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ABSTRACT
Background . Glioblastoma multiforme (GBM) is a highly, malignant tumor of the
primary central nervous system. Patients diagnosed with this type of tumor have a
poor prognosis. Lymphocyte activation plays important roles in the development of
cancers and its therapeutic treatments.
Objective. We sought to identify an efficient lymphocyte activation-associated gene
signature that could predict the progression and prognosis of GBM.
Methods. We used univariate Cox proportional hazards regression and stepwise
regression algorithm to develop a lymphocyte activation-associated gene signature in
the training dataset (TCGA, n= 525). Then, the signature was validated in two datasets,
including GSE16011 (n = 150) and GSE13041 (n = 191) using the Kaplan Meier
method. Univariate andmultivariate Cox proportional hazards regression models were
used to adjust for clinicopathological factors.
Results. We identified a lymphocyte activation-associated gene signature (TCF3,
IGFBP2, TYRO3 and NOD2) in the training dataset and classified the patients into
high-risk and low-risk groups with significant differences in overall survival (median
survival 15.33 months vs 12.57 months, HR = 1.55, 95% CI [1.28–1.87], log-rank
test P < 0.001). This signature showed similar prognostic values in the other two
datasets. Further, univariate and multivariate Cox proportional hazards regression
models analysis indicated that the signature was an independent prognostic factor for
GBM patients. Moreover, we determined that there were differences in lymphocyte
activity between the high- and low-risk groups of GBM patients among all datasets.
Furthermore, the lymphocyte activation-associated gene signature could significantly
predict the survival of patients with certain features, including IDH-wildtype patients
and patients undergoing radiotherapy. In addition, the signature may also improve the
prognostic power of age.
Conclusions. In summary, our results suggested that the lymphocyte activation-
associated gene signature is a promising factor for the survival of patients, which is
helpful for the prognosis of GBM patients.
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INTRODUCTION
Glioblastoma multiforme (GBM) is classified as a grade IV diffuse glioma and is one of the
most aggressive and lethal brain cancers. GBMhas a high recurrence rate, typically originates
in the cerebral hemispheres, and can quickly spread to the other parts of the brain (Alifieris
& Trafalis, 2015; Batash, Asna & Schaffer, 2017). IDH status is a classical marker of GBM,
and patients with IDH mutations tended to have a better survival (Reuss, Mamatjan & von
Deimling, 2015;Burgenske, Yang & Sarkaria, 2019;Aldape, Zadeh & von Deimling, 2015). In
previous studies, GBM patients can be divided into four distinct molecular subtypes based
on gene expression profiling, including proneural, neural, classical and mesenchymal (Lee,
Lee & Lee, 2018; Liang et al. , 2005). The standard treatment for GBM is surgery, followed
by radiation and chemotherapy (Alifieris & Trafalis, 2015; Batash, Asna & Schaffer, 2017;
Wick et al., 2018). Recently, immunotherapies have been introduced for the treatment of
GBM, especially for patients with EGFR mutations. However, the median survival time for
GBM patients is only 15 months, which suggests that drug treatments may be ineffective
for most of patients (Zanders, Svensson & Bailey, 2019).

The lymphocyte activation is a set of processes where the lymphocytes are stimulated
by specific antigens or nonspecific mitogens, which results in the synthesis of protein and
production of lymphokines (Kay, 1991; Hodgkin, Chin & Hasbold, 1997). These processes
affect the proliferation and differentiation of various effector and memory cells. The
effector cells will respond to antigens for the first time during the primary immune
response. The memory cells can respond to a secondary immune response, which is
known as immunological memory. Lymphocyte activation is destroyed in cancer, which
is important for immunotherapy (Burugu, Dancsok & Nielsen, 2018; Ware, 2008). Some
lymphocyte activation-associated markers had been found to be associated with favorable
survival and be effective for the treatments of patients, such as, lymphocyte activation
gene 3 (LAG-3) (Wang, et al. , 2018; Saleh et al., 2019; He et al., 2016). In addition, the
lymphocyte activation combining with radiotherapy may be a novel treatment regimen for
cancer patients (Akiyoshi, Tanaka & Mori, 2019; Sato, Jeggo & Shibata, 2019). Therefore, it
is critical to develop a lymphocyte activation-associated prognostic signature of GBM to
improve the treatment of patients.

