing mitochondrial DNA (mtDNA) dam-
age and subsequent defects in mtDNA-encoded subunits of
the respiratory complex I and III [6]. Furthermore, ROS
can readily interact with ISCs within subunits of complex I,
II, and III to disrupt their function [6]. The exquisite depen-
dence of neurons and cardiomyocytes on mitochondria for
ATP production also means these cells are particularly
susceptible to mitochondrial ROS [4, 7]. As such, the
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accumulation of oxidative damage within cells leads to death
and is a driver of aging as well as neurodegenerative and
cardiodegenerative diseases [3, 8].

2. Mitochondrial DNA

The mtDNA encodes 22 transfer RNAs, two ribosomal
RNAs, and 13 essential proteins of oxidative phosphoryla-
tion, the quintessential machinery responsible for ATP
production [9]. Due to limited mtDNA repair enzymes,
absence of protective histonemolecules, and the susceptibility
of mtDNA to oxidative damage, mtDNA is prone to muta-
tions, which drives further mitochondrial dysfunction and
potentiates a vicious cycle of mtDNA damage [4, 7, 10].
Mutations in mtDNA also accumulate with aging [11] or
are inherited in a number of human mitochondrial diseases
[12]. The importance of maintaining mtDNA integrity in
age-related diseases is demonstrated by mice that carry a
mutation in the mtDNA polymerase-γ (Polg), which disables
the mtDNA proofreading activity of the enzyme [10]. As a
result, Polg mutant mice accumulate mtDNA mutations
during mtDNA replication [10] and carry an average of
9 point mutations per 10 kb in cytochrome b, versus 1
mutation per 10 kb in control mice [10]. The mutant mice
develop pathologies associated with aging, including weight
loss, osteoporosis, kyphosis, alopecia, cardiomyopathy, ane-
mia, and sarcopenia [10].

3. Mitochondria and Antioxidant Defense

As the mitochondrion is an active site of cellular redox
homeostasis and a major source of ROS, it is not surprising
that the homeostasis of this organelle can be regulated by
the master regulator of cellular antioxidant defense, nuclear
factor erythroid-derived 2-related factor 2 [13, 14]. The
nuclear factor erythroid-derived 2-related factor 2 is com-
monly known as NRF2 [13, 14]. However, in order to distin-
guish it from Nuclear Respiratory Factor 2 that is involved in
regulating mitochondrial biogenesis and bioenergetics, it will
be referred to by its gene name, NFE2L2. Significantly,
NFE2L2 is a well-known transcription factor and a master
regulator of a variety of antioxidant and detoxifying enzymes
[15]. NFE2L2 heterodimerizes with small musculoaponeu-
rotic fibrosarcoma (sMAF) proteins to enable specific bind-
ing to its target DNA sequence known as the antioxidant
response element (ARE) [15, 16]. The binding of NFE2L2
to ARE leads to the transcriptional activation of ARE-
containing genes; these include major phase II detoxifying
enzymes and enzymes in the glutathione, thioredoxin, and
peroxiredoxin antioxidant systems (reviewed in [17]).

The expression of NFE2L2 is tightly regulated via the
proteasomal system [17]. The best known mechanism of
NFE2L2 regulation is mediated through the Kelch-like
ECH-associated protein 1 (KEAP1) which is the substrate
adapter protein for the Cul3-RBX1 E3 ubiquitin ligase com-
plex, which responds to electrophilic and/or oxidative signals
[17]. In addition, there is a KEAP1-independent mechanism
of NFE2L2 regulation involving glycogen synthase kinase-3β
(GSK3β) that likely responds to receptor-mediated signal

transduction [17]. This mechanism involves phosphory-
lation of nuclear NFE2L2 by GSK3β, leading to the
recruitment of another E3-ubiquitin ligase adapter, β-TrCP
[18, 19], or via the Src kinase, the Fyn-mediated nuclear
NFE2L2 export process [20, 21].

An additional mechanism of NFE2L2 activation involves
p62-dependent autophagic degradation of KEAP1 [22–25].
This process could involve the competitive binding of
p62, which is reportedly induced by NFE2L2 activity
[23], to the NFE2L2-binding site on KEAP1, thereby pre-
venting KEAP1-mediated NFE2L2 degradation [23–25].
Therefore, increased phosphorylated p62-mediated autoph-
agy increases NFE2L2 activity, which in turn increases p62
activity [23, 26].

In addition, NFE2L2 has been shown to directly affect
mitochondrial homeostasis via its regulation of nuclear
respiratory factor 1 (NRF1) through the 4 AREs in the
NRF1 promoter and thereby promote mitochondrial biogen-
esis [14]. Other studies have also demonstrated that NFE2L2
is also able to indirectly activate another major driver of
mitochondrial biogenesis, the peroxisome proliferator-
activated receptor γ coactivator-1α (PGC1α) via heme
oxygenase-1 (HO-1)/carbon monoxide signaling [13, 27].
As such, NFE2L2 is essential for mitochondrial function,
with regulation of NFE2L2 expression strongly and positively
modulating mitochondrial membrane potential, ATP pro-
duction, and efficiency of oxidative phosphorylation [15, 28].

Recently, NFE2L2 has also been identified to be associ-
ated with mitochondria through a complex of KEAP1 and
the mitochondrial outer membrane serine/threonine protein
phosphatase, PGAM5 [29, 30]. This NFE2L2-KEAP1-
PGAM5 complex has been reported to play a role in mito-
chondrial retrograde trafficking. A decrease in NFE2L2 or
PGAM5 expression results in decreased mitochondrial
motility, which is particularly important for the transport
of mitochondria along the neuronal axon [29]. Furthermore,
PGAM5 is also a binding protein of the antiapoptotic pro-
tein, BCL-XL [31]. A decrease in PGAM5 may lead to
KEAP1-mediated BCL-XL degradation, which thereby pro-
motes apoptosis [32]. In particular, considering the reduction
of NFE2L2 or PGAM5 in aging and human degenerative dis-
ease states [32–35], this NFE2L2-KEAP1-PGAM5 ternary
interaction may be an important mechanism in the develop-
ment of human diseases.

4. Mitochondrial Homeostasis and Dynamics

The maintenance of mitochondrial homeostasis is critical for
proper functioning of the cell. Hence, mitochondria have a
network of dynamic processes that tightly regulate its homeo-
stasis and life cycle, namely, mitochondrial fusion and fission,
mitophagy, and mitochondrial biogenesis (Figure 1) [36–38].
Mitochondrial fusion and fission mediate mitochondrial
quality control through regulation of its turnover via mito-
chondrial biogenesis and elimination [37, 39].

4.1. Mitochondrial Fusion.Mitochondrial fusion is a dynamic
process in which two or more mitochondria fuse together in
an attempt to reduce mitochondrial stress that could be
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induced by senescent or damaged proteins and ROS
(Figure 1) [39, 40]. This process enables damaged mitochon-
dria to repair their function and prevent the accumulation of
mtDNA mutations [39]. Mitochondrial fusion requires a
spatially coordinated fusion of the outer and inner mitochon-
drial membranes that are different in electrophysiological
properties, structure, and composition [40]. Notably in
mammals, fusion of the outer and inner mitochondrial mem-
branes is facilitated by members of the membrane-anchored
dynamin family, mitofusin (MFN) 1 and 2, and the single
dynamin family member, OPA1, respectively [36, 41, 42].

4.2. Mitochondrial Fission. When mitochondrial fusion is
unable to restore mitochondrial homeostasis in disease con-
ditions, the dynamic nature of the mitochondrial network

shifts towards mitochondrial fission which leads to the
removal of damaged mitochondria (Figure 1) [39]. Mito-
chondrial fission compartmentalizes damaged mitochondrial
components into daughter organelles that are to be removed
and targeted for elimination [39]. In mammals, mitochon-
drial fission involves the cytoplasmic protein, dynamin-
related protein 1 (DRP1), which forms a ring structure to
encircle and constrict at a site on the outer mitochondrial
membrane upon its interaction with fission protein 1 (FIS1)
[39, 43]. As a result, mitochondrial fission generates smaller
and spherical mitochondria, as opposed to the tubular mor-
phologies observed from mitochondrial fusion [39].

