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Abstract: Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged
malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable
interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK
inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical
benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug
resistance with a median of occurrence of approximately 10 months after the initiation of therapy.
Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed
and received, or are close to receiving, FDA approval. However, even when treated with these new
inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the
diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel
therapeutic strategies to improve patients disease outcome. This review summarizes the currently
available knowledge regarding ALK physiologic function/structure and neoplastic transforming role,
as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic
strategies that may overcome the development of resistance.

Keywords: anaplastic large-cell lymphoma (ALCL); anaplastic lymphoma kinase (ALK); ALK
inhibitors; non-small-cell lung cancer (NSCLC); resistance to ALK inhibitors; targeted therapies;
tyrosine kinase (TK)

1. Introduction

Over the last decade, the development of drugs that selectively target driver oncogenes has played
an important role to establish novel treatment guidelines in the field of oncology. Unlike traditional
chemo and radio-therapies that kill all rapidly dividing cells, targeted therapies are more selective
and specific towards their target, exploiting the biology that drives the growth of tumor cells such as
genetic deletions, chromosomal rearrangements and point mutations. Furthermore, targeted therapies
have significantly impacted outcomes in terms of prolonged survival and a better quality of life for
cancer patients.

Imatinib, a small molecule tyrosine kinase inhibitor (TKI) developed to treat chronic myeloid
leukemia (CML) patients bearing t(9;22)(q34;q11), was the first breakthrough in the journey of target
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therapies [1]. Five years follow-up studies have shown that patients treated with imatinib achieved
molecular responses and overall survival not different from the general population [2].

Another tyrosine kinase extensively explored as a target for TKI treatment is the anaplastic
lymphoma kinase (ALK). ALK was first described in 1994 as the NPM-ALK fusion protein that is
expressed in the majority of anaplastic large-cell lymphomas (ALCL), approximately 55% of adult
patients and more than 90% of pediatric patients [3]. There are several reasons why ALK is an
ideal target of personalized medicine, including that ALK-transformed cells are in general strongly
dependent on ALK tyrosine kinase activity for survival and proliferation and ALK expression is
limited in non-tumoral cells, being detected in limited areas of the brain [4]. Therefore, its blockage
is catastrophic for cancer cells but irrelevant form normal tissues. Since its discovery, more than
20 different ALK fusion partner genes have been reported across multiple malignancies [5,6]. Perhaps
the most widely recognized is the echinoderm microtubule-associated protein-like 4 (EML4)-ALK
fusion, identified in 5–6% of non-small-cell lung cancer (NSCLC) patients in 2007 [7]. Even though
the relative proportion of NSCLC bearing ALK rearrangements is significantly lower than ALCL
or inflammatory myofibroblastic tumors (IMT), ALK-positive NSCLC represent overall the largest
cohort of ALK-rearranged patients due the fact that lung cancer has a high incidence worldwide.
The identification of ALK rearrangements in lung cancer patients has sparked the development of
a series of ALK TKI from different companies. To date, four ALK inhibitors (crizotinib, ceritinib,
alectinib and brigatinib) have received approval by the FDA for treatment of ALK-rearranged NSCLC,
while others such as lorlatinib have shown promising results in early clinical trials [8]. The use
of these new therapies has improved the quality of life and increased the survival of patients,
as demonstrated in their respective clinical trials, with remarkable responses in NSCLC patients
carrying ALK-rearrangements [9–16]. As with any targeted therapy, ALK-driven NSCLC tumor cells
inevitably acquire drug resistance, leading to clinical relapse. At the present time, ALK inhibitors
have not yet been approved for use in other ALK-driven cancers than NSCLC; however, some studies
have reported remarkable responses, and less frequent relapses, to ALK inhibitors in patients with
ALK-positive ALCL and IMT. The apparently higher sensitivity to ALK inhibitors of ALCL and
IMT tumors likely reflects a stronger dependency on ALK signaling and/or a lower level of tumor
heterogeneity than in ALK-rearranged NSCLC [17–19]. Yet, our current knowledge regarding ALK
inhibitors resistance originates mostly from ALK-positive NSCLC patients.

