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Impact of antibiotic treatments on the expression
of the R plasmid tra genes and on the host
innate immune activity during pRAS1 bearing
Aeromonas hydrophila infection in zebrafish
(Danio rerio)
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Abstract

Background: The transfer of R plasmids between bacteria has been well studied under laboratory conditions and
the transfer frequency has been found to vary between plasmids and under various physical conditions. For the
first time, we here study the expression of the selected plasmid mobility genes traD, virB11 and virD4 in the 45 kb
IncU plasmid, pRAS1, conferring resistance to tetracycline, trimethoprim and sulphonamide, using an in vivo
zebrafish infection- treatment model.

Results: Three days after oral infection of adult zebrafish with Aeromonas hydrophila harboring pRAS1, elevated
expression of pro-inflammatory cytokine (TNF a, IL-1b and IL-8) and complement C3 genes in the intestine
coincided with disease symptoms. Tetracycline, trimethoprim and an ineffective concentration of flumequine given
48 h prior to sampling, strongly increased expression of plasmid mobility genes, whereas an effective dosage of
flumequine resulted in lower levels of mRNA copies of these genes relative to placebo treatment. Following
effective treatment with flumequine, and ineffective treatments with a low concentration of flumequine, with
trimethoprim or with sulphonamide, the intestinal expression of immune genes was strongly induced compared to
placebo treated control fish.

Conclusions: Treatment of zebrafish infected with an antibiotic resistant (TcR, TmR, SuR) A. hydrophila with
ineffective concentrations of flumequine or the ineffective antimicrobials tetracycline and trimethoprim strongly
induced expression of genes mediating conjugative transfer of the R-plasmid pRAS1. Simultaneously, there was a
strong induction of selected inflammatory and immune response genes, which was again evident in fish subjected
to ineffective treatment protocols. Our findings point to the essential role of therapeutic practices in escalation or
control of antibiotic resistance transfer, and suggest that antibiotic substances, even in sub-inhibitory
concentrations, may stimulate innate defenses against bacterial infections.

Background
The zebrafish (Danio rerio) is a small tropical teleost
that bridges the phylogenetic evolutionary gap between
invertebrates and mammals in experimental biomedi-
cine. It is evolutionarily closer to humans than fruit flies
and nematodes, and is easier to work with and study

than mice [1]. Recently, increased interest in using zeb-
rafish for studies of human diseases as disparate as can-
cer, microbial infections and immune-pathological
changes has evolved [2]. As an infection model, zebra-
fish have been employed for study of both human and
fish pathogens [1,3-6].
Aeromonas hydrophila is a ubiquitous Gram-negative

aquatic bacterium and opportunistic pathogen causing
fatal hemorrhagic septicemia in several fish species
including warm water and temperate aquaculture
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species [7-9]. In particular, A. hydrophila infections have
been repeatedly reported from zebrafish facilities causing
unusual [10] and sometimes high mortality rates [11].
Some strains of A. hydrophila have also been reported
to be important human pathogens [12].
Conjugative R plasmids assigned to the IncU incom-

patibility group are widespread in environmental and
fish pathogenic Aeromonas species worldwide [13]. An
IncU representative, pRAS1, was detected in Aeromonas
salmonicida from Norway [14]. This plasmid is very
similar to an IncU plasmid derived from a human urin-
ary tract pathogenic Escherichia coli in Eastern Germany
as early as the 1970’s [15]. The IncU pRAS1 has the
potential to transfer between bacteria of diverse environ-
mental compartments with high transfer frequency on
solid surfaces [16].
The variable drug resistance region of IncU R-plas-