4.3. Mitophagy. In response to mitochondrial stress, mito-
chondrial fusion and fission also play an important role in

(i) MFN1/2
(ii) OPA1

(i) PGC1�훼
(ii) NRF1

(iii) TFAM

Diluted damaged
mitochondrial
components

(i) DRP1
(ii) FIS1

(i) Membrane permeabilization
(ii) Cytochrome c release

(iii) AIF release

(i) ↓ ATP
(ii) ↓ Δ�휓

(iii) ↑ ROS

Autophagosome

(i) PINK1
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Figure 1: Mitochondrial homeostasis is dynamically maintained by the processes of mitochondrial biogenesis, mitochondrial fusion/fission,
mitophagy, and apoptosis. The upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), nuclear respiratory
factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) promotes mitochondrial biogenesis. In mammals, mitochondrial
fusion is facilitated by mitofusin (MFN) 1 and 2 and OPA1 for the fusion of the outer and inner mitochondrial membranes, respectively.
Mitochondrial fission involves dynamin-related protein 1 (DRP1) that interacts with fission protein 1 (FIS1), which compartmentalizes
damaged mitochondrial components into daughter mitochondria for elimination via mitophagy. Decreased ATP levels and membrane
potential (Δψ) and increased ROS generation are features of damaged mitochondria. These dysfunctional mitochondria are detected by
phosphatase and tensin homologue deleted on chromosome 10- (PTEN-) induced putative kinase 1 (PINK1) and recruits Parkin, which
initiates mitophagy and the subsequent formation of the autophagosome to degrade targeted mitochondria. Damaged mitochondria can
also induce apoptosis through the permeabilization of the mitochondrial membrane, leading to the release of cytochrome c that can
activate caspase-mediated apoptosis, as well as the release of proapoptotic proteins such as apoptosis-inducing factor (AIF).
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the elimination of irreversibly damaged mitochondria
through an autophagic process known as mitophagy [39, 44].
The mechanism of mitophagy has been attributed to a num-
ber of key molecules, particularly phosphatase and tensin
homologue deleted on chromosome 10- (PTEN-) induced
putative kinase 1 (PINK1) and Parkin which were identified
in models of Parkinson’s disease (PD) [45–47]. PINK1 is a
serine/threonine kinase that specifically targets mitochon-
dria while Parkin is an E3 ubiquitin ligase, with mutations
in either genes resulting in the early-onset autosomal reces-
sive form of PD [46, 48]. The initiation of mitophagy
involves the targeting of damaged mitochondria by PINK1
that recruits and activates Parkin via its phosphorylation at
Ser65 on the N-terminal ubiquitin-like domain (Figure 2)
[49, 50]. PINK1 also phosphorylates ubiquitin at Ser65 lead-
ing to structurally distinctive properties, which allows for
interactions with ubiquitin-binding proteins specific for
mitophagy [49–51]. The phosphorylation of Parkin and
ubiquitin by PINK1 leads to the recruitment and subsequent
formation of ubiquitin chains on outer mitochondrial mem-
brane proteins, such as MFN1 and/or MFN2 (Figure 2) [49].
The ubiquitination of MFN results in the inhibition of mito-
chondrial fusion and the recruitment of autophagy receptors
to promote mitophagy (Figure 2) [45, 49, 52]. Therefore, the
interaction between PINK1 and Parkin is critical for the
initiation and regulation of mitophagy.

However, PINK1-independent mechanisms may exist as
demonstrated by a recent study where PINK1 deficiency does
not inhibit basal mitophagy in multiple high energy–
demanding tissues, including neural tissue and the heart

[53]. Over the past decade, a number of mitochondrial-
localized mitophagic markers that interact with the autopha-
gosomal protein, microtubule-associated protein 1A/1B-light
chain 3 (LC3), have also been identified [49, 54–56]. These
include FUNDC1, BNIP3, NIX, optineurin, and NDP52,
which also potentiate mitophagy through their LC3-
interacting regions (LIR) in both a PINK1-dependent and
independent manner [49, 54–56]. A recent addition to this
list of mitophagic markers is AMBRA1 [57]. AMBRA1 medi-
ates the mitochondrial localization of the ubiquitin ligase
HUWE1 and potentiates MFN2 ubiquitination and degrada-
tion but also the recruitment of autophagosome via the
AMBRA1 LIR motif [57].

4.4. Mitochondrial Biogenesis. In addition to the removal and
processing of mitochondrial stress, there is a need for the res-
toration of mitochondrial deficits by producing new mito-
chondria through mitochondrial biogenesis. This results in
the replication of mtDNA and the synthesis and assembly
of mitochondrial components. The transcription coactivator,
PGC1α, regulates mitochondrial biogenesis by activating a
group of transcription factors, such as NRF1, and the mito-
chondrial transcription factor A (TFAM) [58]. These two
transcription factors mediate the transcription of nuclear
DNA and mtDNA, respectively [58].

Together, the dynamic processes of mitochondrial fusion
and fission, mitophagy, and biogenesis act to restore normal
mitochondrial function and morphology in the presence
of mitochondrial stress and damage, thus maintaining
mitochondrial homeostasis.

Figure 2: Phosphatase and tensin homologue deleted on chromosome 10- (PTEN-) induced putative kinase 1- (PINK1-) Parkin mediated
initiation of mitophagy and inhibition of mitochondrial fusion. PINK1 recognizes damaged mitochondria that exhibit mitochondrial
dysfunction. As a result, PINK1 accumulates on the outer mitochondrial membrane, which recruits and activates Parkin via its
phosphorylation at Ser65 on the N-terminal ubiquitin-like domain and phosphorylates ubiquitin. Phosphorylated Parkin then recruits and
forms ubiquitin chains on mitofusin (MFN) located on the outer mitochondrial membrane, leading to its proteasomal degradation and
inhibition of mitochondrial fusion. As such, the ubiquitination of MFN promotes mitophagy through the recruitment of autophagy
substrates and receptors such as p62, LC3, and Fundc1 that facilitates the elimination of the targeted mitochondria.
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5. Mitochondria and Apoptosis

Apoptosis is an active mechanism of programmed cell death
in response to stress-inducing or regulatory signals. This
process is tightly regulated to facilitate the growth, develop-
ment, and replication or replacement of cells to maintain a
normal cellular life cycle. Impairment of mitochondrial
function and structure destabilizes the cell and initiates a
signaling cascade for apoptosis [59]. There are a number
of mechanisms by which mitochondria induce and mediate
the process of programmed cell death in mammals. This
often involves the permeabilization of the mitochondrial
membrane with the release of cytochrome c and proapopto-
tic proteins that causes a cascade of apoptotic signaling to
execute apoptosis. Mitochondrial mechanisms for apoptosis
can be caspase-dependent or -independent (for more detail,
see [8, 60–62]).