While much information has been gathered since the discovery of the first ALK TKI crizotinib
to the latest third generation inhibitors regarding the clinical activity of TKIs, there is still limited
understanding how acquired resistance develops and undermines the effects of ALK TKIs. This review
will summarize the current knowledge about the activity of different ALK inhibitors and their inherent
resistance mechanisms that have been reported. We will also discuss potential future therapeutic
approaches that can be used to tackle TKI resistance and improve patient outcome.

2. Anaplastic Lymphoma Kinase-Physiological Expression and Functional Role

The ALK gene is located on chromosomal region 2p23 and encodes a highly conserved receptor
tyrosine kinase (RTK), which is a member of the insulin receptor superfamily, and is most closely related
to leukocyte tyrosine kinase (LTK) [20–22]. The ALK receptor is composed of an extracellular domain,
a single-pass transmembrane region, and an intracellular kinase domain [20]. The extracellular domain
contains a glycine-rich region, two MAM segments (meprin, A5 protein, and receptor protein tyrosine
phosphatase µ) and one LDLa domain (low density lipoprotein class A). The intracellular portion
comprises a juxtamembrane segment, a protein kinase domain and a carboxyterminal tail [6,23,24].

The specific role of ALK in human development and physiology is still poorly understood but
several studies on different animal models have partially clarified the ALK functions in development.
In Drosophila melanogaster, ALK signaling is involved in the differentiation of mesenchymal cells, in the
development of the visual system [25], the maturation of the neuromuscular junction [26] and in the
regulation of body size, learning and memory [27]. In this context, ALK is activated by its ligand
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Jelly Belly (Jeb) leading to the downstream signaling of the Ras-MAPK pathway [28]. The mammal
ALK receptor is unable to bind the Jeb ligand [29], which indicate an evolutionary divergence
between mammalians and D. melanogaster ALK proteins. In Caenorhabditis elegans, SCD-2 (the
nematode homolog of ALK), is required for the integration of sensory inputs and the development of
neuromuscular junctions [30]. In zebrafish, LTK and ALK show a significant structural homology (such
as the presence of MAM domains) and contribute to neural crest nervous system embryogenesis [31].

ALK expression patterns throughout the nervous system during mouse embryogenesis suggest
important roles in the central nervous system (CNS) development and function in mammals [6,20,32,33].
Iwahara et al. have described that the intensity of ALK mRNA and protein expression in mice
diminishes in all tissues after birth, reaching a minimum after three weeks of age and maintained at
low levels during the adult life of the animal [20]. Bilsland et al. [34] and Lasek et al. [35], reported
that ALK deficient mice are viable and fertile without obvious alterations. Remarkably, the loss of
ALK signaling results in a decrease in newborn neurons and in impaired regeneration of myelinated
axons [5] and an increased number of progenitor cells within the hippocampus (a defect that can be
associated with their behavioral changes) [34]. In 1997, Morris et al. [36] reported that ALK mRNA is
expressed in adult human brain, small intestine, testis, prostate, and colon but not in normal human
lymphoid cells, spleen, thymus, ovary, heart, placenta, lung, liver, skeletal muscle, kidney, or pancreas.

Several proteins, such as pleiotrophin (PTN), midkine (MK), osteoblast-specific factor-1 (OSF-1),
heparin affinity regulatory peptide (HARP) and heparin-binding neurotrophic factor (HBNF), have
been historically reported to be the activating ligands of mammalian ALK [4]. However, recent
studies have shown that augmentor α and β (FAM150) are validated ligands of ALK [3,37,38].
Although our knowledge of the mechanism of activation of mammalian ALK protein-tyrosine kinase is
incomplete, Lemmon and Schlessinger have described the mechanism of activation of several receptor
protein-tyrosine kinases, providing us a hypothetic scheme for ALK activation [21]. Upon ligand
binding in the extracellular domain, the receptor protein-tyrosine kinase is activated by inducing
receptor dimerization or oligomerization. A possible mechanism for ligand and dimer-induced
activation of ALK involves the phosphorylation of one or more of the juxtamembrane tyrosine residues
(Tyr 1078, 1092, 1096 and 1131), which in turn would be followed by consecutive phosphorylations
until the active form of ALK is established [21].