mids may contain a heterogenic collection of drug resis-
tance genes and transfer systems that can mediate
recombination and acquisition of additional resistance
genes. In our study we used the 45 kb pRAS1 contain-
ing a class 1 integron, responsible for trimethoprim and
sulfonamide resistance caused by dfr16 and sul1, respec-
tively. In addition there is a Tn1721 transposon encod-
ing tetracycline resistance by the Tet A determinant
[14]. A highly conserved DNA backbone structure with
a variable region encoding antibiotic resistance has been
postulated for IncU group members [14]. The IncU plas-
mid pFBAOT6 (84.749 bp) was sequenced [17] and
found to be almost identical with the IncU backbone of
another plasmid RA3 (45.909 bp) [18]. Functional analy-
sis of this broad-host-range IncU group of plasmids has
demonstrated their self-transfer, replication and stable
maintenance in alpha-, beta-, and gammaproteobacteria.
The genetic functional transfer block of pRA3 consists
of twenty-one different genes [18]. The mobility genes
traD, virB11 and virD4 were selected from this func-
tional block of the conjugative genetic system for analy-
sis in this study.
The expression of a wide number of genes responsible

for innate immune responses towards microbes in the
intestine of adult zebrafish has been evaluated [19-23].
A recent study demonstrated the distribution of impor-
tant innate antibacterial immunity mediators such as
peptidoglycan recognition protein (pglyrp) and a factor
that regulates neutrophilic cell densities and cytokines
in the entire intestine of healthy zebrafish [24]. The bac-
terial pathogen recognition receptors (Toll-like receptors
etc.) and signaling pathways activating the immune
response (pro-inflammatory cytokines, hepicidin and
heptoglobin etc.) are similar to those in mammals [25].
The aim of this study was, therefore, to assess the

expression of transfer genes of pRAS1 caused by a
pathogenic A. hydrophila in vivo in response to

antibiotic treatments, while simultaneously monitoring
selected inflammatory and innate immune system
parameters.

Methods
Bacterial strains and growth conditions
Aeromonas salmonicida 718 (NVI 2402/89) originally
isolated from the head kidney of diseased Atlantic sal-
mon in 1989, harboring a 25-MDa conjugative IncU
plasmid, pRAS1, mediating resistance to oxytetracycline,
trimethoprim and sulfadiazine was used as the donor
strain. A. hydrophila strain (F315/10), originally isolated
from a skin ulcer of freshwater reared salmon was used
as the recipient strain, prior to zebrafish challenge. Both
strains were cultured at 22°C on 5% cattle blood agar
[blood agar base no 2, Difco] for 48 h (A. salmonicida)
or 24 h (A. hydrophila).

In vitro conjugation experiments
Conjugal transfer experiments were performed as
described by Schmidt et al. [26]. In brief, donor A. sal-
monicida 718 (carrying plasmid pRAS1) and recipient A.
hydrophila F315/10 strains were grown overnight in
Luria Broth (LB) with shaking at room temperature.
Overnight cultures were diluted in LB to approximately
108 CFU/ml. Volumes of 100 μl of donor and recipient
culture, respectively, were mixed and placed on the sur-
face of a sterile 0.45 μm filter [Millipore] placed on the
surface of an LB agar plate and incubated for 24 h at
22°C. The resultant colonies were suspended by vortex-
ing the filter in 1 mL LB, pelleted and re-suspended in
100 μl of the same medium. Serial dilutions were then
spread onto selective Luria agar (LA) plates supplemen-
ted with tetracycline (10 μg/ml), trimethoprim (10 μg/
ml) and sulphonamide (200 μg/ml) for selection of
trans-conjugants after 24 h incubation at 28°C. In paral-
lel, the total number of recipients was estimated on LA
after 24 h incubation at 28°C, a temperature not permis-
sible for the donor strain. Conjugal transfer frequencies
were calculated by dividing the number of trans-conju-
gants by the number of A. hydrophila recipients. The
frequency of pRAS1 transfer was 1.8 × 10-3. Transfer of
the R plasmid pRAS1 was confirmed by plasmid profile
analyses and determination of the resistance pattern of
the trans-conjugants as described by Cantas et al. [27].