Cytochrome c is an essential component of the respira-
tory chain that facilitates the transfer of electrons from com-
plex III to complex IV [62]. Mitochondrial dysfunction,
mitochondrial membrane permeabilization, and oxidative
stress can disrupt the electron transport chain and affect
cytochrome c function [8]. In response, mitochondria release
cytochrome c to the cytosol to trigger downstream activation
of caspases and the formation of a caspase-activated
complex, the apoptosome, which leads to apoptosis with
the degradation of cellular components (Figure 3) [60]. The
release of cytochrome c is mediated by protein members of
the B-cell lymphoma 2 (BCL2) family, such as BAK and
BAX, themitochondrial permeability transitionpore (MPTP),
and mitochondrial lipids to execute apoptosis (Figure 3) [8].
Additionally, cytochrome c activates caspase-3 and -9 in the
cytosol via forming the apoptosome complex by binding to
and activating the apoptotic protease factor 1 (Apaf1) [63]. It

(i) Chromatin condensation
(ii) DNA fragmentation

(iii) Potentiation of oxidative
stress in mitochondria

Bak/Bax

MPTP
Cardiolipin

Cytochrome c

AIF

Apaf1
Released by mitochondria

Activation of
procaspase-9

Activation of
procaspase-3

CAD released
from ICAD

Figure 3: Mitochondrial caspase-dependent and caspase-independent mechanisms of apoptosis. Mitochondrial dysfunction leads to the
permeabilization of its membranes, which is the first step towards apoptosis. Membrane permeabilization of the outer mitochondrial
membrane is driven by the mitochondrial permeability transition pore (MPTP), members of the BCL2 protein family (i.e., BAK/BAX),
and mitochondrial lipids such as cardiolipin. More specifically, cardiolipin is associated with BAX recruitment to the outer mitochondrial
membrane that triggers membrane permeabilization. For the caspase-dependent mechanism of apoptosis, mitochondrial cytochrome c is
released to trigger the formation of the apoptosome complex by binding to, and activating, the apoptotic protease activating factor 1
(Apaf1). This in turn, activates caspase-9 and -3, which leads to the release of CAD from its inhibitor, ICAD, resulting in apoptosis
induction. The caspase-independent mechanism of apoptosis involves the mitochondrial release of proapoptotic proteins such as
apoptosis-inducing factor (AIF) into the cytosol, whereby it can either directly interact with DNA or potentiate mitochondrial oxidative
stress through its release to induce apoptosis.
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is well established that the activation of caspase-3, in turn,
liberates the caspase-activated deoxyribonuclease (CAD)
from its inhibitor, ICAD, which results in apoptotic fea-
tures of DNA fragmentation and chromatin condensation
(Figure 3) [8, 64, 65].

Oxidized lipids also play an important role in the induc-
tion of apoptosis [66, 67]. Cardiolipin is the mitochondria-
specific lipid whose oxidation results in mitochondrial
membrane permeability and the recruitment of the proa-
poptotic protein, BAX (Figure 3) [66, 68, 69]. Cytochrome
c is normally associated with cardiolipin in the inner mito-
chondrial membrane [70, 71]. The oxidation of cardiolipin
results in both mitochondrial membrane permeabilization
and cytochrome c dissociation and release [70–72].

Alternatively, following mitochondrial dysfunction,
oxidative stress, or a decrease in ATP levels, a caspase-
independentmechanismofmitochondrial-associatedapopto-
sis may also be induced [60]. This involves permeabilization
of the outer and inner mitochondrial membranes, whereby
the mitochondria releases proapoptotic proteins, such as
apoptosis-inducing factor (AIF), into the cytosol to regulate
apoptosis (Figure 3) [60]. The translocation of AIF from the
mitochondria to the cytosol occurs in a BCL2-controlled
manner in which cytosolic AIF can travel further into the
nucleus where it causes DNA fragmentation and chromatin
condensation (Figure 3) [73, 74]. Furthermore, the mito-
chondrial release of AIF can also increase oxidative stress
due its potential role in maintaining ROS levels generated
by the respiratory chain (Figure 3) [73].

Previous studies on diabetic neuronal injury have also
shown a mitochondrial profile of decreased mitochondrial
membrane potential and BCL2 expression, accompanied by
ROS generation and increased expression of proapoptotic
proteins [75]. Similar mitochondrial alterations that mediate
apoptosis are found in cardiac aging and pulmonary
hypertension (for reviews: [76, 77]). In many of these
diseases, mitochondrial oxidative stress appears to be a key
feature of mitochondrial dysfunction that drives apoptosis
in disease progression.

6. Iron Homeostasis and
Mitochondrial Dysfunction

Iron is the most abundant transition metal in mammalian
cells and is essential for myriad biological processes, includ-
ing oxygen transport, cellular respiration, and DNA synthe-
sis/repair [78]. The mitochondrion is a major site of iron
metabolism, particularly the synthesis of heme (Fe-protopor-
phyrin IX) and ISCs that are essential cofactors required by
the electron transport chain [1]. In terms of the delivery of
iron into the mitochondrion, the only known iron transport
protein that imports iron across the inner mitochondrial
membrane is mitoferrin (MFRN) [79–81].

Two MFRNs exist: MFRN1 is erythroid-specific, while
MFRN2 is ubiquitously expressed with low expression in ery-
throid cells [79]. Other potential mechanisms of iron delivery
to the mitochondria have recently come to light. These
involve glutaredoxin 3 [82, 83], or endocytic mechanisms
(i.e., the “kiss and run” hypothesis) of targeted mitochondrial

iron delivery via direct endosomal-mitochondrial contact
that results in the metal ion bypassing the cytosol [84, 85].
Other mitochondrial proteins may also be involved in mito-
chondrial iron import. An example is the inner mitochon-
drial membrane ATP-binding cassette (ABC) transporter
ABCB10, which physically interacts with MFRN1 to stabilize
MFRN1 and increase mitochondrial iron import into the
erythron [86].

7. Mitochondrial Dysfunction in
Neurodegenerative Diseases

Neurons have a high metabolic load that is demonstrated by
the fact that although the brain only accounts for 2% of
human body mass, it consumes 20% of the body’s resting
ATP production [87]. Studies over the past decade have
demonstrated that neurodegenerative disorders manifest
common pathological events associated with mitochondria.
These include mitochondrial dysfunction [3], oxidative
stress, autophagic dysfunction, and apoptosis [88]. In fact,
defects and mutations within the genome are often patho-
logical causes of many degenerative diseases that alter
mitochondrial function.

7.1. Alzheimer’s Disease (AD). Alzheimer’s disease (AD) is
the most common neurodegenerative disease, with an
estimated 46.8 million AD patients worldwide [89]. AD
is clinically characterized by progressive cognitive decline
associated with senile plaques composed of β-amyloid
(Aβ) peptide and neurofibrillary tangles composed of
hyperphosphorylated tau [90]. In fact, mitochondrial dys-
function is a characteristic of Aβ-induced neurotoxicity
in AD [90]. It has been reported that the amyloid precur-
sor protein (APP) could translocate and accumulate in the
mitochondrial membrane [90], where it may be cleaved by
γ-secretase forming the toxic Aβ peptide [91, 92]. Subse-
quently, the Aβ peptide interacts with a number of mitochon-
drial proteins, which disrupts mitochondrial membrane
potential and promotes apoptosis via cytochrome c release
(Figure 4) [93, 94].

The pathogenesis of AD likely involves oxidative damage
to mtDNA [95]. When AD patient mtDNA is inserted into
mtDNA-deficient cells, the resulting cybrids showed respira-
tory enzyme defects and elevated ROS production and free
radical scavenging enzyme activities that were seen in AD
patient brains [95]. Regulatory regions in mtDNA from AD
brains showed increased mutations relative to controls [96].
These mutations lead to an average 50% reduction in
mtDNA transcription and mtDNA copy number, potentiat-
ing mitochondrial dysfunction (Figure 4) [96]. The ensuing
ROS generation due to mitochondrial dysfunction in AD is
well documented and leads to activation of the NFE2L2 path-
way [97, 98]. Pharmacological targeting of NFE2L2 was
found to elicit neuroprotection in Aβ-induced hippocampal
neuron injury and appeared to involve the activation of the
NFE2L2 downstream target, HO-1 [97, 98]. Additionally,
pharmacological targeting of KEAP1 and GSK3β that regu-
late NFE2L2 activity resulted in neuroprotection in a mouse
model of tauopathy [99].
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It has been reported that Aβ disrupts mitochondrial
fusion, resulting in mitochondrial fragmentation [100, 101].
In AD brains, increased Aβ production and its interaction
with DRP1 are crucial factors causing mitochondrial fission
and neuronal damage (Figure 4) [102]. Conversely, reduced
DRP1 expression or inhibition of DRP1 with a mitochondrial
division inhibitor (mdivi1) restored pathologic Aβ- or
tau-mediated mitochondrial fragmentation, mitochondrial
dysfunction, and synaptic depression in neurons [103].
Furthermore, inhibition of DRP1 decreased β-secretase 1
(BACE1) expression and Aβ deposition in the brain of
AD mice, leading to a concomitant increase in cognitive
function [104, 105].