In our study, a lymphocyte activation-associated gene signature was developed, which
predicted the overall survival of GBM patients in training dataset. And we validated its
prognostic power in another two datasets. The signature was found to be an independent
prognostic factor after adjusting for other clinicopathologic factors. Moreover, this
signature not only predicted the survival of patients with IDH wild-type glioblastoma,
but also patients after radiotherapy. These findings indicated the signature may serve as an
effective prognostic biomarker for patients with GBM.

MATERIALS AND METHODS
Datasets description
Wedownloaded three gene expression datasets (TCGA,GSE16011 (Gravendeel et al. , 2009)
and GSE13041 (Lee, Scheck & Nelson, 2008)) from The Cancer Genome Atlas (TCGA)
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Table 1 Clinical and pathological characteristics of GBM patients in TCGA.

Clinical features Category GBM, n= 525

Gender Female 205
Male 320

Age Median (range) 59 (10–89)
Classical Subtype Classical 144

Mesenchymal 155
Neural 83
Proneural 99

Survival status Alive 75
Deceased 449

Follow-up from samples (months) Median (range) 12.39 (0.1–127.5)

Table 2 Clinical and pathological characteristics of GBM patients in GSE13041 and GSE16011.

Clinical features Category GSE13041
(n= 191)

GSE16011
(n= 150)

Gender Female 74 47
Male 117 103

Age Median (range) 54 (18–86) 55.44 (14.38–80.65)
Survival status Alive 15 3

Deceased 176 147
Follow-up from samples (months) Median (range) 12.97(0.23–111.77) 8.7 (0.24–150.72)

portal (https://portal.gdc.cancer.gov) and Gene Expression Omnibus (GEO) (Edgar,
Domrachev & Lash, 2002; Barrett et al., 2013), which contained patient outcome and
clinicopathological factors. The gene expression profile of each dataset was normalized
by replacing the expression level e with log2(e+1). The patients without matched clinical
information were excluded. Consequently, a total of 866 GBM patients (525 GBM patients
from TCGA, 191 GBM patients from GSE13041 and 150 GBM patients from GSE16011)
were included in this study. The TCGA dataset was treated as a training dataset, and another
two datasets (GSE16011 and GSE13041) were used as independent validation cohorts. In
the training dataset, the median survival time of GBM patients was 12.4 months (ranging
from 0.1 to 127.5 months). And there were 144 classical, 155 mesenchymal, 83 neural, and
99 proneural GBM samples. In Table 1 we summarized clinicopathological data belonging
to GBM patients in the TCGA dataset. The median survival of GBM patients was 13.0
months (ranging from 0.2 to 111.8 months) and 8.7 months (ranging from 0.2 to 150.7
months) in the validation datasets, respectively (Table 2).

Identifying the lymphocyte activation-associated gene signature
Differential expression analysis was performed based on transcriptome profile of GBM
patients by the ‘‘limma’’ R package in the training dataset. Genes with the cutoff criteria
of |log2-fold change|≥1 and FDR < 0.000001 between tumor and normal tissues were
regarded as differentially expressed genes (DEGs). Using the univariate Cox proportional
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hazards regression algorithm, we retained the DEGs that were strongly associated with
the survival of patients with GBM (P < 0.05). We focused on the prognostic genes that
participated in the lymphocyte activation process. The lymphocyte activation-related genes
were collected by GO terms in Gene Ontology (Ashburner et al., 2000; Gene Ontology,
2021). Then, we further selected genes associated with overall survival by stepwise
regression analysis in the training dataset. Ultimately, we kept geneswith the smallest Akaike
information criteria (AIC) value to construct the prognostic model. There were four genes
(TCF3, IGFBP2, TYRO3 and NOD2) that were identified in our study (Fig. S1). Finally,
a risk score model was developed based on the gene expression weighted by regression
coefficients of univariable Cox regression: Risk score = (−0.6246210 × expression level
of TCF3) + (0.2992 × expression level of IGFBP2) + (0.2421068 × expression level of
TYRO3) + (0.2155469 × expression level of NOD2). Based on this model, the patients
were classified into the high- and low-risk groups by the median risk score in the training
dataset.