Plasmid isolation
The plasmids were isolated from trans-conjugants using
a QIAprep Spin Miniprep kit [Qiagen, Hilden, Ger-
many]. Plasmids were visualized under ultraviolet illumi-
nation following electrophoresis in 1% horizontal
agarose gels and staining with ethidium bromide. Plas-
mid size was determined using BAC-Track supercoiled
DNA markers [Epicentre].
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Zebrafish, challenge procedure and treatment
The zebrafish experiment was carried out at the experi-
mental animal unit of the Norwegian School of Veterin-
ary Science (NSVS), a facility licensed by the National
Animal Research Committee. The experiment was
approved by the same committee in accordance with
national Regulations on Animal Experimentation. Adult
zebrafish (> 6 months, TAB line) were supplied by the
Aleström Zebrafish Lab (AZL), Oslo, Norway. The fish
were fed commercial dry feed (SDS400, Special Diet Ser-
vices, Witham, Essex, UK), twice daily according to AZL
standard operational procedures. Water temperature
was maintained at 22 ± 1°C throughout the experiment.
Forty-two adult zebrafish of mixed gender (22 male,
mean weight 441 mg/20 female, mean weight 514 mg)
were allocated into 21 experimental units (sterile one-
liter lab bottles: 2 fish per unit × 3 replicates × 7 experi-
mental groups). All fish were starved for two days prior
to experimental infection. The fish were anesthetized by
immersion in benzocaine (ethyl p-aminobenzoate, 0.34
mg/ml) [Sigma-Aldrich]. Each fish was laid on its side
on a moisturized paper tissue and a 20 μl saline suspen-
sion of pRAS1 bearing A. hydrophila F315/10 (1.6 × 108

CFU/ml) was administered into the stomach, using a
micropipette fitted with a sterile feline urinary tract
catheter (n = 18 units). The same volume of sterile phy-
siological saline solution (0.9% NaCI) was employed for
intubation of the uninfected control group (n = 3 units).
The fish were immediately returned to the respective
experimental unit and feeding resumed (every 12 h) to
evaluate the appetite during the post challenge period.
For the remaining part of the experiment, the fish were
kept under continuous visual monitoring, with absence
periods of less than 1 h. After 24 h the infected zebra-
fish were bath-treated with the following antibiotics
[Sigma-Aldrich] added to the water: tetracycline (20 μg/
ml), trimethoprim (20 μg/ml), sulphonamide (20 μg/ml)
and subtherapeutic (0.06 μg/ml) or therapeutic (2 μg/
ml) concentrations of flumequine, respectively. Distilled
sterile water (1 ml/L) was used as a placebo treatment
while the infection control groups were untreated.

Sampling and culturing
To avoid mortality caused by the A. hydrophila infection
prior to sampling, and to ensure maximum RNA preser-
vation in bacteria sampled from the intestinal tract and
in the intestinal tissue, fish from the challenged and
control groups were observed every hour for three days
following exposure. All fish were euthanized by decapi-
tation at the end of the experiment. The abdominal cav-
ity was opened by incision as described elsewhere
Cantas et al. [28]. Entire intestinal samples were trans-
versally sliced (< 0.5 cm) and immediately immersed in
RNAlater [Invitrogen] for bacterial and tissue RNA

stabilization. Kidney samples from each sacrificed fish
were examined bacteriologically for the presence of sys-
temic infection. Specimens were streaked on 5% cattle
blood agar and Brocalin agar [Merck, Darmstadt, Ger-
many] as described by Cantas et al. [28].

Gene expression
Total RNA from RNAlater-stored tissue samples was
extracted using Trizol Reagent [Invitrogen, Carlsbad,
CA, USA]. Sterile 5 mm steel beads [Qiagen, Valencia,
CA] were added for complete bacterial lyses in a Qiagen
TissueLyser [Qiagen, Valencia, CA], run at 30 Hz for 5
min. Further processing was performed with the RNeasy
kit [Qiagen, Valencia, CA]. Complete removal of DNA
was achieved by treating the supernatant from the
RNeasy processed samples with RNase-Free DNase Set
[Qiagen, Valencia, CA]. Gel electrophoresis was used to
confirm that isolated RNA was intact while the concen-
tration and purity of the RNA were quantified using
NanoDrop® ND-1000 [NanoDrop Technologies, Dela-
ware, USA].
Reverse transcription was performed with Superscript

III Reverse Transcriptase [Invitrogen] following the
manufacturer’s instructions. cDNA amplifications were
performed using previously published and novel
designed specific primers [Table 1] by Primer 3 software

Table 1 Primers employed for Real-Time PCR

Target gene Sequence (5’ to 3’) Reference or
GenBank

accession no.