The loss of synapses in AD brains correlates strongly with
a cognitive decline [106, 107]. A recent study demonstrated
that the loss and dysregulation of synaptic mitochondria
may be an important pathogenic factor in AD progression
[108]. The synapse is a region of high energy demand and
requires constant trafficking of mitochondria to this region

[109]. As tau is involved in stabilizing microtubules required
for anterograde transport of mitochondria (Figure 4) [109],
tau hyperphosphorylation destabilizes microtubules and
impairs mitochondrial anterograde transport [110, 111].
Moreover, oligomeric Aβ has also been shown to impair
mitochondrial motility in hippocampal neurons without
destabilizing microtubules [112–114]. This latter effect may
potentially involve NFE2L2 and KEAP1’s role in mitochon-
drial motility [29], since depletion of NFE2L2 inhibits mito-
chondrial motility [29] and NFE2L2 induction elicits
neuroprotection in AD models [97–99, 115].

In AD, excessive ROS generation caused by Aβ exacer-
bates mitochondrial dysfunction and redox imbalance within
neurons, which leads to neuronal damage [116, 117]. As a
result, mitochondria suffer membrane depolarization, cal-
cium overload, and cytochrome c release, which collectively
induces apoptosis [117, 118]. In a different study examining
AD pathology, overexpression of APP induced mitochon-
drial oxidative stress that triggers mitochondrial membrane

(i) APP can be cleaved by �훾-
secretase in the mitochondrial
membrane to form A�훽

(i) Hyperphosphorylation of tau protein

(i) Increased mutations
(ii) Reduced mtDNA transcription and numbers

(i) Accumulation of redox active iron in senile
plaques and neurofibrillary tangles

(ii) Increased iron uptake and storage
(iii) Decreased iron export
(iv) Increased mitochondrial iron

(i) Mitochondrial release
of cytochrome c

(i) A�훽 interacts with DRP1 promotes fission
(ii) Mitochondrial fragmentation

(i) Loss and dysregulation of synaptic mitochondria

Figure 4: Mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease (AD). Hallmarks of AD include the formation of senile
plaques composed of β-amyloid (Aβ) and neurofibrillary tangles caused by tau hyperphosphorylation. Amyloid precursor protein (APP)
has been reported to translocate and accumulate in mitochondrial membranes and could be cleaved by γ-secretase to form Aβ, leading to
mitochondrial dysfunction. The accumulation of redox active iron in senile plaques and neurofibrillary tangles, as well as the overall
increased iron levels in mitochondria, leads to ROS generation and oxidative stress. The mitochondrial membrane potential (Δψ) is also
disrupted in AD. Mitochondrial DNA (mtDNA) suffers oxidative damage in which there are increased mutations to mtDNA with reduced
transcription and mtDNA number. Mitochondria in AD also have disrupted mitochondrial fusion whereby the interaction between Aβ
and DRP1 promotes mitochondrial fission and subsequent mitochondrial fragmentation. In neurons, there is the loss and dysregulation of
synaptic mitochondria, which leads to the impairment of mitochondrial anterograde transport. Finally, mitochondrial dysfunction in AD
can lead to apoptosis through cytochrome c release.
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permeabilization and cytochrome c release [119]. This
suggests an important apoptotic role of mitochondria in the
pathophysiology of AD.

The accumulation of redox-active iron in senile plaques
and neurofibrillary tangles is another facet of AD pathology
(Figure 4) [120–122]. Studies of AD models demonstrated
increased iron uptake and storage with reduced iron export
[123–125]. Indeed, APP mRNA has an atypical, but func-
tional ferritin-like iron responsive element, and thus, an
increase in intracellular iron level enhances APP mRNA
translation via the iron regulatory element/iron regulatory
protein system [126]. Recent studies demonstrated that the
knockdown of MFRN1 in a C. elegans model of AD reduced
mitochondrial iron content and mitochondrial ROS and
resulted in increased lifespan [127]. This is supported by
studies demonstrating that overexpression of mitochondrial
ferritin (FtMt) attenuates Aβ-induced neuronal apoptosis
[128], while Aβ-induced cognitive decline and neuronal
apoptosis were exacerbated in FtMt KO mice relative to
WT mice [129]. These findings suggest that increased iron
uptake in AD neurons leads to increased mitochondrial iron
loading that may exacerbate the pathogenesis of the disease.

7.2. Parkinson’s Disease (PD). Parkinson’s disease (PD) is the
second most common neurodegenerative disease after AD
and affects 1% of the population above 60 years of age
[130]. PD is clinically characterized by motor dysfunction,
including muscle rigidity, bradykinesia, and resting tremor,
as well as nonmotor symptoms, such as dementia [131].
The major pathological feature of PD is the loss of dopa-
minergic neurons and the accumulation of α-synuclein-
containing Lewy bodies in the substantia nigra [131]. In
the majority of PD cases, the cause is unknown, although
a number of familial PD cases have been identified due to
mutations in genes that are involved in mitochondrial
homeostasis [131]. A prominent feature of PD pathology
is the inhibition of the activity of mitochondrial complexes
I and IV in dopaminergic neurons of the substantia nigra
[132–135]. This could be associated with a dysregulation
of mitochondrial genome maintenance [136] or a number
of PD-associated molecules discussed below.

The α-synuclein protein is critical for the recycling of
vesicles at the presynaptic membrane [137]. In the dopami-
nergic neurons, α-synuclein plays a critical role for the syn-
thesis, regulation, storage, and release of dopamine [138].
Mutations in α-synuclein are associated with highly pene-
trant, autosomal dominant, familial PD [139]. In dopaminer-
gic neurons, overexpression of WT or mutant α-synuclein
reduces dopamine release, potentiates the formation of toxic
α-synuclein oligomers, and results in dopamine-dependent
neurotoxicity [138, 140, 141]. Aggregation of α-synuclein
into Lewy bodies is a prominent pathological feature in PD
and other neurodegenerative disorders that are collectively
known as α-synucleinopathies [142]. The α-synuclein pro-
tein can be imported into mitochondria and associates with
the inner mitochondrial membrane of dopaminergic neurons
[143–145]. Overexpression of α-synuclein exacerbates mito-
chondrial dysfunction, oxidative stress, and neuropathology
caused by complex I inhibition (Figure 5) [146], while

α-synuclein deficiency attenuates these effects [147, 148].
Therefore, it is speculated that the interaction between aggre-
gated α-synuclein with mitochondrial respiratory complex I
leads to the impairment of this complex [144].

In addition, oligomeric α-synuclein, or the A53T mutant
form, has been demonstrated to interact with outer mito-
chondrial membrane proteins, including translocase of the
outer membrane 20 (TOM20) and voltage-dependent
anion-selective channel 1 (VDAC1), to block the import of
mitochondrial proteins/metabolites [149, 150] or inhibit
mitochondria-ER interactions to disrupt Ca2+ signaling
[151, 152]. Moreover, while monomeric α-synuclein has also
been shown to interact with ATP synthase to improve ATP
production [153], the aggregated α-synuclein induces the
opening of mitochondrial permeability transition pore
(PTP), resulting in mitochondrial swelling and cell death
[154]. Furthermore, aggregated or mutant α-synuclein also
impairs the mitochondrial network fission/fusion processes
[155] and subsequent mitophagy (Figure 5) [156], possibly
via regulation of the actin cytoskeleton [157–159]. A recent
study by Grassi and colleagues identified a novel and highly
neurotoxic form of α-synuclein that results from incomplete
autophagic degradation that associates with mitochondria
and induces mitochondrial toxicity and fragmentation [160].

Mutations within PINK1 cause autosomal recessive juve-
nile PD [47]. PINK1 selectively accumulates in dysfunctional
mitochondria [161]. Overexpression of PINK1 in neurons
prevents apoptosis by decreasing cytochrome c release and
the activation of caspases [162]. In models of PD, PINK1
overexpression suppresses α-synuclein-induced toxicity,
potentially via the induction of autophagic α-synuclein
removal [155, 163, 164], whereas PINK1 deficiency exacer-
bates the neurotoxicity of aggregated α-synuclein (Figure 5)
[165, 166]. PINK1 expression is also increased following
α-synuclein overexpression, suggesting a protective role of
PINK1 in PD [164].

