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Abstract

Motivation: The investigation of the structure of biological systems at the molecular level gives insights about their
functions and dynamics. Shape and surface of biomolecules are fundamental to molecular recognition events.
Characterizing their geometry can lead to more adequate predictions of their interactions. In the present work, we
assess the performance of reference shape retrieval methods from the computer vision community on protein
shapes.

Results: Shape retrieval methods are efficient in identifying orthologous proteins and tracking large conformational
changes. This work illustrates the interest for the protein surface shape as a higher-level representation of the pro-
tein structure that (i) abstracts the underlying protein sequence, structure or fold, (ii) allows the use of shape retrieval
methods to screen large databases of protein structures to identify surficial homologs and possible interacting part-
ners and (iii) opens an extension of the protein structure–function paradigm toward a protein structure-surface(s)-
function paradigm.

Availabilityand implementation: All data are available online at http://datasetmachat.drugdesign.fr.

Contact: matthieu.montes@cnam.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are macromolecules involved in most biological processes.
Protein structures have been classified based on their backbone con-
formation and evolutionary history (Chandonia et al., 2019;
Dawson et al., 2017). Proteins interact through their molecular sur-
face that is considered as a higher-level representation of the protein
structure (Guzenko et al., 2020; Han et al., 2019; Pawlowski and
Godzik, 2001). Molecular surface abstracts the underlying protein
sequence, structure and fold into a continuous shape with geometric
and chemical features that fingerprint their interactions (Gainza
et al., 2020; Shulman-Peleg et al., 2004). Functionally related pro-
teins often share similar molecular surface properties despite a po-
tentially low sequence and/or backbone conformation similarity
(Han et al., 2019; Sael et al., 2008a). Different categories of meth-
ods based on protein surface shape have been developed over time
such as protein–protein docking (Ruiz Echartea et al., 2019;
Schneidman-Duhovny et al., 2005), protein structure alignment
(Mavridis and Ritchie, 2010) or protein surface shape comparison

methods (Craciun et al., 2017; Gainza et al., 2020; Gao et al., 2016;
Gramada and Bourne, 2006; Guzenko et al., 2020; Han et al., 2019;
Mak et al., 2008; Sael et al., 2008b). Shape comparison and retrieval
methods have been extensively developed in the computer vision
field, notably for military, civil security or medical imaging applica-
tions (Bustos et al., 2007). These methods, that can be applied to
protein surface shapes, can be classified into different categories
according to their shape representation: (i) shape retrieval methods
based on spectral geometry to establish a relationship between the
surface shape and the spectra of the Laplace-Beltrami operator; a
spectrum of the Laplace-Beltrami operator is a fingerprint composed
of the eigenvalues obtained using the differential Laplace-Beltrami
operator (Reuter et al., 2006), (ii) shape retrieval methods based on
histograms summarizing local or global geometrical features of the
surface shape (Rusu et al., 2010), (iii) shape retrieval methods based
on molecular surface maps, i.e. the projection(s) of the protein top-
ography in the 2D space (Papadakis et al., 2010), (iv) shape retrieval
methods based on the moments of 3D Zernike polynomials that best
fit the molecular surface shape (La et al., 2009), (v) shape retrieval
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methods based on geometric learning (Gainza et al., 2020; Monti
et al., 2017).

The evaluation of the performance of shape retrieval methods in
the literature is performed classically during the SHREC community
benchmark (Veltkamp et al., 2006) where joint efforts between the
structural bioinformatics and the computer vision communities have
been performed to develop benchmarking datasets on protein shapes
(Langenfeld et al., 2018; 2019; 2020; Mavridis et al., 2010; Song
et al., 2017).

In the present work, we evaluate the performance of four differ-
ent shape retrieval methods [3D-Surfer (La et al., 2009),
PANORAMA (Papadakis et al., 2010), ShapeDNA (Reuter et al.,
2006) and VFH (Rusu et al., 2010)] on the complete cross-
comparison of the SHREC 2019 protein shapes benchmarking data-
set (5298 shapes) (Langenfeld et al., 2019). PANORAMA,
ShapeDNA and VFH have shown top performance on non-protein
shapes benchmarks (Li et al., 2015; Lian et al., 2013; 2015; Li and
Hamza, 2014). As a reference, we include different protein structure
comparison methods [CE (Shindyalov and Bourne, 1998),
DeepAlign (Wang et al., 2013), TM-Align (Zhang and Skolnick,
2005) and lDDT (Mariani et al., 2013)]. We also illustrate the per-
formance of these shape retrieval methods on calmodulin, a protein
displaying large conformational changes. Finally, we highlight the
ability of these methods to identify distant surficial homologs. This
work illustrates the interest for the protein surface shape as a higher-
level representation of the protein structure that abstracts the under-
lying protein sequence, structure or fold and allows the use of shape
retrieval methods to screen large database of protein structures to
identify surficial homologs and possible interacting partners.