E. coli 16S
rDNA

F GCAGGCCTAACACATGCAAGTC [30]

R TGCTGCCTCCCGTAGGAGT

traD F ACGCCTCCTGTTCTGTTTCA [DQ401103.1]

R ATCAGCCCGGTCAGATTGT

virB11 F GGATCAACTCAGCCACAAAAA [DQ401103.1]

R CACCGTTCCGCTGTTCTATT

virD4 F GTTGTCCAGGGTAGCAGCAG [DQ401103.1]

R TGGACAACCAGGAACAAGC

dfr16 F GACCTCATCCTCCGATGG [AJ517790.2]

R TGGTCGGAGATATGGGTATAGAA

C3 F CGGACGCTGACATCTACCAA [25]

R TCCAGGTCTGCTCTCCCAAG

IL-1b F ATCAAACCCCAATCCACAGAGT [25]

R GGCACTGAAGACACCACGTT

IL-8 F TGTTTTCCTGGCATTTCTGACC [24]

R TTTACAGTGTGGGCTTGGAGGG

TNF a F ACCAGGCCTTTTCTTCAGGT [10]

R TGCCCAGTCTGTCTCCTTCT

ef1a F TGCCTTCGTCCCAATTTCAG [24]

R TACCCTCCTTGCGCTCAATC
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[29]. Each primer (0.5 μl, 10 μM) was mixed with 18 μl
of EXPRESS SYBR GreenER qPCR Supermix [Invitro-
gen]. Two μl template cDNA was used. Real-Time PCR
tests were performed in duplicate with a Stratagene
detection system [Stratagene, La Jolla, CA, USA] using
optical grade 96-well plates, at the following conditions:
50°C for 2 min, 95°C for 2-10 min, 40 cycles of 95°C for
10-15 s and 55-60°C for 30-60 s. To determine the spe-
cificity of amplification, analysis of the product melting
curve was performed after the last cycle of each amplifi-
cation. Data was captured using Stratagene MxPro
Mx3005P QPCR software.
Amplification efficiencies were measured with the

formula of E = 10(-1/slope) by two-fold dilutions of
cDNA as described by Bogerd et al. [31]. Expression of
the plasmid target genes was normalized to dfr16, esti-
mated to be the most stable endogenous reference
gene on the plasmid for our in vivo experiment. The
function describing the relationship between Ct

(threshold cycle) and x (log copy number) for dfr16
was: Ct = -3.45x + 13.98; R2 = 0.99. The comparative
CT method [2ΔCT method] was used to determine the
expression level of analyzed genes [30]. The resultant
fold units were calculated by dividing the normalized
expression values with the placebo treated controls.
Expression of the zebrafish inflammatory and immune
response related target genes was normalized against
expression of the housekeeping gene elongation factor
1 alpha (ef1a) [24] in challenged fish relative to sterile
physiological saline solution intubated and placebo
treated controls.
For absolute quantification of the total bacterial popu-

lation of the gut, standard curves of 16S rDNA copy
number were constructed using a PCR product of the
16S rRNA gene of Escherichia coli. The functions
describing the relationship between Ct (threshold cycle)
and x (log copy number) for total bacteria was: Ct =

-3.19x + 53.66; R2 = 0.99, as used by Castillo et al. [32].
To better address the activity of the innate immune

response in zebrafish during the A. hydrophila infection,
the transcription levels of the immune mediators: TNF
a, IL-1b and IL-8 (pro-inflammatory cytokines) and C3
(complement system, acute phase protein) were evalu-
ated. Fold changes in mRNA levels post-challenge and
treatment were calculated in relation to the average
mRNA levels of placebo treated fish.