Statistical analysis
In the survival analysis, we analyzed only overall survival as the end point. The survival
differences between the two groups were visualized by Kaplan–Meier analysis and were
compared by the log-rank test. The prognostic value of the lymphocyte activation-associated
gene signature was estimated by univariate and multivariate Cox proportional hazards
regression models. The Cox proportional hazards regression model was used to calculate
hazard ratio (HR) and 95% confidence intervals (CI). The P-values smaller than 0.05 were
considered to be statistically significant. We obtained gene signatures (that is cell markers)
of lymphocytes (including natural killer cells, T cells and B cells) from the CIBERSORT
web portal (Newman et al., 2015) and MCP-counter web portal (Becht et al., 2016). We
combined information from these two sources to get gene signatures of lymphocytes. The
lymphocyte activity of each patient was calculated by single sample gene set enrichment
analysis (ssGSEA) (Barbie et al., 2009) based on the gene signatures of lymphocytes. Each
ssGSEA enrichment score represents the degree to which the genes in a particular gene set
are coordinately regulated within a sample. In our study, the gene signature of lymphocytes
means the gene set of ssGSEA and the lymphocyte activity means the enrichment score.
The concordance index (C-index) was used to compare the prognostic efficacy among
this signature, age, sex, and the combined model using a logistic regression with the
aforementioned three variables, and the significant p-value were calculated by rcorrp.cens
function in Hmisc package. R software (http://www.r-project.org) was used to perform
all of the statistical analyses, version 3.5.1 (Packages: survival, survminer, limma, Hmisc,
ggplot2, GSVA).

RESULTS
Development of a prognostic signature related to lymphocyte
activation
The gene expression profile and clinical information of GBM patients were obtained from
TCGA, which were treated as the training dataset. There were 525 tumor samples and
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Figure 1 The survival analysis of the lymphocyte activation-associated gene signature in training set
(TCGA, n = 525). (A) Kaplan–Meier curves of overall survival for the four gene signature. The patients
were divided into high-risk (red) and low-risk group (grey). (B) The heatmap showing expression profiles
of four genes in the signature. (C) The survival status and time distribution of the GBM patients.

Full-size DOI: 10.7717/peerj.12070/fig-1

10 normal samples. The tumor and normal samples came from different samples. We
identified 2,364 differentially expressed genes between tumor and normal samples by
using the limma package (FDR < 0.000001 and |log2-fold change| ≥1), including 933
up-regulated and 1,431 down-regulated genes (Fig. S2). We obtained 173 differentially
expressed genes that could be used for prognosis by univariate Cox proportional hazards
regression. Genes were subjected to the lymphocyte activation function, whichwas obtained
from Gene Oncology (GO). This resulted in 12 lymphocyte activation-associated genes
that were used for subsequent analysis. Finally, we obtained four genes (TCF3, IGFBP2,
TYRO3 and NOD2) that were significantly related to overall survival using a stepwise
regression algorithm. We used the lymphocyte activation-associated gene signature to
calculate each patient’s risk score based the four genes’ expression levels weighted by
regression coefficients in the univariate Cox proportional hazards regression analysis
(Fig. S1). Positive coefficients of IGFBP2, TYRO3, and NOD2 (0.2992, 0.2421068 and
0.2155469) suggested that their expression was associated with poor prognosis in GBM
patients, while the negative coefficient of TCF3 (−0.6246210) indicated it was associated
with better survival.

In the training dataset, GBM patients were divided into high-risk (n= 262) and low-risk
(n= 263) groups according to the median risk score (2.752) of the lymphocyte activation-
associated gene signature. This score was used as the cutoff. Patients within high-risk group
had significantly shorter overall survival time than those within low-risk group (median
survival 15.3 months vs 12.6 months, HR = 1.55, 95% CI [1.28–1.87], log-rank test P <

0.001, Fig. 1A). The gene expression and survival time distributions suggested that patients
in the high-risk group had higher IGFBP2 expression (Fig. 1B). The low-risk patients
tended to have a longer survival time (Fig. 1C).
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Figure 2 The survival analysis of the lymphocyte activation-associated gene signature in GSE16011
(n = 150). (A) Kaplan–Meier curves of overall survival for the four-gene signature with the median value
as the cutoff. (B) The expression profiles of the four genes in the signature. (C) The distribution of the
GBM patients’ overall survival status.