2 Materials and methods

2.1 Datasets
Set A has been designed for the evaluation of the performance of
shape retrieval methods on protein shapes for the community bench-
mark SHREC 2019 (Langenfeld et al., 2019). The dataset comprises
5298 experimental conformations of protein domains extracted
from 211 PDB entries resolved by NMR. It is available at http://
shrec2019.drugdesign.fr.

Set A classification relies on the Structural Classification of
Proteins-extended (SCOPe) database (Chandonia et al., 2019; Fox
et al., 2014). The lowest hierarchical level—called Domain hierarch-
ical level—links the SCOPe database to the Protein Data Bank
(PDB) (Berman et al., 2000). The following inclusion procedure was
applied on all SCOPe entries. A PDB structure was included if (i) its
conformers display the same number of atoms, (iii) it belongs to the
a, aþ b or a=b structural classes of the SCOPe database, (iii) at least
four orthologous protein structures exist and satisfy the previous in-
clusion rules. A total of 211 PDB entries satisfying all these criteria
were selected and assigned to 17 classes (following the SCOPe
Protein hierarchical level). Apart from the Protein hierarchical level,
the dataset contains sub-classes along two hierarchical sublevels.
The Species hierarchical level contains 54 classes corresponding to
the different species. The Domain hierarchical level is composed of
241 classes corresponding to the initial SCOPe classification. For
each structure of the dataset, the solvent excluded surface (SES)
(Connolly, 1983) was computed using EDTSurf (Xu and Zhang,
2009) with default parameters. EDTSurf outputs triangular meshes
stored as .ply file, converted to .off and .pcd formats, required by
the different shape comparison methods.
Set B consists in 16 protein structures that were studied in Sael
et al., (2008a). The following protein couples in set B display high
surface shape similarity and low sequence identity defined by their
PDB ID: 1jzn (chain A)—1g1q (chain A), 1 bar (chain A)—1rro,
1ryp (chain B)—1gwz, 1a31—1cy0, 1tbp—1t7p, 1b3t—1adv,
2nwl—2bbh and 2b2i—2cfp.

2.2 Shape retrieval methods
In 3D-Surfer, the protein global surface information is represented
with 3D Zernike Descriptors (3DZD), mathematical moment-based

invariants of 3D functions (Sael et al., 2008a). The molecular sur-
face of the protein is triangulated using MSROLL (Connolly, 1993)
and mapped onto a 3D grid from which 3DZD descriptors are cal-
culated for each protein. The similarity between two given protein
surfaces is quantified by the Euclidean distance between their two
respective descriptors. 3D-Surfer is only available online (La et al.,
2009) and takes a PDB file as an input.
In PANORAMA (Papadakis et al., 2010), the panoramic views, i.e.
molecular surface maps, are acquired through cylindrical projections
of the protein surface. The feature extraction relies on the use of two
2D transforms. Once the descriptor is extracted for each protein sur-
face of the dataset, the Manhattan and the Canberra distances are
used to quantify the overall similarity between the two protein
surfaces.
ShapeDNA is a spectral descriptor (Reuter, 2010; Reuter et al.,
2006). The descriptor corresponds to the normalized eigenvalues
obtained with the Laplace-Beltrami operator on the protein molecu-
lar surface. The similarity between two given protein surfaces is
quantified by comparing their spectra using the Euclidean distance.
The Viewpoint Feature Histogram (VFH) (Rusu et al., 2010) is a de-
scriptor defined by a histogram of geometrical features (Aldoma
et al., 2012). In VFH, a two-components descriptor is calculated
from (i) the normal at each point of the discrete surface (i.e. at each
vertex of the protein molecular surface mesh triangles) and (ii) the
normal of the centroid of the protein molecular surface. VFH is
available in the PCL library (Rusu and Cousins, 2011).