Statistical analysis
The effect of treatment on selected gene expression level
was analyzed with Student’s t-test as described by [33].
The results were expressed as mean ± SEM (standard
error of the mean), based on variation between 6 adults
per treatment group. Differences were considered signif-
icant at (*) p < 0.05, (**) p < 0.01 and (*** p < 0.001).

Results
Clinical symptoms and re-isolation of A. hydrophila
No fish died within 3 days of the intubation challenge. All
A. hydrophila inoculated zebrafish showed changes in
external body color (pale, reddish coloration around gill
covers), abnormal positioning in the aquarium (at the
surface or near the bottom), increased gill ventilation fre-
quency or lack of appetite within 24 h, while no such
symptoms were seen in the uninfected control group. On
termination of the experiment after 3 days, macroscopi-
cally visible ascites was observed in both the placebo
treated fish and groups treated with ineffective antibio-
tics, whereas reduced clinical symptoms were noted in
the group that had received effective treatment. Moderate
to heavy growth of A. hydrophila in pure culture was
detected from kidney samples of groups receiving pla-
cebo or ineffective treatments, whereas very low levels of
A. hydrophila were isolated from groups of zebrafish
exposed to effective antibiotic treatment [Figure 1].

Immune response of zebrafish to A. hydrophila
Compared to uninfected fish the transcription patterns
of the innate immune response genes in placebo treated
fish [Figure 2] were clearly raised and the transcription
patterns of IL-1b (108 fold) and IL-8 (45 fold) genes
were found to be substantially higher than TNF a (8
fold) and C3 (3 fold).

Comparing the gut microbiota related 16S rRNA gene
copy number under different antibiotic treatments
The copy numbers of 16S rRNA genes in the digestive
tract significantly decreased following treatment with

Figure 1 Growth level median counts of A. hydrophila isolated
from kidney samples of experimentally infected zebrafish, 48 h
post antibiotic treatment (6 different treatment groups). Axis
scale: absent = 0, very few = 1, few = 2, moderate = 3, rich = 4 and
very rich = 5. Error bars represent ± SEM (6 adults per treatment
group). Differences were considered significant at (**) p < 0.01 for
total growth degree of placebo vs. other antibiotic treated zebrafish
in each intestinal tissue analyzed.
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inhibitory doses of flumequine. The copy numbers
obtained from ineffective antibiotic treatment groups
were similar to those observed in the placebo treated
group [Figure 3].

Impact of antibiotic exposure on expression of the tra
genes of pRAS1
The expression of traD, virB11 and virD4 was strongly
induced by ineffective treatment (tetracycline, trimetho-
prim and sub-inhibitory levels of flumequine) and
strongly reduced by treatment with effective concentra-
tions of flumequine [Figure 4]. However, ineffective sul-
phonamide slightly reduced the expression of these
genes.

Immune responses following effective and ineffective
treatments
Our results revealed a strong up-regulation of all four
analyzed immune related genes after effective flume-
quine treatment. An induction of some of these genes
was observed even after ineffective treatment with tri-
methoprim, sulphonamide and a sub-lethal level of flu-
mequine, whereas ineffective tetracycline treatment
apparently suppressed two of the innate immune
response mediators [Figure 5].

Discussion
In this study, we have for the first time employed an
experimental zebrafish infection- treatment model to
mimic the conditions under which antibiotic resistance
(mediated by a naturally occurring R-plasmid) transfer
takes place in the intestinal microbiota during an infec-
tion caused by a resistant pathogen treated with effective
or ineffective antibiotic treatments.