3. ALK Gene Alterations in Cancers

The deregulation of tyrosine kinase (TK) activity is one of the major mechanisms of human
carcinogenesis and can occur through several mechanisms such as chromosomal translocations, gene
amplification or deregulation and point mutation. The abnormal TK activation leads to constitutive
activation of several downstream signaling pathways that contribute to the development of neoplastic
phenotypes. Tyrosine kinase translocations are found in up to 3% of all human tumors [39].

Usually, translocations comprising transmembrane tyrosine kinase receptors take place between exons
that encode the juxtamembrane region or the transmembrane domain. In both cases, these phenomena
give rise to the elimination of the extracellular region and, consequently, the ligand-binding regulation,
resulting in the constitutive and uncontrolled activation of the fusion typically through an obligatory
dimerization dictated by the partner gene [40]. ALK breakpoints are almost invariably located between
exons 19 and 20 of ALK. Each translocation creates a fusion protein in which the ALK TK-domain
at the 3′-end is connected with distinct proteins portion of different partners at the 5′-end of the
fusion, capable of providing constitutive dimerization [41]. ALK rearrangement was first described
in 1994, in the anaplastic large cell lymphoma (ALCL) cell lines, with ALK being one of the fused
partner in a recurrent chromosomal translocation t(2;5)(p23;q35) together with the nucleophosmin
(NPM) gene located on chromosome 5 [36]. This rearrangement produces a fusion gene called
NPM-ALK resulting in the expression of an oncogenic fusion protein, NPM-ALK. NPM mediates
receptor dimerization of the NPM-ALK protein in a ligand-independent fashion which leads to the
constitutive activation of ALK kinase, and ultimately, to the activation of a number of its downstream
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signaling pathways [20,23,42]. These include JAK/STAT and PI3K/AKT pathways that mediate
cell survival and the Ras/Raf/MEK/ERK1/2 pathway which plays a role in cell division and cell
proliferation (Figure 1A) [4,6].
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Figure 1. ALK downstream pathways and bypass signaling (A) Anaplastic lymphoma kinase
(ALK) mediates signaling via the PI3K/AKT, RAS/MAPK, phospholipase Cγ (PLCγ) and Janus
kinase (JAK)-signal transducer and activator of transcription (STAT); (B) ALK-independent resistance
mechanism. Activation of bypass signaling pathways when ALK is inhibited with TKIs: EGFR
activation, without EGFR mutations or amplifications; HER2 activation; c-KIT gene amplification in the
presence of stem cell factor (SCF); MET activation bypassing ALK inhibitors without anti-MET activity;
regulation via transcriptional of PDGFRβ and IGFR activation. Mutations in KRAS and copy number
gain of wild-type KRAS; JM, Juxtamembrane.

Inflammatory myofibroblastic tumor (IMT) was the first non-hematological tumor found to
harbor ALK rearrangements in about 50% of cases [43] (Table 1). Non-small-cell lung cancer (NSCLC)
was the second non-hematological tumor in which oncogenic ALK fusion were detected. In 2007,
Simultaneously, Soda et al. and Rikova et al. reported the identification of the EML4-ALK fusion
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protein in a small cohort of Japanese patients with NSCLC [44]. The novel EML4-ALK fusion
protein is the result of an inversion within chromosome 2p that fuses portions of the echinoderm
microtubule-associated protein-like 4 (EML4) gene and ALK gene [7]. Since the first report, ALK fusions
have been detected in 3% to 7% of NSCLC and associated with a non-smoker history, younger age
and adenocarcinoma histology [45]. Many other studies have identified several additional ALK fusion
proteins (Table 1) which occur less frequently than EML4-ALK. Moreover, a number of breakpoints
variants may be seen for a given fusion protein. EML4-ALK has over 10 distinct variants [46]. Also,
it has been reported by Heuckamnn et al. that different ALK fusion genes and EML4-ALK variants
exhibited differential sensitivity to crizotinib [47].