2.3 Protein structure comparison methods
CE (Combinatorial Extension) (Shindyalov and Bourne, 1998) rep-
resents proteins as a set of octameric fragments. Each pair of octa-
meric fragments that can be aligned within a given threshold is
considered an aligned fragment pair (AFP). CE uses a combinatorial
extension algorithm to identify and combine the most similar AFPs
between the compared structures. A Z-score is computed for the
final alignment using a reference set of alignments (Marti-Renom
et al., 2009).
DeepAlign (Wang et al., 2013) performs automatic pairwise protein
structure alignment using evolutionary relationships and hydrogen-
bonding similarity, in addition to spatial proximity of equivalent
residues. The scoring function is composed of amino acid mutation
score, local substructure substitution potential, hydrogen-bonding
similarity and geometric similarity.
TM-Align (Zhang and Skolnick, 2005) identifies the best structural
alignment between protein pairs independently from their sequen-
ces. It first generates optimized residue-to-residue alignment based
on structural similarity using heuristic dynamic programming itera-
tions. Then, the scoring function TM-score (Zhang and Skolnick,
2004) is used to scale the structural similarity. TM-score outputs a
score s in ð0; 1�, where 1 indicates a perfect match between two
structures. Output scores below 0.2 usually correspond to unrelated
proteins, while those higher than 0.5 assume generally the same fold
in SCOP/CATH (Murzin et al., 1995; Orengo et al., 1997).
lDDT (local Distance Difference Test) (Mariani et al., 2013) evalu-
ates the fraction of pairwise distances between atoms found in both
the reference and the query structures; therefore, lDDT is a
superposition-free method well suited to the analysis of flexible pro-
tein structures. The distances Dij between all atom pairs ij (from dif-
ferent residues) within 15 Å in the reference structure are computed.
The lDDT score is computed as the average of the four fractions of
conserved distances between the defined atom pairs ij with a grow-
ing tolerance of 0.5, 1, 2 and 4 Å, respectively.
MMLigner (Collier et al., 2017) relies on the Bayesian framework of
Minimum Message Length (MML) criterion. In this framework, the
possible 3D superposition of two proteins are considered as repre-
sentative of their structural relationships expressed as a one-to-one,
order-preserving, correspondence between subsets of residues.
Therefore, MMLigner generates zero to several possible structural
alignments for a pair of input structures. We present here the cover-
age of the best structural alignment; it is expressed as the fraction of
residues being aligned (the smallest protein is taken as the
reference).
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KPax (Ritchie, 2016) is a flexible backbone structural alignment
program design to circumvent the limitations of the rigid 3D super-
position algorithms. KPax starts by detecting short, local sets of
seven residues, then uses dynamic programming to generate an opti-
mal, global alignment using Gaussian functions to score the struc-
tural alignments (rigid structural alignment). The residue pairs
structurally aligned are then assigned to a segment, and the remain-
ing residues are considered for a new alignment step until no further
residue sets of seven residues can be aligned. The resulting structural
alignments are evaluated using the M-Score (Ritchie, 2016), that
scale from 0 (no alignment) to 1 (perfect structural alignment).

2.4 Shape retrieval performance evaluation
The performance in retrieval of each method was evaluated using
Precision-Recall curves, Nearest Neighbor (NN), First-tier (FT),
Second-tier (ST) and Mean Average Precision (MAP). The Precision-
Recall plot draws the recall R as a function of the precision P.
Precision P is the ratio of targets from class C retrieved within all
objects attributed to class C, while recall R represents the ratio of
retrieved targets from class C compared to jCj, the size of class C.
NN, FT and ST check the ratio of targets successfully attributed to
the class C. For NN, only the top-ranked match is considered. For
FT and ST, the jCj � 1 and 2jCj � 1 first matches are considered, re-
spectively. The MAP is the Mean Average Precision for each query,
which is the average of all precision values computed when each
relevant target is retrieved.

2.5 Runtime
To evaluate the computation time of the shape retrieval methods,
we considered the sum of the runtimes required to compute (i) the
method’s descriptor for the largest SES, (ii) the method’s descriptor
for the smallest SES and (iii) the distance between two SES. All
calculations were performed on an Intel Core i7-6700HQ
CPU@2.60 GHz with 32 GB of RAM.

2.6 Identifying distant surficial homologs
In order to identify hits with low sequence identity but similar sur-
face shapes (i.e. distant surficial homologs), we compared the dis-
similarity matrices to a sequence aligning matrix. Clustal Omega
(Sievers et al., 2011) was used to align all the sequences of set A.
A homology matrix HN;N ¼ 5298 was constructed, such as

H½i;j�; ði; jÞ 2 ½½1; 5298��2 enrolls the sequence identity ratio between

protein i and protein j. Then, the dissimilarity matrix output

Mk
N ; k ¼ 1; 2;3;4, of each method was normalized, and we com-

puted H þMk
N. For each method, minjH þMk

N represents the pro-

tein target j combining the least sequence identity and the highest

shape similarity for protein query i. Afterwards, minjH þMk
N for

each method k was compared. If at least two methods k1 and k2

bring the same minjH þMk
N, the protein pair i and j are considered

distant surficial homologs.