We were able to establish an infection with A. hydro-
phila resulting in disease symptoms similar to those pre-
viously described [10,11] but with no mortality 3 days
post- infection, as intended in our study design. Rodri-
guez et al. [10] and Pullium et al. [11] observed per-
acute cases of A. hydrophila infection with high mortal-
ity rates within a few hours possibly related to intraperi-
toneal injection of bacterial extracellular toxins and/or
enzymes. In our study, re-isolation of the challenge
organism from the kidneys of exposed fish supported
the clinical findings and confirmed systemic infection. It
has also been shown that A. hydrophila produces an
array of virulence factors that induce strong inflamma-
tory responses [34-36]. The induction kinetics of some
of the zebrafish intestinal immune system genes revealed
an Acute Phase Response (APR), that is the immediate
host inflammatory reaction which counteract challenges
such as tissue injury and infection [37]. In the current
study A. hydrophila infection resulted in a clear increase
in expression of the genes encoding the pro-inflamma-
tory cytokines TNF a, IL-1b and IL-8. These cytokines
are important inducers of APR resulting in increased
production of Acute Phase Proteins (APPs) [38], such as
C3. C3 is central in elimination of bacterial threats [39].
A systematic study of APR in zebrafish has shown strik-
ing similarities with mammals in function and induction
of involved genes [25]. The fact that 1 IL-1b and IL-8
are highly induced while C3 remains moderately
expressed is consistent with the expected expression
profile at the early stages of infection (3 days in our
case).
The composition of the zebrafish intestinal bacterial

microbiota and its interaction with the host and the
environment has previously been studied by cultivation
and culture-independent methods [28,40]. In the present
study this microflora and the experimentally introduced
pRAS1 harboring A. hydrophila were impacted by var-
ious antibiotic treatments. Recent studies have shown
that Real-Time PCR with species-specific or universal
probes is an accurate and sensitive method for quantifi-
cation of total bacterial populations as well as individual
species from the intestinal contents [41-45].
In our study a broad spectrum of 16S rDNA primers

were used since bacteria can have different genome
sizes and different rrn operon copy numbers. There are
different concepts for considering the rrn operon num-
bers in quantitative 16S rDNA-based experimental sys-
tems [43,44,46]. Ott et al. [47], have provided accurate
and stable figures of similar bacterial concentrations in
clinical samples with application of universal primers
and specific probes. In the present study, 16S rDNA
gene copy numbers were significantly decreased after
effective flumequine treatment, whereas sub-lethal flu-
mequine or the clinically relevant ineffective tetracycline,

Figure 2 Relative pro-inflammatory cytokine and complement
C3 genes expression levels across the entire intestine of A.
hydrophila infected and placebo treated adult zebrafish after
harvesting 3 days post-challenge. Expression levels are reported
as fold change compared to average expression levels of uninfected
(sterile physiological saline solution inoculated) control groups. Error
bars represent ± SEM (based on variation between 6 adults per
treatment group).
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trimethoprim and sulphonamide treatments caused
minimal change. The reduction in 16S rDNA gene copy
number following treatment with flumequine might be
the result of killing of pathogenic A. hydrophila and a
disturbed and reduced commensal flora. In mammals
and humans, it is well known that antibiotics can
change the composition of the bacterial populations in
the intestines [48-50]. Studies concerning the distribu-
tion of antibiotic resistant bacterial isolates in zebrafish
facilities are, however, limited. Previous studies per-
formed in our laboratory Cantas et al. [28], have shown
a relatively low level of tetracycline (12-20%), trimetho-
prim (25-32%), sulphonamide (28-36%) and quinolone
(0.5-4.8%) antibiotic resistant bacteria in the Gram nega-
tive cultivable gut flora in four different zebrafish

facilities, one of which supplied the zebrafish for the
present study. This would leave potential recipient flora
for plasmid transfer in all treatment groups.
The minimal change in total 16S rDNA copy number

following treatment with clinically relevant levels of tet-
racycline, trimethoprim and sulphonamide may be
explained by multiplication of the resistant A. hydro-
phila pathogen due to the decreased competition follow-
ing killing of the susceptible part of the normal
intestinal microbiota.
The active involvement of the selected tra-genes in

the DNA conjugation process is described [18]. The
traD gene encodes an inner membrane protein with
putative ATPase activity for DNA transport during bac-
terial conjugation. This protein forms a ring-shaped

Figure 3 Quantification of total gut microbiota in intestinal samples of experimentally infected and subsequently treated zebrafish
based on 16S rDNA copy numbers. Error bars reflect ± SEM (based on variation between 6 adults per treatment group). Differences were
considered significant at (***) p < 0.001 for total 16S rDNA copy numbers of placebo vs. other antibiotic treated zebrafish in each intestinal
tissue analyzed.