Mutation of the DJ1 (PARK7) gene encoding a protein
deglycase is associated with autosomal recessive juvenile
PD [167]. DJ1 is suggested to regulate oxidant defenses
[168, 169] and participate in the formation of mitochon-
drial complex I [170]. DJ1 has also been shown to interact
with monomeric or oligomeric α-synuclein to inhibit olig-
omer formation and prevent toxicity [171, 172]. DJ1 may
also interact with PINK1/Parkin [173, 174], but this was
disputed in a later study [175]. However, the consensus
is that DJ1 mutation or deletion results in dysfunctional
mitophagy that may act in parallel to the PINK1/Parkin
pathway [175–177]. Oxidative stress results in the acidifi-
cation of a critical cysteine residue (C106) of DJ1, leading
to its localization to the mitochondrion where it exerts a
neuroprotective effect [178]. In fact, DJ1 was found to sta-
bilize NFE2L2 by preventing its association with KEAP1
and subsequent NFE2L2 degradation [179]. Therefore,
DJ1 mutations could lead to the dysregulation of NFE2L2
and the antioxidative response in PD (Figure 5).

Activators of NFE2L2 have been found to be neuropro-
tective in PD models caused by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine- (MPTP-) induced complex I inhibition
[180–182]. In a multicenter study, a NFE2L2 haplotype

8 Oxidative Medicine and Cellular Longevity



associated with high transcriptional activity was found to sig-
nificantly decrease disease risk and delay the onset of idio-
pathic PD [183]. Moreover, while mitochondrial membrane
potential is greatly reduced in dopaminergic neurons from
PINK1-KO mice, treatment with NFE2L2 activators is able
to completely rescue this defect, as well as being protective
against dopamine-induced neuronal death [184]. This find-
ing suggests that NFE2L2 activation may be a viable thera-
peutic avenue in PINK1-associated PD.

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the
most common cause of autosomal dominant familial PD as
well as some cases of sporadic PD [185, 186]. PD patient-
derived cells carrying a LRRK2mutation resulted in compro-
mised OXPHOS activity, mtDNA damage, and reduced
mitochondrial motility with increased mitochondrial frag-
mentation (Figure 5) [187–189]. These pathologic effects
are dependent on LRRK2 kinase activity and can be reversed
by LRRK2 kinase inhibitors [190, 191]. The LRRK2 is a
serine-threonine kinase that has been demonstrated to associ-
ate with the outermitochondrial membrane [192], potentially
through its interaction with a key regulator of mitochondrial
fission, DRP1 [193, 194]. Indeed, PD-associated mutations
in LRRK2 kinase domain increases its catalytic activity

[192, 195] which results in increased DRP1 Ser616 phosphor-
ylation and activation of mitochondrial fission [188, 189].
These results suggest that the pathogenesis of both familial
and sporadic PD associated with LRRK2 mutations may
involve a direct perturbation of mitochondrial fission.

High-temperature requirement protein A2 (HTRA2) is a
serine protease in the mitochondrial intermembrane space
[196]. Disruption to HTRA2 has been associated with
increased risk of sporadic PD [197, 198]. HTRA2 is impor-
tant for mitochondrial quality control and is responsible for
the degradation of denatured proteins within the mitochon-
dria [199]. Following apoptotic stimuli, HTRA2 is released
from the intermembrane space and binds to the inhibitor
of apoptosis proteins (IAP) [196]. Subsequently, HTRA2
induces caspase activity and caspase-independent death
through its protease activity (Figure 5) [196]. Recent studies
have demonstrated that HTRA2 exerts its neuroprotective
effect by targeting DJ1 mutations, thereby linking the two
genetic factors of PD [200].

Previous studies in models of PD have also demonstrated
the involvement of mitochondria in the apoptosis of dopa-
minergic neurons [201, 202]. In PD, studies have shown
that depolarization of mitochondria results in reduced

(i) Localized in the mitochondria
(ii) Causes oxidative stress

(iii) Impairs complex I function
(iv) Disrupts Ca2+ signaling
(v) Disrupts mitochondrial dynamic

processes

(i) Decreases complex I activity
(ii) Leads to oxidative stress

(iii) Generation of ROS
(iv) Exacerbates neurotoxicity

Compromised OXPHOS activity
mtDNA damage
Reduced mitochondrial mobility
Mitochondrial fragmentation

(i)

(i)
(ii)

(iii)
(iv)

(i)Exacertbates oxidative stress
(ii) Dysregulation of NFE2L2 and

antioxidant defense

Dysregulation and impairment of
mitochondria-induced apoptosis

(i) Increased mitochondrial fission (i) Reduced complex I activity
(ii) Causes ROS generation

Figure 5: The different causes of mitochondrial dysfunction in the pathology of familial Parkinson’s diseases (PD). Some familial cases
of PD include mutations in α-synuclein, PINK1-deficiency, and mutations in DJ1 (PARK7), leucine-rich repeat kinase 2 (LRRK2), and
high-temperature requirement protein A2 (HTRA2). Mutations in α-synuclein result in the protein becoming localized in the mitochondria,
causing mitochondrial dysfunction via oxidative stress, impaired Ca2+ signaling, complex I dysfunction, and mitochondrial fragmentation.
PINK1 deficiency and mutations in LRRK2 also lead to impaired respiratory chain activity. Furthermore, LRRK2 mutations can reduce
mitochondrial mobility and cause mtDNA damage. Mutations in DJ1 affect its role to regulate NFE2L2 degradation, resulting in the
potential exacerbation of oxidative stress. Furthermore, HTRA2 mutations lead to the dysregulation and impairment of mitochondria-
induced apoptosis.
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mitochondrial membrane potential and is associated with
the early stages of apoptosis [59].

7.3. Amyotrophic Lateral Sclerosis (ALS).Amyotrophic lateral
sclerosis (ALS) is a lethal neurodegenerative disorder charac-
terized by progressive degeneration of upper and lower
motor neurons [203]. The prevalence of ALS is approxi-
mately 4-6 in 100,000 individuals [204]. Approximately
10% of ALS are familial cases, of which about 20% are due
to autosomal dominant mutations in Cu/Zn-superoxide dis-
mutase (SOD1), which is a major antioxidant enzyme [205].
Indeed, according to the review by Smith et al., there are at
least 11 pathogenic variants of proteins and their respective
ALS-associated genes that have the potential to affect
mitochondrial function, hence demonstrating the signifi-
cance of mitochondrial dysfunction in the pathophysiology
of ALS [204].

An accumulation of swollen and vacuolated mitochon-
dria with abnormal cristae was one of the first pathological
features observed in ALS patient motor neurons [206].

This is recapitulated in animal and cellular models of
ALS, where a proliferation of swollen and fragmented
mitochondria is frequently observed [207–210]. This pro-
cess may involve reduced mitochondrial fusion proteins
(e.g., MFN1/2, OPA1), increased fission proteins (e.g.,
DRP1, FIS1), or impaired mitophagy (decreased PINK1,
PARKIN) [211–214]. The ALS-associated SOD1 mutation
results in an accumulation of misfolded SOD1 in axonal
mitochondria of motor neurons [215] and an impaired anter-
ograde axonal transport of mitochondria [207, 215] that is
mirrored in othermodels of familial ALS (Figure 6) [207, 216].