3 Results

First, we present and compare the performance in retrieval of the
shape retrieval methods (3D-Surfer, PANORAMA, ShapeDNA,
VFH) on the hierarchical protein shapes set A. Then, we illustrate
their performance (i) on the calmodulin that displays very large con-
formational changes and (ii) in identifying distant surficial homologs
(low sequence identity with high shape similarity). The performance
of widely used structure comparison methods (CE, DeepAlign, TM-
Align, lDDT) is presented as a reference.

3.1 Protein shape retrieval
Table 1 summarizes the quantitative statistics values for each
method on the three hierarchical levels, Protein, Species and
Domain. Figure 1 presents the precision-recall curves for each
method and each hierarchical level.

3.1.1 Protein hierarchical level

The precision-recall curves in Figure 1a show similar performance
between 3D-Surfer and PANORAMA, and between ShapeDNA and
VFH. The high performance of 3D-Surfer and PANORAMA are
corroborated by Table 1, where the NN statistics display values
greater than 0.98 and MAP statistics greater than 0.5 for both meth-
ods. For FT and ST statistics, 3D-Surfer and PANORAMA surpass
ShapeDNA and VFH as well. 3D-Surfer and PANORAMA outper-
form the structure comparison methods CE and DeepAlign for recall
values below 0.5. In particular, 3D-Surfer displays the best NN fol-
lowed by TM-Align, PANORAMA, CE, VFH, ShapeDNA and
DeepAlign, respectively.

3.1.2 Species hierarchical level

As the hierarchical level goes down—from the Protein hierarchical
level to the Species hierarchical level, the orthologous proteins are
separated into disjoint classes. The overall performance decrease for
the shape retrieval methods, except for VFH in FT and MAP (Table
1, Fig. 1b). For the NN performance metric, as previously observed
in the Protein hierarchical level, the best performance are associated
with 3D-Surfer, followed by PANORAMA, TM-Align, CE, VFH,
ShapeDNA and DeepAlign, respectively.

3.1.3 Domain hierarchical level

In this hierarchical level, the classes are the least populated (from 2
to 160 protein objects). We observe a flattening of the precision-
recall curves (Fig. 1c) for the shape retrieval methods, except for
ShapeDNA whose performance are in decay with respect to the
Species and the Protein hierarchical level (Table 1). Regarding the
other methods, only the NN statistic drops down compared to the
higher hierarchical levels, with PANORAMA displaying the best
value, followed by TM-Align, 3D-Surfer, VFH, CE, DeepAlign and
ShapeDNA, respectively. Except for ShapeDNA, all methods dis-
played increased performance in retrieval on this level in the FT, ST
and MAP compared to the Species hierarchical level.

3.1.4 Runtime

The runtimes are presented in Table 2, with a distinction between
the runtimes for the descriptors calculation and the runtimes for the

Table 1. Retrieval statistics computed for each method and each

hierarchical level of set A

Method Hierarchy NN FT ST MAP

3D-Surfer Protein 0.993 0.591 0.726 0.653

Species 0.979 0.566 0.656 0.593

Domain 0.792 0.689 0.840 0.721

PANORAMA Protein 0.988 0.576 0.716 0.630

Species 0.977 0.540 0.644 0.566

Domain 0.806 0.647 0.792 0.684

Shape-DNA Protein 0.816 0.348 0.534 0.367

Species 0.710 0.273 0.420 0.270

Domain 0.415 0.236 0.322 0.213

VFH Protein 0.900 0.271 0.443 0.287

Species 0.880 0.289 0.414 0.306

Domain 0.788 0.573 0.689 0.599

CE Protein 0.953 0.675 0.829 0.696

Species 0.940 0.598 0.693 0.625

Domain 0.740 0.648 0.781 0.676

DeepAlign Protein 0.678 0.513 0.679 0.517

Species 0.668 0.486 0.623 0.489

Domain 0.447 0.488 0.666 0.500

TM-Align Protein 0.991 0.749 0.897 0.793

Species 0.973 0.648 0.747 0.685

Domain 0.797 0.736 0.859 0.758

Note: Bold numbers represent the best value in each category
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descriptors comparison. Results for 3D-Surfer are not reported since
it is a full web-service. In total runtime, we observe that VFH is the
fastest, followed by PANORAMA and ShapeDNA, respectively.
The structure comparison methods mean computation times for CE,
DeepAlign and TM-Align are 2, 0.2 and 0.1 s, respectively.