Table 1. ALK rearrangements in human malignancies.

Cancer Type ALK Fusion Partner
(Chromosomal Localization) Frequency % References

ALCL

NPM1 (5q35.1)
TPM3 (1q21.3)

ATIC (2q35)
TFG (3q12.2)

TRAF1 (9q33.2)
CLTC (17q23.1)

RNF213 (17q25.3)
TPM4 (19p13.1)
MYH9 (22q12.3)

MSN (Xq12)
Aditional rare rearrangements

~55% (in adults) [36,48–57]

Breast cancer EML4 (2p21) N.D. [58]

Colorectal cancer EML4 (2p21)
WDCP (2p23.3) <1% [58–61]

DLBCL

RANBP2 (2q13)
EML4 (2p21)

SEC31A (4q21.22)
SQSTM1 (5q35)
NPM1 (5q35.1)

<1% [62–68]

Esophageal cancer TPM4 (19p13.1) N.D. [69,70]

IMT

TPM3 (1q21.3)
RANBP2 (2q13)

ATIC (2q35)
SEC31A (4q21.22)
CARS (11p15.4)
PPFIBP1 (12p11)
CLTC (17q23.1)
TPM4 (19p13.1)

Up to 50% [43,49,71–80]

NSCLC

EML4 (2p21)
TPR (1q31.1)

CRIM1 (2p22.2)
STRN (2p22.1)
TFG (3q12.2)

HIP1 (7q11.23)
PTPN3 (9q31)

KIF5B (10p11.22)
KLC1 (14q32.3)
CLTC (17q23.1)

3–7% [7,44,81–84]

Ovarian cancer FN1 (2q35) N.D. [85]

RCC

VCL (10q22.2)
TPM3 (1q21.2)
EML4 (2p21)

STRN (2p22.2)

<1% [86–89]

RMC VCL (10q22.2) N.D. [90]

Abbreviations (alphabetic order): ALK, anaplastic lymphoma kinase; ALCL, anaplastic large-cell lymphoma; ATIC,
5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase; CARS, cysteinyl-tRNA
synthetase; CLTC, clatherin heavy chain; CRIM1, cysteine rich transmembrane BMP regulator 1; DLBCL, diffuse
large B-cell lymphoma; EML4, echinoderm microtubule-associated protein-like 4; FN1, fibronectin 1; HIP1,
huntingtin interacting protein 1; IMT, inflammatory myofibroblastic tumor; KIF5B, kinesin family member 5B; KLC1,
kinesin light chain 1; MSN, moesin; MYH9, myosin heavy chain 9; N.D., not described; NPM1, nucleophosmin;
NSCLC, non-small-cell lung cancer; PPFIBP1, PPFIA binding protein 1; PTPN3, protein tyrosine phosphatase,
non-receptor type 3; RANBP2, RAN binding protein 2; RCC, renal cell carcinoma; RMC, renal medullary carcinoma;
RNF213, ring finger protein 213; SEC31A, SEC31 Homolog A; SQSTM1, sequestosome 1; STRN, Striatin; TFG,
TRK-fused gene; TPM3, tropomyosin 3; TPM4, tropomyosin 4; TPR, translocated promoter region, nuclear basket
protein; TRAF1, TNF receptor associated factor 1; VCL, vinculin; WDCP, WD repeat and coiled coil containing.
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With the advent of next-generation sequencing (NSG)-based diagnostics, more than 20 different
ALK fusion partners genes have been described in other type of cancer (i.e., colorectal cancer, breast
cancer, esophageal cancer, ovarian cancer, renal cell cancer, anaplastic thyroid carcinoma, and diffuse
large B-cell lymphoma) even though in low frequencies (Table 1). Armstrong et al. [91] have shown
that the level of ALK fusion protein expression and the degree of signaling depend on the partner
gene. Using NIH3T3 cells, they were able to demonstrate different effects of ALK fusion proteins on
cell proliferation and invasion depending on the exact fusion. In the years following this study, the
same group has demonstrated that TPM3-ALK fusion protein expression specifically induces changes
in cell morphology and cytoskeleton organization, and it confers higher metastatic capacities than
other ALK fusion proteins [92].