Full-size DOI: 10.7717/peerj.12070/fig-2

Prognostic value of the lymphocyte activation-associated
gene signature in validation sets
Next, we validated the prognostic value of the lymphocyte activation-associated gene
signature in another two external validation datasets, GSE13041 (n= 191) and GSE16011
(n= 150). Each patient’s risk score was calculated with the same formula as that used in
the training set. The patients were divided into the high- and low-risk groups according
to the median cutoff determined for each dataset. In GSE16011, survival time of patients
in the high-risk group were significantly shorter than those in the low-risk group (median
survival 7.1months vs 10.3months,HR= 1.57, 95%CI [1.13–2.17], log-rank testP = 0.069,
Fig. 2A). IGFBP2 and TYRO3 had a relatively higher expression in the high-risk group
(Fig. 2B). We found the low-risk patients presented a trend of longer survival time in
GSE16011 (Fig. 2C). Moreover, the signature was found to predict the survival of patients
with GBM in GSE13041 (median survival of high-risk patients 12.0 months vs median
survival of low-risk patients 14.5 months, HR = 1.42, 95% CI [1.05–1.92], log-rank test
P = 0.02, Figs. 3A–3C) with statistical significance.

The signature independently predicted overall survival of GBM
patients
We used univariate and multivariable Cox regression analysis after adjusting for other
clinicopathologic factors to assess whether the lymphocyte activation-associated gene
signature was an independent prognostic biomarker in GBM. The covariables included
age, sex, IDH status, subtypes, and the prognostic signature. We found that the signature
(HR = 1.46, 95% CI [1.16–1.83], P = 0.001), age (HR = 1.03, 95% CI [1.02–1.04], P <

0.001), sex (HR = 1.30, 95% CI [1.04–1.63], P = 0.02) and proneural types (HR = 1.64,
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Figure 3 The survival analysis of the lymphocyte activation-associated gene signature in GSE13041
(n = 191). (A) Kaplan–Meier curves of overall survival for the four-gene signature with the median value
as the cutoff. (B) The expression profiles of the four genes in the signature. (C) The distribution of the
GBM patients’ overall survival status.

Full-size DOI: 10.7717/peerj.12070/fig-3

Table 3 Multivariate analysis for the lymphocyte activation-associated gene signature of overall survival in TCGA.

Variables Univariate Multivariate

HR 95%CI P value HR 95%CI P value

Age 1.032 1.025–1.04 <0.001* 1.028 1.018–1.037 <0.001*

Sex Male vs Female 1.241 0.993–1.551 0.057 1.3 1.035–1.634 0.024*

IDH status Mutation vsWild type 0.353 0.229–0.544 <0.001* 0.831 0.396–1.742 0.623
Signature High_risk vs Low_risk 1.588 1.275-1.979 <0.001* 1.455 1.159–1.828 0.001*

Subtypes G-CIMP vs Classical 0.369 0.2271–0.599 <0.001* 0.701 0.319–1.544 0.378
Mesenchymal vs Classical 1.169 0.876–1.56 0.289 1.117 0.835–1.494 0.455
Neural vs Classical 1.091 0.788–1.509 0.6 1.177 0.848–1.633 0.331
Proneural vs Classical 1.314 0.954–1.808 0.094 1.638 1.184–2.268 0.003*

Notes.
*Significant P values are labeled with * (P < 0.05).

95% CI [1.18–2.27], P = 0.003) independently predicted a worse OS for GBM patients in
the training dataset (Table 3). In the validation dataset GSE16011, we also found that the
lymphocyte activation-associated gene signature had independently prognostic value (HR
= 1.36, 95% CI [1.35–1.98], P = 0.029, Table 4). This signature independently predicted
the survival of GBM patients, with marginal significance (HR = 1.33, 95% CI [0.98–1.81],
P = 0.06, Table S1). These findings revealed that the prognostic ability of the lymphocyte
activation-associated gene signature was independent of the clinicopathological factors for
OS in GBM.
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Table 4 Multivariate analysis for lymphocyte activation-associated gene signature of overall survival in GSE16011.