3.2 Proteins displaying large conformational changes:

the calmodulin case
Proteins are dynamical objects that may undergo large structural,
conformational changes. In such cases, usual rigid-body superpos-
ition-based comparison methods display some well-known weak-
nesses: only Ca (or backbone) atoms are taken into consideration;
they are sensitive to the changes of orientation between the domains
of multi-domains proteins; models bearing unrealistic structural fea-
tures (steric clash, for instance) are not penalized (Aloy et al., 2003;
Shi et al., 2009). In set A, a few classes displayed conformational
variability; we focus here on the specific example of the Xenopus
laevis calmodulin, whose structure undergoes a large and ample re-
arrangement of its domains.
Xenopus laevis calmodulin is composed of two domains linked by a
three-residue coil that allows an ample motion of one domain with
respect to the other (Supplementary Table S1), resulting in very dif-
ferent conformations (pdb entry 1dmo, chain A, 30 conformers). In
order to investigate whether the selected shape retrieval methods are
able to retrieve these high-amplitude non-rigid transformations, we
enumerated the number of 1dmo (chain A) conformers retrieved for
each query within the first 30 retrieved shapes (Table 3,
Supplementary Fig. S1). Shape retrieval methods retrieved on aver-
age at least 7.13 conformers within the top 30 for each of the 30
queries (9.60, 10.70, 7.13 and 14.46 for 3D-Surfer, PANORAMA,
ShapeDNA and VFH, respectively). Structure comparison methods
retrieved on average less than 5.86 conformers for each query (2.3,
5.86 and 2.03 for CE, DeepAlign and TM-Align, respectively). To

complement the structure comparison methods that are all
superposition-based, we added a reference superposition-free struc-
ture comparison method, lDDT (Mariani et al., 2013). On this task,
lDDT retrieved on average 21.87 conformers for each query. A
more detailed analysis of these results showed that all proteins
retrieved by lDDT within the top 30 are conformers either from
1dmo or 1f70, which corresponds to the N-terminal domain of the
Xenopus laevis calmodulin.

3.3 Identifying distant surficial homologs
Shape retrieval methods allow to compare protein structures regard-
less of their sequences, secondary structures or fold. We identified in
set A, 6 pairs of protein shapes (Fig. 2) sharing up to 19% sequence
identity but displaying similar surface shapes (i.e. distant surficial
homologs). From the biological function point of view, 3 out of the
6 pairs share different biological functions. The pairs b, f and e, re-
spectively associate a calcium-binding protein and an electron bind-
ing protein; a calcium-binding protein and a metal-binding protein;
a metal-binding protein and an electron transport protein.

We compared the distances obtained for these protein pairs with
the distances obtained within distant surficial homologs retrieved
from the literature (Sael et al., 2008a) (set B, Table 4). Using the
maximum distances observed for the selected protein pairs from set
A as a similarity threshold for the protein pairs in set B, 1, 0, 3 and
7 out of the 8 pairs from set B were identified by 3D-Surfer,
PANORAMA, ShapeDNA and VFH, respectively. On the same
task, considering 2 Å as a typical similarity threshold for protein
structures (Samudrala and Levitt, 2002), CE retrieved zero pair and
DeepAlign one pair. One out of the eight pairs was considered to be

(a) (b) (c)

Fig. 1. Precision-Recall plots for the shape retrieval methods (3D-Surfer, PANORAMA, ShapeDNA, VFH) and structure comparison methods (CE, DeepAlign, TM-Align)

over the different hierarchical levels of set A

Table 2. Runtimes (in seconds) to compute the descriptor for the

largest and the smallest SES of the dataset and to compute the dis-

tance between two SES using the evaluated shape retrieval

methods

Method PANORAMA Shape-DNA VFH

Largest SES 5.05 19.05 2.31

Smallest SES 1.04 2.98 0.44

Distance 0.27 0.02 0.03

Total 6.36 22.05 2.78

Note: For information, EDTSurf takes 10.9 s and 1.85 s to compute the

largest and smallest SES, respectively.

Table 3. Mean number of conformations retrieved within the top 30

results for the class 1dmo (chain A) with the different shape re-

trieval (top) and structure comparison (bottom) methods

1dmo (chain A)

Mean SD

3D-Surfer 9.60 2.45

PANORAMA 10.70 3.41

ShapeDNA 7.13 3.28

VFH 14.46 5.28

CE 1.91 2.30

DeepAlign 5.86 2.55

TM-Align 2.03 2.05

lDDT 21.87 2.51

SD, standard deviation.
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similar using TM-Align [TM-score > 0.5 (Zhang and Skolnick,
2004)].