Additional molecular mechanisms can affect ALK signaling in human cancer other than
chromosomal translocations/inversions: ALK up-regulation/amplification and ALK gene mutations [93].
ALK up-regulation has been described in tumors that occasionally harbor ALK-chromosomal
translocations, such as NSCLC, rhabdomyosarcoma, breast and ovarian cancer and also reported
in neoplasms usually not associated with ALK fusions, such as melanoma, retinoblastoma, Ewing’s
sarcoma and neuronal tumors (i.e., glioblastoma, astrocytoma) [4] (Table 1). ALK amplification has
also been reported in neuroblastoma almost invariably together with amplification of the adjacent
gene MYCN, with possible synergic effects in driving cell growth and survival [94]. ALK TK activation
mechanisms in neuroblastoma are not limited to ALK amplification. Mutations in the ALK gene
are documented in 4–8% of sporadic neuroblastomas and account for the majority of hereditary
cases; ALK variants contribute to the acquisition of neoplastic phenotype and are associated with
overall poor-prognosis [94,95]. As observed in ALK rearrangements, ALK point mutations have been
described in number of cancers (i.e., anaplastic thyroid cancer [ATC], IMT and NSCLC), although less
frequently than in neuroblastoma (Table 1).

Several studies have permitted the classification of ALK mutations into three different
groups: (1) ligand-independent activation mutations; (2) ligand-dependent activating mutations;
and (3) kinase-inactivating mutations (known as kinase dead) [96,97]. Ligand-independent mutations
(e.g., F1174I, F1174S and F1174L) generate constitutively activated ALK and induce uncontrolled cell
proliferation and cell survival [95]; ligand-dependent mutations (e.g., D1091N, T1151M and A1234T)
may contribute to pathogenesis [97]. Kinase-inactivating mutations (e.g., I1250T) are very rare and
may contribute to the neoplastic phenotype by interfering with the remaining wild-type ALK copy [4].

4. ALK Inhibitors

4.1. Crizotinib: A First-Generation ALK Inhibitor

Substantial evidence linking aberrations in ALK to various tumors and the success of TKIs
such as imatinib and gefitinib led to the discovery and accelerated approval of first ALK inhibitor,
crizotinib (PF-02341066 Xalkori). Crizotinib is an orally available drug which was originally discovered
as a c-Met kinase inhibitor [98]. The compound binds the ATP pocket of MET kinase in a DFG-in
conformation, forming classical hydrogen bonds (Hb) with hinge region residues [99]; in addition,
its phenyl ring forms a π-π interaction with the activation loop (A-loop). Ironically, the drug was
found to have off-target effects on other kinases including ALK. The crystal structure of crizotinib
bound to ALK revealed a similar binding mode, with conserved Hb to the hinge region (Figure 2A),
but lacking the π stacking to A-loop, which may explain lower activity against ALK compared to
MET. Given the pathogenic role of ALK in different malignancies, crizotinib was then pursued as an
ALK inhibitor [100]. Following a number of successful in vitro studies [98] showing the efficacy of
crizotinib in ALK inhibition, crizotinib entered into early phase I study (PROFILE 1001) presenting a
sustained response in locally advanced or metastatic NSCLC patients carrying the EML4-ALK fusion
gene [101]. Subsequently, crizotinib was evaluated in a phase II study (PROFILE 1005) with the final
results published recently [102].
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Figure 2. Crystal structure of ALK in complex with crizotinib (PDB: 2XP2). (A) Close view of crizotinib
bound in the active site of wild-type ALK. The gatekeeper residue L1196 is shown as red surface.
Crizotinib is shown as cyan sticks. The green dashed line indicates the hydrogen bonding to the
backbone nitrogen of M1199 (indicated in sticks). Secondary structures are represented with grey
ribbon; (B) The native L1196 from panel A was mutated in silico to M1196, to show steric clash with
crizotinib; (C) Overall architecture of ALK bound to crizotinib. Key residues associated with resistance
to crizotinib are shown as red surface and labeled. Some important regulatory regions of the kinase are
indicated by arrows.