Variables Univariate Multivariate

HR 95%CI P value HR 95%CI P value

Age 1.039 1.024–1.054 <0.001* 1.031 1.024–1.039 <0.001*

Sex Male vs Female 0.809 0.544–1.204 0.296 0.928 0.62-1.391 0.719
IDH status Mutation vs wild type 0.579 0.367–0.915 0.019* 0.809 0.493-1.326 0.4
Signature High_risk vs Low_risk 1.554 1.284–1.88 <0.001* 1.359 1.346–1.979 0.029*

Notes.
*Significant P values are labeled with * (P < 0.05).

The differences in lymphocyte activity between the high- and low-risk
groups of patients
The GBM patients were divided into low- and high-risk groups based on their lymphocyte
activation-associated gene signature. We then compared the lymphocyte activity in these
two groups. Lymphocytes include natural killer cells, T cells and B cells. In TCGA, five
types of lymphocytes showed significant differences in activity between high- and low-risk
patients byWilcoxon ranked sum test (P < 0.05). These lymphocytes were memory B cells,
naive B cells, naive CD4 T cells, follicular helper T cells and regulatory T cells (Fig. 4A and
Fig. S3). And the lymphocyte activity of high-risk patients was significantly lower than in
low-risk patients. Similar phenomena were observed in the GSE13041 dataset (Fig. 4B).
However, activated CD4 memory T cells, resting CD4 memory T cells, CD8 T cells and
gamma delta T cells showed significant differences between the two groups. There were
three types of cells that showed different activity between low- and high-risk patients in the
GSE16011 dataset (P < 0.05, Fig. S4). These findings suggested that lymphocyte activity
was significantly different between the high- and low-risk GBM patients.

Stratification analysis of the lymphocyte activation-associated gene
signature
The IDH mutation is one of the most critical genomic alterations in GBM. The IDH
mutation means a somatic mutation in IDH1 in our study. IDH-wildtype GBM patients
had a shorter survival time than those with the IDH-mutation. The lymphocyte activation-
associated gene signature significantly predicted the overall survival of IDH-wildtype GBM
patients by log-rank test (P = 0.0043) but it did not predict the survival of IDH-mutation
patients (Fig. 5A). The IDH-wildtype patients were divided into high-risk and low-risk
groups using the same cutoff in the training dataset. The high-risk group of IDH-wildtype
patients had significantly shorter OS than those in the low-risk group (median survival
12.9 months vs 14.9 months, HR = 1.39, 95% CI [1.11–1.74], P = 0.0043, Fig. 5A). The
same phenomenon was also found in the GSE16011 dataset. The high-risk patients showed
worse OS than the low-risk patients (median survival 7.1 months vs 10.7 months, HR =
1.95, 95% CI [1.25–3.02], P = 0.0025) among IDH-wildtype patients (Fig. 5B).

We next explored whether the lymphocyte activation-associated gene signature was
effective for GBM patients within four transcriptome subtypes (proneural, neural, classical,
and mesenchymal) established by Verhaak et al. using Kaplan–Meier survival analysis.
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The signature significantly predicted the overall survival of patients with the mesenchymal
and proneural subtypes (log-rank test P value = 0.013 for mesenchymal subtypes and P
value = 0.041 for proneural subtypes, Fig. 6). The patients in the high-risk groups had
a shorter survival time than those in the low-risk groups (median survival 11.8 months
vs 15.3 months for mesenchymal subtypes and 9 months vs 13.2 months for proneural
subtypes, respectively). In addition, the signature did not have the prognostic ability for
patients with neural and classical subtypes (Fig. S5).

We also explored whether radiotherapy was an effective treatment for GBM patients.
We observed that high risk score significantly predicted a poor OS for GBM patients
undergoing radiotherapy in the GSE16011 (median survival 8.76 months vs 14.64 months,
HR= 1.86, 95% CI [1.27–2.72], P = 0.0011) and GSE13041 datasets (median survival 6.03
months vs 12.53 months, HR = 3.18, 95% CI [1.13–8.94], P = 0.022, Fig. 7).