4 Discussion

4.1 Protein shape retrieval
The performance of the shape retrieval methods were evaluated on
the hierarchical dataset of protein shapes (set A) that is exclusively
composed of NMR structures. We decided to use NMR structures
because they represent the biological dynamics of proteins with dif-
ferent models based on constraints derived from experimental data
(Marion, 2013; Mittermaier and Kay, 2009). The inclusion of these
different models allowed to evaluate the influence of the conform-
ational variability of each protein in our dataset on the performance

of the evaluated methods in retrieval. It is to note that the variability
of side chain conformations displayed a low influence on the overall
performance of the evaluated methods in retrieval (Supplementary
Fig. S2).

This evaluation highlighted the high performance of 3D-Surfer,
the only shape retrieval method evaluated in the present work ori-
ginally designed to compare protein shapes. Its performance was
tightly followed by PANORAMA, a shape retrieval method that
was never applied to protein shapes to date.

Despite displaying high performance in different non-molecular
shapes benchmarks (Li et al., 2015; Lian et al., 2013; 2015; Li and
Hamza, 2014), ShapeDNA and VFH were outperformed by 3D-
Surfer and PANORAMA. This suggests that the shape representa-
tion used in ShapeDNA and VFH could be less adapted to protein
shapes and highlights the complexity of molecular shapes compared

(a) (b)

(d) (e) (f)

(c)

Fig. 2. Distant surficial homologs identified using the shape similarity search methods

Table 4. Distance values and scores for the protein couples of set B (Sael et al., 2008a) according to the shape similarity search and the

structure comparison methods

Method 1jzn (chain A) 1bar (chain A) 1ryp (chain B) 1a31 1tbp 1b3t 2nwl 2b2i

1g1q (chain A) 1rro 1gwz 1cy0 1t7p 1adv 2bbh 2cfp

3D-Surfer (Euclidian distance) 7.60 8.62 11.88 4.72 7.46 8.07 7.57 5.80

PANORAMA (composite distance) 0.0263 0.0255 0.0251 0.0278 0.0237 0.0264 0.0247 0.0230

Shape-DNA (Euclidian distance) 0.59 0.60 2.19 0.51 1.74 2.01 1.93 1.42

VFH (Euclidian distance) 90.12 70.67 646.74 167.55 76.42 174.30 150.02 69.05

CE (RMSD, Å) 2.48 5.48 6.54 6.47 3.35 5.88 7.77 5.04

DeepAlign (RMSD, Å) 1.97 5.07 5.65 7.01 3.51 4.30 2.83 6.05

TM-Align (TM-score) 0.65 0.30 0.26 0.24 0.14 0.21 0.19 0.31

MMLigner (coverage) 0.28 0 0 0 0 0 0.29 0.20

KPax (M-score) 0.19 0.17 0.11 0.07 0.08 0.12 0.17 0.13

3DZDa (Euclidian distance) 52.6 12.6 12.7 5.58 7.25 7.65 6.04 7.28

CEa (RMSD, Å) 2 6.7 5 6.3 4.9 6.7 8.1 4.9

SeqIDa (Sequence identity, %) 23.5% 3.6% 9.7% 5.8% 2% 9% 5.7% 7.8%

Note: For 3D-Surfer, PANORAMA, Shape-DNA, VFH and 3DZD: the lower the distance, the higher the similarity. TM-Align (TM-score), MMLigner (cover-

age) and KPAX (M-score) values range from 0 (no similarity) to 1 (ideal similarity). For CE and DeepAlign, the lower the values, the higher the similarity. For

SeqID, the higher the percentage, the higher the similarity. Only RMSD (from CE and DeepAlign) values are directly comparable. The chain has been specified

when different chains are available in the PDB file.
aReproduced from Sael et al. (2008a).
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to the smoother shapes of the 3D objects classically used in com-
puter vision (furniture, buildings, animals, human faces, . . .).
Proteins and molecular objects in general are considered feature-less
compared to classical 3D-objects that usually display easily extract-
able and matchable features (wheels, ears, nose, legs, . . .)
(Langenfeld et al., 2019). The extraction of standard 3D descriptors
for a homogeneous surface such as a protein surface could result in
ambiguous correspondences unless the descriptor is able to scale-up
with a higher level of detail, notably in the Protein and the Species
hierarchical level. In particular, the lower performance of VFH can
be explained by the use of normals to obtain the descriptor. The
roughness of protein surfaces adds angular noise to the normals of
the molecular surface. For similar reasons, since ShapeDNA is a de-
scriptor defined by the geometry, the performance of ShapeDNA
can be explained by the uneven surfaces of proteins. On the con-
trary, the high performance of 3D-surfer can be explained by the
fact that Zernike moments are based on spherical harmonics.
Spherical harmonics represent a basis function on the surface of a
sphere. This descriptor is particularly adapted to globular proteins
that mainly compose the datasets used in this study. PANORAMA
describes the cylindrical projection by a discrete transform which is
a sum of functions defined on a circle. These functions are well-
fitted to describe the globular shape of the proteins composing the
datasets projected on a cylinder as well.