The interaction of ALS-associated mutant protein with
the mitochondria is a major cause of mitochondrial damage.
In fact, aggregation of mutant SOD1 within mitochondria
causes mitochondrial vacuolation through expansion of the
intermembrane space (Figure 6) [217, 218]. This may be
caused by an interference of the SOD1 aggregates with
VDAC1 that interrupts the exchange of vital substrates
such as ADP across the outer mitochondrial membrane
[219, 220]. In addition, ALS mutant SOD1 has been found

Accumulation of SOD1 mutations 
within mitochondria

Localized in the intermembrane space

(i) Decreased fusion proteins
(ii) Increased fission proteins

(i) Decreased PINK1 and Parkin

(i) Respiratory chain deficiency
(ii) Disrupted OXPHOS complex assembly

(i) Decreased fusion proteins
(ii) Increased fission proteins

(iii) Disrupted mtDNA
transcription

Mitochondrial vacuolation
(i) Expansion of mitochondrial

intermembrane space

(i) Interaction with anti-apoptotic BCL-2
family proteins

(ii) Mitochondrial cytochrome c release

(i) Fragmentation of mitochondrial
network

(ii) Also disrupts respiratory complex
formation

Oixidative stress and ROS generation

Mitochondrial dysfunction

Figure 6: Mutations in superoxide dismutase (SOD1) and coiled-coil-helix-coiled-coil helix domain 10 (CHCHD10) cause mitochondrial
dysfunction in familial cases of amyotrophic lateral sclerosis (ALS). SOD1 mutations cause a number of mitochondrial defects including
mitochondrial fragmentation, impaired mitophagy, and impaired mitochondrial anterograde transport of mitochondria, mitochondrial
vacuolation, and apoptosis. CHCHD10 is localized in the mitochondrial intermembrane space, and mutation of the gene encoding this
protein leads to a defect in the formation of the respiratory complex, mtDNA instability, and fragmentation of the mitochondrial network.
Overall, oxidative stress is a common feature in ALS pathology. This is potentially due to the disruption of the respiratory chain caused by
mitochondrial dysfunction.
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to interact with antiapoptotic BCL2 specifically in the spi-
nal cord (Figure 6) [221, 222]. This causes a proapoptotic
conformational change in BCL2 that exposes its toxic BH3
domain and compromises mitochondrial membrane integ-
rity and results in cytochrome c release [222]. The mutant
SOD1-BCL2 complex prevents the interaction between
BCL2 and VDAC1 and thus reduces the permeability of
the outer mitochondrial membrane [223].

Moreover, a number of mutations in the genes encod-
ing DNA/RNA-binding proteins have recently been associ-
ated with both familial and sporadic ALS [207, 209, 210,
216, 224]. These include TDP43, TARDBP, C9ORF72, and
FUS proteins [207, 209, 210, 216, 224]. The interaction of
these ALS mutant proteins with mtDNA transcripts disrupts
their transcription and impairs the formation of the respi-
ratory complex [210, 224, 225]. On the other hand, a
newly identified mutation in the gene encoding the mito-
chondrial protein, coiled-coil-helix-coiled-coil helix domain
10 (CHCHD10), causes ALS-like symptoms in humans and
is characterized by mtDNA instability, respiratory chain defi-
ciency, and mitochondrial network fragmentation (Figure 6)
[226]. CHCHD10 is localized in the mitochondrial inter-
membrane space, and it is enriched at cristae junctions
within the mitochondrial contact site and cristae organizing
system (MICOS) complex [226, 227]. Mutant CHCHD10
leads to fragmentation of the mitochondrial network, disas-
sembly of the MICOS complex that disrupts the assembly
of OXPHOS complexes, and decreased nucleoid number

and nucleoid disorganization that potentiates mtDNA insta-
bility (Figure 6) [226, 227]. Disruptions to these crucial mito-
chondrial components ultimately impair mitochondrial
function and potentiate the ROS generation reported in
ALS patients (Figure 6) [228].

7.4. Huntington’s Disease (HD). HD is an autosomal domi-
nant progressive neurodegenerative disorder clinically char-
acterized by chorea, dystonia, incoordination, and cognitive
decline [229]. The prevalence of HD is estimated to be
10.6-13.7 individuals per 100,000 people in Western popula-
tions [230]. HD is caused by a CAG trinucleotide repeat
expansion in the huntingtin (HTT) gene, resulting in poly-
glutamine repeats in the HTT protein [229]. The activity
of respiratory complexes II and III is decreased in HD
(Figure 7) [231]. In a mutant HD mouse model, mito-
chondrial respiration and ATP synthesis are significantly
decreased (Figure 7) [232]. In mammals, chronic adminis-
tration of complex II inhibitors replicates many clinical
features of HD [233–235]. Conversely, the protein, rather
thanmRNA,expressionof twoimportantconstituentsofmito-
chondrial complex II, the 30 kDa iron-sulfur (Ip) subunit and
the 70 kDa FAD (Fp) subunit, is preferentially decreased in
the striatum of HD patients [236]. Overexpression of either
complex II subunits restores complex II activity and attenuates
mitochondrialdysfunctionanddeathinmutantHTTneuronal
cells [236].

Mutant HTT interaction with
p62 and BNIP3 can disrupt
autophagic or mitophagic
processes

(i)

HTT mutant interacts with p53(i)
p53 post-transcriptionally
activates Bax

(ii)

Lesions and loss in mtDNA(i)
Mutant HTT inhibits the
transcription of PGC1�훼
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Figure 7: Mitochondrial dysfunction in the pathology of Huntington’s disease (HD). A CAG trinucleotide repeat expansion in the huntingtin
(HTT) gene causes an array of mitochondrial dysfunctions in HD. Mutations in HTT are associated with a decrease in ATP synthesis and
complex II and II activities. Mutant HTT also promotes mitochondrial apoptosis via its interaction with p53, leading to its enhanced
expression and transcriptional activity that activates proapoptotic BAX. Damage and loss of mtDNA is another feature of HD that is
attributed to the inhibition of PGC1α transcription by mutant HTT. Moreover, mutations in HTT contribute to mitochondrial
fragmentation through the upregulation of mitochondrial fission proteins such as DRP1 and FIS1 and the downregulation of the fusion
proteins, MFN1/2. Lastly, mutant HTT proteins can disrupt autophagy or mitophagy through its interaction with the autophagic adaptor,
p62, and the mitophagic protein, BNIP3, respectively.
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HTT has been found to be associated directly with the
outer mitochondrial membrane [237, 238]. Mitochondria
from HD patient lymphoblasts or from a HD mouse model
have a lower membrane potential and become depolarized
at lower Ca2+ loads than relevant controls [237, 238]. Mutant
HTT may also affect mitochondrial function through its
interaction with transcription factors, such as p53, CREB-
binding protein and specificity protein 1 [239]. Of note,
p53 activates mitochondrial apoptosis through transcrip-
tional induction of p53 upregulated modulator of apoptosis
(PUMA) or the posttranscriptional activation of BAX
(Figure 7) [240, 241]. In neuronal cultures, mutantHTT binds
p53 and enhances nuclear p53 expression and its transcrip-
tional activity [242]. Conversely, p53 inhibition in mutant
HTT fly and mouse models attenuates HTT-mediated
neurodegeneration [242].

The pathogenesis of HD also involves increased mtDNA
lesions and mtDNA depletion [243]. This pathological alter-
ation couldbe attributed todecreasedPGC1αmRNAobserved
in early-stage HD patients [244, 245]. Mutant HTT directly
inhibits transcription of PGC1α by associating with the pro-
moter region and interfering with the activation functions of
the transcription factors CREB and TAF4 (Figure 7) [244].
Moreover, overexpression of PGC1α partially attenuated
mutantHTT-inducedneurotoxicity [244]. Incontrast,PGC1α
KO mice demonstrate impaired mitochondrial function and
possess HD features such as a hyperkinetic movement disor-
der and striatal neuron degeneration [246].

Mutant HTT protein also potentiates mitochondrial
fragmentation [247]. This occurs through the induction and
activation of mitochondrial fission regulators DRP1 and
FIS1, while reducing the expression of fusion proteins, such
as MFN1/2 (Figure 7) [247–252]. A fragmentation of the
mitochondrial network may also be potentiated by the
inhibition of mitophagy [253]. Indeed, overexpression of
PINK1 was neuroprotective in Drosophila and mouse HD
models through increased mitophagy [254]. Wild-type
HTT protein may also directly participate in autophagy/
mitophagy via its interaction with autophagic adaptor, p62
[255], or with the mitophagic protein, BCL2-interacting
protein 3 (BNIP3) (Figure 7) [256]. Therefore, mutant
HTT may directly disrupt autophagic or mitophagic process
via these mechanisms.