Figure 4 Expression of three pRAS1 plasmid mobility genes in intestinal samples from adult zebrafish 48 h post treatment (72 h post
experimental infection) relative to placebo treatment. Error bars represent ± SEM (based on variation between 6 adults per treatment
group). Differences were considered significant at (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 for mobility gene expression levels of tetracycline
vs. other antibiotic treated zebrafish in each intestinal tissue analyzed.
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structure in the inner membrane through which DNA is
passed to the transferosome [18,51]. However, it has
been shown that the virB4 and virD11 genes may, in
addition, mediate conjugative transfer via a C-terminal
ATPase function during pili assembly which is more
efficient on surfaces than in liquids [52,53]. pRAS1 is
transferred approximately 1000× faster on solid surfaces
compared to the frequency in liquid media [Kruse and
Sørum 1994, unpublished data]
The genes of the conjugative transfer system studied i.

e. traD, virB11 and virD4, were found to be differently
expressed between the treatment groups. The expression
of transfer genes was found to be low following sulpho-
namide and flumequine treatment, whereas treatment
with a sub-inhibitory level of flumequine, clinical rele-
vant levels of tetracycline and trimethoprim resulted in
increased expression. Several factors have been proposed
that could explain these differences; i) the susceptible
gut microbiota was reduced in number leaving behind a
variable number of potential conjugation recipients [54],
ii) the donor potential and the genetic advantages/disad-
vantages of the specific plasmid in conjugating to the
available recipient population [55], iii) the antibiotic
itself might regulate the higher or lower expression
levels of pRAS1 mobility genes resulting in possible dif-
ferent transfer frequencies. An increased transfer fre-
quency induced by antibiotic exposures (tetracycline and
trimethoprim) has been demonstrated for conjugal
transfer of pRAS1 plasmid in sediment microcosm
experiments [56].
A most remarkable result of the current study was the

strongly increased expression levels of the selected plas-
mid transfer genes in the intestinal microbiota following
treatment with tetracycline, trimethoprim (plasmid
encoded resistance) and ineffective concentrations of

flumequine. The low concentration of the quinolone flu-
mequine was chosen to mimic the low concentration in
the intestinal lumen when administering the drug intra-
muscularly or intravenously for treatment purposes, in
in-appetent animals offered in-feed antibiotics, or by
exposure to environmental residues from the water
[55,57,58]. It has been shown that administration of
sub-therapeutic levels can interfere with DNA replica-
tion (e.g. quinolones) [59,60], folic acid synthesis (e.g.
trimethoprim) [61], protein synthesis (e.g. tetracycline)
[62] as well as cell wall synthesis (e.g. b-lactams) [63]
and may induce the so-called SOS response [64] which
can promote acquisition and dissemination of antibiotic
resistance genes [57,65]. Thus, our results reinforce the
need for great caution in the use of SOS-inducing anti-
biotics to avoid induction of resistance transfer follow-
ing antibiotic therapy. It is known that the LexA protein
as part of the SOS response binds to the LexA box pre-
ceding the intI gene and thereby increasing the tran-
scription rate of the intI gene resulting in an increased
gene cassette exchange rate in the integron [66]. There
is no recognized LexA box found close to the promoters
of the traD, virB11 and virD4 genes of the pRAS1 plas-
mid sequence (data not shown). However, the occur-
rence of LexA targets in promoter sequence areas in
vivo without the existence of a putative LexA box in the
DNA sequence has been demonstrated. This indicates
the assistance by an additional unknown factor in regu-
lation of LexA gene expression in vivo [67].
An equally remarkable finding was the impact of anti-

biotic treatments on the expression of innate immunity
genes. The decreased TNF a and C3 expression in the
zebrafish’s intestine after non-effective tetracycline treat-
ment is in accordance with earlier reports [68,69] relating
tetracyclines to posttranscriptional blockage of cytokine