At the Species hierarchical level, orthologous proteins are sepa-
rated in different classes. Most shape retrieval methods classified
orthologous proteins within the same class, resulting in a loss of per-
formance in retrieval compared to the Protein hierarchical level.
Similarly, at higher recall values, the best structure-based methods
still outperform the shape-based methods (Fig. 1 and Table 1).
These results point at potential ways for future improvements such
as taking additional molecular surface features (electrostatics,
hydrophobicity, . . .) into consideration (Gainza et al., 2020).
Concerning the computational costs associated with the shape re-
trieval methods, it is important to note that in application cases such
as large databases screening, the speed of calculation of the distance
between the methods descriptors is a key factor contrarily to the
cost associated to the calculation of the descriptor that can be per-
formed only once per object and stored for future use. In this regard,
Shape-DNA, VFH and 3D-Surfer are extremely satisfying since the
distance computation takes respectively, 20, 30 and 60 ms.
PANORAMA can still be usable for screening large databases with
a distance computational cost of 270 ms.

4.2 Proteins displaying large conformational changes:

the calmodulin case
Methods able to retrieve the different conformational states of a
given protein can be very useful, notably in cryo-Electron
Microscopy (cryo-EM) and cryo-Electron Tomography (cryo-ET)
where detected macromolecular shapes can be identified using shape
retrieval methods (Han et al., 2019). We illustrated the adaptability
of the different shape retrieval methods to protein conformational
changes using the example of the Xenopus laevis calmodulin that
displays very ample motions of its domains (Table 5).

Shape retrieval methods outperformed superposition-based
structure comparison methods, but were outperformed by lDDT, a
reference superposition-free structure comparison method.
However, it is to note that lDDT and the other superposition-free
structure comparison methods such as CAD-score (Olechnovi�c

et al., 2012), KPAX (Ritchie, 2016) or MMLigner (Collier et al.,
2017) are limited to the comparison of proteins of partially similar
topology to be efficient. A typical example is the comparison of a
predicted structure to a reference experimental structure (Mariani
et al., 2013) like in the CASP-CAPRI experiment (Lensink et al.,
2019). Otherwise, in the case of a comparison with distant surficial
homologs, they will likely fail to produce a meaningful result since
they are not primarily designed for this task (Mariani et al., 2013)
(Table 4). On the contrary, the best performing method from the
computer vision field, VFH, was designed to track the mobility of
objects on camera snapshots over time (Rusu and Cousins, 2011).
This highlights one of the advantages of comparing proteins through
their molecular surface shapes since the protein molecular surface
representation abstracts the layers of complexity beneath the sur-
face, i.e. the fold and secondary structures encoded in the backbone
atoms 3D coordinates. The poor performance of TM-Align in this
task could be explained by its residue to residue optimization that
may have failed with the large motion of the second domain of the
Xenopus laevis calmodulin.

These results shed lights on the versatility of shape retrieval
methods. While structure-based methods require either rigid-body
superposition (CE, TM-Align. . .) or a high similarity between the
objects to be compared (lDDT, CAD-score. . .), shape-based meth-
ods, due to the abstract protein molecular surface representation,
may be better suited to the blind classification of large datasets
including highly heterogeneous protein structures (Guzenko et al.,
2020; Han et al., 2019; Mavridis and Ritchie, 2010), such as a
screening of the Protein Data Bank (Berman et al., 2000). Further
work dedicated to this specific task would be beneficial to the
community.

4.3 Identifying distant surficial homologs
The protein molecular surface representation is an abstraction of the
primary, secondary and tertiary structure representations.
Functionally related proteins often share similar surface properties
despite a low sequence and/or backbone conformation similarity
(Han et al., 2019; Sael et al., 2008a). Identifying distant surficial
homologs i.e. proteins with similar molecular surface shapes and
low sequence identity, is of a major interest. It underlines the useful-
ness of shape retrieval methods and beyond, tackling protein struc-
ture comparison through their molecular surface shape instead of
their backbone orientation, especially when structural methods fail
to identify such similarity. Shape retrieval methods could be used to
identify proteins with similar molecular surfaces despite a low se-
quence identity which could be beneficial to the protein structure
prediction community, notably in threading where folds could be

Table 5. Illustration of the conformational changes of the Xenopus

calmodulin (PDB ID 1dmo, chain A)

Conformer 17 12 18 22 24

lDDT – 0.7299 0.7396 0.7701 0.7748

Note: The model’s numbers are indicated below each structure shape.