Comparison of prognostic power between clinical factors and the
signature
To evaluate the prognostic performance of the prognostic signature, we performed C-index
calculation of clinical factors (age and sex) and the signature in three datasets (Harrell Jr
et al, 1982; Pencina & D’Agostino, 2004). We constructed another prognostic model by
combining our signature with clinical factors. A higher C-index indicated a superior
prognostic value of signature (Wu, Yuan & Liu, 2019; Li, Cui & Li, 2017). There were
significant differences found between age and the signature (P < 0.05) and between age
and sex. The clinical factors for age in combination with the signature showed a higher
C-index (0.646 for TCGA, 0.665 for GSE16011 and 0.600 for GSE13041) than age or
histological grade alone (0.645 for TCGA, 0.659 for GSE16011 and 0.595 for GSE13041,
Table S2), which were statistically significant (P < 0.05). These results suggested that this
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Figure 5 Kaplan–Meier analysis estimates of overall survival in TCGA (A) and the GSE16011 (B)
datasets according to the IDH1mutation status.
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lymphocyte activation-associated gene signature could add complementary value to known
clinical factors.

DISCUSSION
In this study, we identified a lymphocyte activation-associated gene signature that predicted
shorter overall survival of patients with GBM. The prognostic power of this signature was
evaluated by univariate and multivariate Cox proportional hazards regression models
analysis using three datasets (HR > 1). Our findings indicated that the gene signature
was an unfavorable factor in GBM. Moreover, the high-risk and low-risk patients, which
were separated by the signature, showed significant differences in immune cell activity.
This signature was found to be an independent prognostic factor after adjusting for
certain clinicopathological factors. In addition, the lymphocyte activation-associated gene
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signature also predicted the survival of patients with an IDH wild-type variant and for
patients after radiotherapy treatment.

We developed a prognostic signature that included four genes (TCF3, IGFBP2, TYRO3
and NOD2). IGFBP2 was one of the insulin-like growth factor binding proteins (IGFBPs),
which are proteins binding to Insulin-like growth factors. IGFBP2 expression increased in
peripheral blood mononuclear cells and participated in lymphocyte proliferation (Hettmer
et al., 2005). In various autoimmune diseases, IGFBP2 can be as potential biomarker and
therapeutic target (Ding & Wu, 2018). Moreover, IGFBP2 expression predicted the survival
in GBM patients (Yuan et al., 2019; Cai et al., 2018). NOD2 played important roles in
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the pathogenesis of some diseases, such as, oral lichen planus (Ahn et al., 2020), Crohn’s
disease (Niess et al., 2012), and inflammatory bowel disease (Franchi et al., 2008). NOD2
expression is higher in activated/memory CD4+ T cells (Zanello et al., 2013) and was found
to be a new diagnostic and treatment target for disease (Ahn et al., 2020). A prognostic
model was constructed by 9 immune genes, including NOD2, which predicted the shorter
survival of GBM patients (Liang, Chai & Wang, 2020).

Another marker, an important transcription factor TCF3 played a role in germinal
center B - cell development and promoted cell growth, which contributed to proliferative
phenotype in Burkitt lymphoma (Richter et al., 2012; Dave et al., 2006; Sakata-Yanagimoto
et al., 2014). In addition, TCF3 can regulate B-cell-restricted genes through E-box
motifs (Barbie et al., 2009). It can promote survival of Burkitt’s lymphoma cells by
activating B-cell receptor signaling and PI3K signaling pathways and by modulating
cell cycle regulators (Schmitz et al., 2012). Also, TCF3 promotes the survival in lymphoid
cells (Sakata-Yanagimoto et al., 2014). TYRO3 is a protein-coding gene, which participates
in ERK signaling pathway. The higher level of TYRO3 expression is associated with
decreased overall survival in patients with colorectal, hepatocellular, and breast
cancers (Smart et al., 2018). Although the latter two genes have not been directly shown to
be associated with GBM, the prognostic efficacy of these two genes should be verified in
future studies.

In conclusion, we developed a lymphocyte activation-associated gene signature with
prognostic power and offered new insights for the treatments of GBM. However, more
data are needed to test the prognostic value of the signature before applying it to clinical
management. A larger study is needed to confirm that the signature can accurately predict
the prognostic benefits for GBM patients.
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