The objective response rates (ORR) were 54% and 41% in the central and local-testing
ALK-detection sub-groups, respectively. Phase II results support the clinical benefits of using crizotinib
in ALK-positive NSCLC that had progressed on previous chemotherapy regimens. Two phase III
studies, PROFILE 1007 [9] and PROFILE 1014 [10], provided further proof in favor of the use of
crizotinib over standard second-line chemotherapy and over first-line chemotherapy, respectively in
advanced ALK-positive NSCLC.

Crizotinib was found to be generally well tolerated in the patients with mostly mild
treatment-related adverse events (TRAEs). The most commonly reported TRAEs in ALK-positive
NSCLC patients include vision disorder, nausea, diarrhea and vomiting of grade 1 and 2. However,
elevated transaminases and neutropenia associated with crizotinib treatment of grade 3 or 4 have also
been observed in the patients. Other not so common TRAEs of crizotinib in patients that have been
observed over the years, include interstitial lung disease (ILD), bradycardia, QTc prolongation, renal
cysts and decreased total testosterone in males. Most of the TRAEs were reversible with crizotinib
discontinuation or drug holiday period [102]. Altogether these results led to the approval of crizotinib
by FDA for the treatment of locally advanced or metastatic ALK-positive NSCLC in 2011. Additionally,
significant therapeutic responses have also been reported in ALCL [103,104], neuroblastoma [105],
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and IMT [18] patients. There are ongoing clinical trials that are evaluating long-term efficacy and safety
profile of crizotinib in patients carrying ALK gene abnormalities.

4.2. Second Generation ALK Inhibitors

Even though there are diverse mechanisms through which resistance against ALK inhibition has
been shown to develop, crizotinib-resistant tumors still continue to be ALK-dependent for their
growth in many cases. Around 30% of crizotinib-resistant NSCLC patients develop secondary
resistance mutations in the ALK TK domain [46]. Therefore, more potent, selective and structurally
different next-generation ALK inhibitors have been developed or are in the pipeline to overcome
crizotinib resistance. Although they are not functionally or structurally related to crizotinib (except
lorlatinib, see below) they are usually referred as second-generation inhibitors, as they were all
developed to tackle crizotinib-resistance mutants. Eight novel ALK inhibitors have entered the clinic,
including ceritinib, alectinib, and brigatinib, that have demonstrated potent and durable activity in
ALK-positive NSCLC.