Chain A of model 17 of PDB ID 1dmo was taken as reference to compute the

lDDT score (Mariani et al., 2013).

Table 6. Output values for each method on the identified distant

surficial homologs couples illustrated in Figure 2

Protein couple a b c d e f

3D-Surfer 4.26 5.26 3.87 3.37 4.02 3.57

PANORAMA 0.0219 0.0227 0.0217 0.0213 0.0221 0.0222

Shape-DNA 1.09 0.22 0.57 0.73 0.37 0.79

VFH 180.05 57.81 44.87 33.22 79.14 31.41

CE 5.75 5.54 4.76 4.94 5.36 3.35

DeepAlign 4.46 3.21 3.55 3.43 3.24 3.51

TM-Align 0.31 0.29 0.24 0.27 0.23 0.79

MMLigner 0.36 0 0.79 0.53 0.72 0.60

KPax 0.35 0.37 0.44 0.35 0.31 0.34

SeqID 10.11% 11.23% 11.26% 18.42% 9.85% 10.14%

Note: For 3D-Surfer, PANORAMA, Shape-DNA, VFH and 3DZD: the

lower the distance, the higher the similarity. TM-Align (TM-score),

MMLigner (coverage) and KPAX (M-score) values range from 0 (no similar-

ity) to 1 (ideal similarity). For CE and DeepAlign, the lower the values, the

higher the similarity. For SeqID, the higher the percentage, the higher the

similarity. Only RMSD (from CE and DeepAlign) values are directly

comparable.
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enriched with surface shapes. Similarly, these methods may be bene-
ficial to the protein structure classification where reference data-
bases still require manual intervention from human experts. With
this in mind, shape-based methods may enrich the pool of methods
available for protein comparison able to retrieve proteins with simi-
lar shape but different topologies (Mavridis and Ritchie, 2010; Wen
et al., 2020). This could also be useful for identifying possible inter-
acting partners (Gainza et al., 2020) since molecular shape plays a
crucial role in binding (Levieux et al., 2014; Pawlowski and Godzik,
2001; Shulman-Peleg et al., 2004). Shape retrieval methods could
then be used for creating a structural classification of proteins based
on their surfaces (Han et al., 2019; Sasin et al., 2007), rather than
evolutionary distances or fold categories as in SCOP (Murzin et al.,
1995) or CATH (Orengo et al., 1997) opening the possibility to ex-
tend the protein structure–function paradigm toward a protein
structure-surface(s)-function paradigm.

Here, we extended set B by using a consensus of the shape re-
trieval methods evaluated in this study to screen set A. Six protein
pairs were identified in set A displaying similar surface shapes with
sequence identity below 19% (Table 6 and Fig. 2). These protein
pairs from sets A and B could constitute a useful resource for the
evaluation of the performance of future shape retrieval methods to
identify distant surficial homologs.

5 Conclusion

In this work, we evaluated the performance of four shape retrieval
methods from the computer vision field (3D-Surfer, PANORAMA,
Shape-DNA and VFH) on a protein shapes dataset. On this dataset,
3D-Surfer and PANORAMA outperformed Shape-DNA and VFH.
On a selected example displaying large conformational changes (cal-
modulin), all shape retrieval methods displayed a reasonable per-
formance in recognizing their different conformations within the
dataset.

Different structure comparison methods were used as a reference
in this study (CE, DeepAlign and TM-Align). TM-Align slightly out-
performed shape retrieval methods in the retrieval task, but failed in
tracking the large conformational changes of the calmodulin. For
the calmodulin case, the superposition-free structure comparison
method lDDT outperformed all the other evaluated methods in iden-
tifying the different conformers of calmodulin. We also identified
six pairs of distant surficial homologs that could be used for future
studies on protein surficial similarity search. Finally, shape retrieval
methods were associated with larger computational costs compared
to classical structural alignment methods but this additional cost is
still compatible with the treatment of large structural datasets.
Geometric learning methods could be beneficial here since their
computational cost seems to be lower.

This work confirms the interest of protein molecular shape as a
higher-level description of the protein structure that (i) abstracts the
underlying protein sequence, structure or fold, (ii) allows the use of
shape retrieval methods to screen large databases of protein struc-
tures to identify surficial homologs and possible interacting partners,
(iii) opens an extension of the protein structure–function paradigm
toward a protein structure-surface(s)-function paradigm.
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