Furthermore, oxidative stress and neuroinflammation
are other common pathogenic factors in HD [257]. A num-
ber of ARE-containing genes are found to be induced in
human HD brain [258], suggesting that NFE2L2 activation
may be involved in the pathogenesis. In animal HD models
with mitochondrial complex II inhibition, overexpression of
NFE2L2 exerts a neuroprotective effect [259]. While the
expression of NFE2L2 protein did not alter in a HD model,
the expression of the NFE2L2 modulators, KEAP1 and p62,
were found to be reduced, and thus, this could affect NFE2L2
activity [260]. Moreover, cotransfection of NFE2L2 with
mutant HTT in primary striatal neurons reduced the half-
life of mutant HTT and improved cell viability [261]. In fact,
activation of NFE2L2 is protective against mutant HTT-
induced toxicity [262, 263], highlighting the potential of
NFE2L2 induction for HD patients.

7.5. Friedreich’s Ataxia (FA). Friedreich’s ataxia is the most
prevalent autosomal recessive spinocerebellar disorder that
affects approximately one in 50,000 Caucasians [264]. It is
characterized by progressive neuro- and cardiodegeneration
and mitochondrial iron accumulation [264, 265]. The disor-
der is predominantly caused by a GAA repeat expansion in
the first intron of the FRDA gene that results in a marked
reduction in the expression of the encoded protein, frataxin
[266, 267]. Approximately 2% of the remainder FA cases
are due to point mutations in the FRDA gene [264].

The manifestation of FA symptoms is most prominently
characterized by progressive neurological disability and fatal
dilated cardiomyopathy, as well as a tendency for diabetes
mellitus in approximately 10% of FA patients [268, 269].
The pathogenesis of FA is associated with mitochondrial iron
accumulation that results in ROS-induced toxicity (Figure 8)
[270–272]. As such, iron-chelation therapy has been shown
to be beneficial in reducing both neurologic and cardiologic
FA pathology, presumably by preventing oxidant-mediated
cell death [272–275]. In addition to mitochondrial iron
accumulation and oxidative damage, FA patients also exhibit
a deficit of ISC enzymes, leading to decreased energy metab-
olism as evident by complex I dysfunction, as well as per-
turbed heme synthesis (Figure 8) [270, 276]. This is due to
the dysregulation of cellular and mitochondrial iron metab-
olism upon frataxin deficiency, which disrupts proper utili-
zation of iron and causes mitochondrial dysfunction
(Figure 8) [271, 277].

Recent studies utilizing a conditional frataxin knockout
mice model of FA have demonstrated that frataxin deficiency
leads to pronounced trafficking of iron from the cytosol to
the mitochondrion, leading to a cytosolic iron deficiency
and mitochondrial iron accumulation in the form of nonpro-
tein-bound, biomineral iron aggregates [270, 272, 278]. Due
to the depletion of mitochondrial ferritin in frataxin defi-
ciency [270, 278], these iron aggregates within the redox
active mitochondria result in increased protein oxidation
and depletion of the cellular antioxidant pool [271]. Para-
doxically, despite the apparent oxidative stress, the expres-
sion and activity of NFE2L2 is markedly depressed [271],
due to a mechanism involving increased KEAP1- and
GSK3β-mediated NFE2L2 degradation in the cytosol and
nucleus, respectively (Figure 8) [271]. As such, the marked
decrease in NFE2L2 levels results in the deficient expression
of its downstream target genes for antioxidant defense, hence
exacerbating oxidative stress (Figure 8) [271]. The defective
induction of NFE2L2 despite clear oxidative stress in FA sug-
gests that NFE2L2 may be a potential target for treatment
against FA.

Frataxin deficiency has also been associated with autoph-
agy and apoptosis. Frataxin-silenced neuron-like cells
undergo apoptosis through the upregulation of p53 and
BAX, as well as caspase activation, which suggests the
involvement of mitochondrial dysfunction in the pathogenic
initiation of apoptosis [279]. Notably, increased autophagic
and apoptotic markers in a cardiac mouse model of FA that
exhibit frataxin deficiency implicate their role in the observed
cardiomyopathy [280]. Therefore, mitochondrial dysfunc-
tion is probably responsible for the activation of autophagy,
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and promoting apoptosis, potentially through the intrinsic
pathway involving the mitochondrion (Figure 8). Further-
more, considering the extent of mitochondrial dysfunction
in FA, it is possible that dynamic mitochondrial processes,
such as mitophagy, are also perturbed (Figure 8). Collec-
tively, the resulting accumulation of redox active iron, oxida-
tive stress, defective antioxidant response, dysfunction in
energy metabolism, and activation of autophagy and apopto-
sis due to frataxin deficiency leads to the neurodegeneration,
ataxia, and cardiomyopathy in FA (Figure 8).

7.6. Potential Therapies for Degenerative Disorders Targeting
Mitochondrial Function. There has been a substantial
increase in the interest and generation of potential mito-
chondrial targeted therapeutics over the past 20 years. Several
advancements are considered here as interesting examples
relevant to the current review. For disease-specific analy-
sis of mitochondrial targeted therapeutics, the reader is
encouraged to examine the following comprehensive
reviews [281–283].

Mitochondrial dysfunction and damage induced by ROS
play a critical role in the pathogenesis of many degenerative
diseases [284]. Therefore, NFE2L2 and its signaling pathway
have become a major therapeutic target for the treatment of
diseases such as AD, PD, ALS, HD, and FA, which focuses
on improving mitochondrial bioenergetics and function
through the alleviation of oxidative stress and the activation
of antioxidant defense [34, 115, 285].

In a study using cellular models of AD, the activation of
the NFE2L2 signaling pathway by the potent free radical
scavenger, 3H-1,2-dithiole-3-thione, was able to reduce Aβ
levels and attenuate ROS generation, which partially rescued
mitochondrial membrane potential [115]. In PD models,
NFE2L2 inducers are able to restore mitochondrial mem-
brane potential in PINK1-deficient cells and rescue
dopamine-induced toxicity [184]. Previous studies on FA
have assessed the effectiveness of promoting NFE2L2 levels
in the rescue of oxidative stress-induced mitochondrial
impairments [286]. One particular study has shown that
the NFE2L2-inducer, omaveloxolone, was able to restore

(i) Complex I dysfunction
(ii) Defective ISC components in

respiratory chain(i) Generation of ROS
(ii) Oxidative stress

(i) ISC synthesis
(ii) Heme synthesis

(i) ↓ NFE2L2 levels
(ii) ↓ Antioxidant gene expression

Figure 8: Effect of frataxin deficiency on mitochondrial dysfunction and the pathogenesis of Friedreich’s ataxia (FA). It has been well
established that frataxin deficiency leads to the dysregulation of mitochondrial iron metabolism that affects the iron-sulfur cluster (ISC)
and heme biosynthesis. Notably, there is the abnormal accumulation of redox active iron in the mitochondria that exacerbates ROS
generation, which is further potentiated by the defect in antioxidant defense, as evident by the decrease in NFE2L2 levels and its
downstream antioxidant target genes. Furthermore, studies have shown that frataxin deficiency disrupts energy metabolism due to the
impairment of the mitochondrial respiratory chain. These pathological features collectively attribute to mitochondrial dysfunction in FA,
which can activate autophagy and potentially induce apoptosis and mitophagy. As a result, this leads to the neurodegeneration, ataxia, and
cardiomyopathy observed in FA.
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complex I activity and protect against oxidative stress in
neuronal mouse models of FA, as well as in fibroblasts from
FA patients [286]. The mitochondrial membrane potential
was also maintained upon incubation of cells with the
NFE2L2 inducer, which suggests its potential in improving
mitochondrial function in addition to its effect on oxidative
stress [286]. As a further example of defense against neural
oxidative stress, studies have shown that pretreatment with
NFE2L2-inducing agents, sulforaphane, or carnosic acid,
was able to induce the NFE2L2 pathway and protect corti-
cal mitochondria from the effects of the neurotoxic lipid
peroxidation by-product, 4-hydroxynonenal [287]. More-
over, NFE2L2 has been suggested to also influence mito-
chondrial activity by affecting the availability of substrates
such as NADH and FADH2 for mitochondrial respiration
[34, 184]. Hence, the pharmacological activation of NFE2L2
could potentially rescue OXPHOS activity and mitochon-
drial bioenergetics in disease states.