4.2.1. Ceritinib (LDK378; Zykadia; Novartis)

Ceritinib is an ATP-competitive, selective oral ALK inhibitor that was found to be 20 fold more
potent than crizotinib in enzymatic assays [106,107]. It was developed starting from the original
first-generation, non-clinical compound NVP-TAE684 [108] with a few significant structural changes,
in order to increase kinase selectivity and reduce the formation of reactive metabolites that impaired
NVP-TAE684 clinical development due to toxicity [106]. The new compound (LDK378) was shown
to form reactive adducts in negligible amount compared to its parent compound, while maintaining
low nanomolar anti-ALK activity. Ceritinib also showed activity against insulin-like growth factor 1
receptor (IGF-R1), insulin receptor (IR) and ROS1 but with a 5–11 fold higher IC50 as compared to
its IC50 for ALK. Ceritinib inhibited in vitro and in vivo the growth of ALK-positive cells carrying
crizotinib-resistant mutations, L1196M, G1269A, I1171T, and S1206Y but failed to inhibit the growth
of G1202R and F1174V/C mutants [107]. Structural data can explain why ceritinib retains potency
against some crizotinib-resistant mutants: for instance, while mutation of Gly1269 to Ala causes
steric clash with the halogenated phenyl ring of crizotinib, it is not predicted to have any impact
on ceritinib binding. Similarly, ceritinb interacts equally well with Leu1196 as with Met1196 [107].
Phase I study, conducted on ALK+ NSCLC patients that had been previously treated with cytotoxic
chemotherapy or crizotinib, showed an ORR of 58% in patients who received ceritinib at a daily
dose of 750 mg [11]. Based on the pre-clinical studies and ASCEND-1 data, ceritinib received an
accelerated approval from FDA for the treatment of ALK-positive metastatic NSCLC patients with
disease progression or intolerance to crizotinib. Subsequently, ceritinib demonstrated higher anti-tumor
efficacy in ALK-rearranged NSCLC patients previously treated with chemotherapy and crizotinib
as well as in crizotinib naïve patients during ASCEND-2 [109] and ASCEND-3 [110] clinical trials.
Results from the ASCEND-4, a randomized, open-label, phase 3 study, were published recently [111].
The study evaluated the efficacy and safety of ceritinib in comparison to platinum-based chemotherapy
as a first line treatment in advanced ALK-rearranged NSCLC. The median progression-free survival of
ceritinib-treated group was 16.6 months as compared to 8.1 months in the chemotherapy-treated group.
Most of the adverse events related to ceritinib treatment reported in the study were of grade 1 or 2
gastrointestinal (GI) toxicity (diarrhea, nausea, vomiting) and grade 3 or 4 hepatictoxicity (increased
alanine and aspartate aminotransferases). 80% of the patients needed dose reduction or interruption
to manage these adverse events [111]. Ceritinib is approved at 750 mg per day in a fasted state for
expanded use in first-line ALK-positive metastatic NSCLC [112]. Since most of the serious adverse
events (SAE) to ceritinib treatment are GI toxicity related, a multicenter, randomized open-label study
ASCEND-8 evaluated the safety profile of ceritinib at lower doses (450 mg or 600 mg) taken daily with
a low-fat meal compared to 750 mg daily in fasted patients with ALK-positive NSCLC [113]. Results
from the study show that a lower dose of ceritinib (450 mg) taken with food reduced the number of GI
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toxicity related AE. Most of the GI toxicities in the 450 mg dose arm were mostly grade 1, and no grade
3 or 4 GI toxicities were reported in that arm. Additionally, the number of patients requiring dose
adjustment or drug interruption in the 450 mg ceritinib arm were the lowest compared to the 600 mg
with food ceritinib and 700 mg fasted ceritinib treatment arm [113]. These results indicate that a lower
dosage of 450 mg ceritinib taken with food maintains the same exposure as the currently approved
dose of 750 mg fasted but with less severe and frequent GI toxicity profile.