Figure 5 Expression of selected inflammatory and immune response genes in the entire intestine of experimentally infected zebrafish
48 h post antibiotic treatment, relative to the expression in placebo treated fish (ref. Figure 2). Error bars represent ± SEM (based on
variation between 6 adults per treatment group). Differences were considered significant at (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001 for
immune response levels of tetracycline vs. other antibiotic treated zebrafish in each intestinal tissue analyzed.
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production [70]. Whereas, sulphonamide and trimetho-
prim treatments that have no impact on the growth of
pathogenic A. hydrophila had little impact on IL-1b and
IL-8, as expected. In contrast, the sub-inhibitory level of
flumequine caused 40 and 20 fold increases in the expres-
sions of IL-1b and IL-8, respectively. In addition effective
flumequine treatment caused 200 and 100 times higher
expressions of those genes, respectively. Hypothetically,
this may be related to the immunomodulatory properties
of those drugs [71,72] and in the diminished number
(killed) of pathogenic A. hydrophila that can no longer
depress the immune system by its virulence factors when
the effective flumequine treatment was employed [73,74].
We have for the first time termed this clear, aggres-

sive, immunological activity at the molecular level as
‘Charged Immune Attack, (CIA)’, which describes the
inevitably strong revenge of the innate immune response
against the weakened bacterial infection, as mediated by
a short period with an effective antimicrobial treatment.
The reason for this bias is not known, but both human
and veterinary medical practitioners have observed that
a single dose of antibiotics, sometimes surprisingly, may
cure an infection. We think that the current results pro-
vide a glance into subtle and immediate effects of che-
motherapy on the host’s innate immune system that
may be responsible for such outcomes. Further studies
are needed to shed new light on the current findings
and to clarify the underlying mechanisms.
For methodological reasons, most studies of in vivo

conjugal plasmid transfer have been performed by add-
ing donors and limited numbers of recipients in germ
free animals [75,76] or by challenging conventional fish
with genetically tagged bacteria [77]. To the best of our
knowledge, this is the first report on the effect of anti-
biotic treatment of an infection on the expression of the
tra genes of an R-plasmid harbored by the infecting
pathogen and the early immune signals in a host model.
Real-Time PCR technology offers a fast and reliable
quantification of the mRNA production of any target
sequence in a sample [78]. The results add information
to our knowledge about development of antibiotic resis-
tance in infected hosts including the clinical infection
treatment and control scenario.

Conclusions
As expected the control of the A. hydrophila infection
of zebrafish failed when tetracycline, trimethoprim and
sulphonamide were used due to the R-plasmid (pRAS1)
harbored by the pathogen. The same result was identi-
fied as expected when sub-inhibitory levels of flume-
quine were employed, whereas an effective dosage of
flumequine reduced the clinical symptoms and con-
trolled the pathogen and transfer of pRAS1. At the
same time, the ineffective therapeutants tetracycline,

trimethoprim and sub-inhibitory concentrations of flu-
mequine increased the expression levels of plasmid
mobility genes. The results should be taken into account
by physicians and veterinarians when prescribing anti-
biotic drugs, underscoring the need to avoid risk for
augmenting the transfer of genetic drug resistance ele-
ments to commensal microbiota.
This is the first combined in vivo study of antibiotic

treatment on the innate immune system of the host and
the conjugative activity of an R plasmid. A particularly
valuable observation relates to the increased activity of
the innate immune system caused by antibiotic expo-
sure, even with ineffective drugs (R-plasmids) and at
sub-therapeutic levels.
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