Alternatively, melatonin is an interesting mitochondria-
targeted antioxidant that has been recently explored for the
treatment of AD and PD [288–290]. Evidences suggest that
the mechanism of neuroprotection of melatonin involved
increasing NFE2L2 expression and activation of the NFE2-
L2/ARE pathway [288–293]. In addition to activating the
NFE2L2 pathway, previous studies in mice subjected to
irradiation-induced neurodegeneration have also shown that
pretreatment of melatonin accumulates in mitochondria and
was able to promote PINK1 mitochondrial accumulation
that alters mitochondrial dynamics and prevents loss of
mitophagic progression [288]. Overall, melatonin pretreat-
ment was able to increase mitochondrial respiratory chain
activity and enhance cognitive performance in these animals
[288]. In fact, there is evidence to suggest that NFE2L2 can
regulate PINK1 expression due to the presence of ARE in
the promoter regions of the PINK1 gene [294, 295]. Hence,
NFE2L2 may have a role in mediating mitophagy, and the
upregulation of NFE2L2 could potentially restore mitochon-
drial homeostasis in PD [288].

Additionally, triterpenoids are antioxidants that activate
the NFE2L2 signaling pathway to inhibit oxidative stress
and were found in a number of studies to have neuroprotec-
tive effects that could improve behavioral phenotype in
mouse models of AD [296]. In relation to mitochondria,
the triterpenoid, asiatic acid, reportedly protects neurons
from cell death by preventing mitochondria-dependent apo-
ptosis in a cellular model of AD [297]. Another study also
demonstrated that asiatic acid blocked the translocation of
α-synuclein into mitochondria, thereby protecting it against
oxidative stress and apoptosis [298]. Asiatic acid also pre-
vented the α-synuclein-induced decrease in mitochondrial
membrane potential in a Drosophila model of PD [298].

Impairment of the NFE2L2 signaling pathway and mito-
chondrial dysfunction is evident in the pathogenesis of
degenerative diseases, yet the development of drugs that
exploit the targeting of mitochondria through the activation
of NFE2L2 is only in its infancy. Recent studies have already
begun to demonstrate the effect of this relationship to rescue
mitochondrial function in neurodegenerative diseases.
Hence, the combined effect of ameliorating oxidative stress

and mitochondrial dysfunction would be a novel approach
in future drug design for the treatment of various neurode-
generative diseases.

Another avenue in the development of new therapeutics
involves the targeted chelation of cytosolic and/or mitochon-
drial iron, as it is known to play a significant role in potenti-
ating oxidative stress and ROS generation for many
degenerative diseases in addition to a defect in mitochondrial
respiration [299–304].

Previous studies on AD have shown that the sequestra-
tion of iron by FtMt have neuroprotective effects in cell
models, which prevented neuronal cell damage induced by
Aβ [128]. Similarly, the regulation of FtMt helps maintain
mitochondrial and neuronal iron homeostasis, in which its
overexpression was shown in a mouse model of PD to inhibit
mitochondrial damage and reduce ROS production, thus
having neuronal protection [305]. These studies indicate
the importance of regulating mitochondrial iron levels, espe-
cially in iron overload conditions. Studies have also examined
the use of metal chelation, such as the metal-binding agent,
PBT2, that has been in clinical trials for the treatment of
AD and HD, which demonstrated the potential for binding
iron, copper, and zinc in the brain and reduce amyloid pla-
que formation with signs of cognitive improvement [306].
The design of chelators with specificity for mitochondrial
iron and other metals could increase the effectiveness of iron
chelation therapy for neurodegenerative diseases. Other
studies have also reported that intracellular oxidative stress
enhances HO-1 activity that leads to the accumulation of
iron in the mitochondria of astrocytes in AD and PD brains
[307]. This deposition of mitochondrial iron in glial cells
increases the risk of neighboring neurons to further oxidative
damage [307, 308]. These findings give rise to the prospect of
iron chelation therapy, especially in the targeting of mito-
chondrial iron, as a new neuroprotective strategy for AD
and PD.

In FA, mitochondrial iron loading is well-characterized
in the heart of a mouse cardiac model of FA, which resulted
in severe defects in mitochondrial function [272, 280, 309,
310]. In fact, Mӧssbauer spectroscopic analysis and transmis-
sion electron microscopy demonstrate that iron appears as a
nonferritin, high spin form of ferric iron that exists without a
protein shell that prevents against ROS-mediated oxidative
damage [278]. As such, this precipitation of mitochondrial
iron potentiates redox stress, which warrants for its targeted
removal. A specialized group of low molecular weight, lipo-
philic ligands of the pyridoxal isonicotinoyl hydrazone
(PIH) class [311] has been examined to target this mitochon-
drial iron loading [312]. In terms of mechanism, PIH could
permeate biological membranes, including the mitochon-
drion, and effectively chelate mitochondrial iron accumula-
tion after mitochondrial heme synthesis was inhibited using
succinylacetone, as demonstrated in reticulocytes [313]. Fur-
ther studies demonstrated that PIH and several of its analogs
[314] effectively removed mitochondrial iron [312] and
inhibited oxidative stress [315]. Moreover, these latter agents
were markedly superior to desferrioxamine (DFO) [314], a
chelator used for treating iron overload disease [316]. Inter-
estingly, in the mouse cardiac model of FA, the combination
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of PIH and DFO prevented iron loading in the heart and
reduced cardiac hypertrophy but did not rescue the defective
iron metabolism caused by the loss of frataxin [272]. Consid-
ering that the spinal cord and dorsal root ganglia are highly
vulnerable to frataxin deficiency [317, 318], cellular and
mitochondrial iron dysregulation could contribute to the
pathophysiology of these tissues. As such, it is necessary
to consider the design of iron chelators that targets these
pathogenic regions.

The use of iron chelators in targeting mitochondrial iron
as a therapeutic strategy for degenerative diseases deserves
further investigation. The combination of antioxidants and
iron chelators could potentially be an effect approach to ame-
liorate oxidative stress and boost mitochondrial function,
while also eliminating harmful iron that would otherwise
potentiate redox damage.

8. Conclusions

The mitochondrion emerges as a central hub that orches-
trates cellular antioxidant defense, energy production, and
apoptosis. The regulation of NFE2L2 has been shown to play
an essential role in antioxidant defense, and the role of this
key protein in mitochondrial homeostasis has only been
recently elucidated, linking antioxidant defense to neuronal
mitochondrial trafficking. This includes recent evidence of
the direct interaction of NFE2L2 with this organelle.

The exquisite dependence of high energy–demanding
cells, such as neurons and cardiomyocytes, on mitochondria
for energy production means that mitochondrial dysfunction
can lead to their demise. This is exemplified by the number of
deleterious neurodegenerative diseases, such as AD, PD, ALS,
HD, and FA, where perturbation of mitochondrial function
is an essential component of their pathogenesis. Therefore,
the maintenance of mitochondrial homeostasis is a crucial
factor and a potential therapeutic target to treat these dis-
eases. Our understanding of mitochondrial homeostasis
and metabolism is also broadened by the discovery of novel
mutations causing these neurodegenerative diseases, with
an appropriate example being the identification of the role
of frataxin in Friedreich’s ataxia.

Considering the key role of the mitochondrion in this
array of degenerative diseases, therapeutic strategies target-
ing this organelle has been a focus of the increasing body of
research. The additional linkage of NFE2L2 with mitochon-
dria may lead to the convergence of previously considered
disparate avenues of treatment that could result in exciting
and innovative therapeutic advances.
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