4.2.2. Alectinib (CH5424802; Chugai-Roche)

Alectinib is another second generation ALK inhibitor, highly selective and potent against the
ALK tyrosine kinase protein [114]. It binds the ATP binding site of ALK, forming a canonical Hb with
M1199. In addition, alectinib interacts via solvent water molecules with several other surrounding
residues from the αC-helix (K1150, E1167), the catalytic loop (R1253) and the DFG motif (G1269,
D1270). The compound is thus embedded in a stabilizing global Hb network which can probably
compensate for any single mutation at the binding site. Moreover, alectinib establishes a π interaction
with L1196, which is maintained when Leu is mutated to Met, accounting for its high activity against
the crizotinib-resistant gatekeeper L1196M mutant [115]. A phase II study in Japan reported an ORR
of 93.5% with alectinib treatment in ALK+ NSCLC patients who had not been treated with an ALK
inhibitor [116]. Apart from its excellent activity against ALK, alectinib also showed remarkable activity
in patients with CNS metastases [117]. Alectinib received a breakthrough therapy designation (BTD)
by the FDA for ALK-positive NSCLC patients who progressed on crizotinib while it was approved in
Japan in 2014 for the treatment of ALK-rearranged NSCLC patients. Alectinib also showed substantial
efficacy against crizotinib-resistant and/or ALK secondary mutations including the gatekeeper L1196M
in vitro and in vivo [115,118] however, it was less effective against the G1202R [118]. Additionally,
other ALK resistance mutations (V1180L, I1171T, F1174V) have been observed that arise against
alectinib treatment [119]. Two phase II studies, the North American study (NCT01871805) and global
study (NCT01801111), evaluated the safety and efficacy of alectinib in 87 and 138 ALK+ NSCLC
patients who had progressed on crizotinib, respectively [14]. The patients received alectinib at a dose
of 600 mg BID. ORR of 48% and 50% were reported recently from the North American and global study
respectively. Most common side effects reported in the studies were constipation, fatigue, myalgia and
peripheral edema. Grade 3 or higher AEs were observed in 26% of patients that included increased
blood creatine phosphokinase and neutropenia [120]. In the global phase II study, the CNS ORR with
baseline measurable CNS lesions was 57% while in the North American study the intracranial response
was reported to be 75%. These two studies have demonstrated that alectinib is effective and well
tolerated in ALK+ NSCLC patients refractory to crizotinib. Results from a randomized phase III trial
comparing alectinib with crizotinib in treatment naïve ALK+ NSCLC has been published recently.
Peters S et al. have showed that alectinib was more efficacious and less toxic as a primary treatment
for the patients [15].

4.2.3. Brigatinib (AP26113; Ariad)

Brigatinib, another orally available potent next-generation-ALK/ROS1/EGFR inhibitor had
displayed activity against the tyrosine kinases as well as some of their mutant forms in cellular and
pre-clinical models [121]. Brigatinib is a close analogue of NVP-TAE684, with the original sulfonyl
group replaced by a phosphine-oxide moiety. According to structure-activity relationship (SAR) data,
this group confers favorable Absorption, Distribution, Metabolism, and Excretion (ADME) properties
to the molecule and higher selectivity versus IGF1R and IR [121]. Similar to other ALK inhibitors,
brigatinib forms Hb to the hinge region residue L1198 as well as the gatekeeper L1196. Preclinical
data showed that brigatinib has pan-ALK inhibitory profile (i.e., blocks all crizotinib-resistant mutants)
in cellular models at clinically achievable levels [122], although it still suffers a significant loss of
activity against the G1202R mutant [123,124]. A phase I/II study to evaluate the safety and activity
of brigatinib was recently reported [125]. Phase I study aimed to establish the recommended phase
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II dose of brigatinib in patients with advanced malignancies other than leukemia. Based on phase I
results, three regimens were tested in the phase II: 180 mg daily, 90 mg daily and 180 mg daily with a
7-day lead-in at 90 mg daily. The phase II expansion study was divided into five histologically and
molecularly defined cohorts based on prior chemotherapy and/or tyrosine kinase inhibitor treatments
as well as the cancer types and CNS involvement. Crizotinib pre-treated ALK-rearranged NSCLC
patient cohort had a confirmed objective response of 62% with a median progression-free survival of
13.2 months upon brigatinib treatment. Kim et al. have published results from the ongoing phase II,
randomized, open-label, multicenter international study (ALK in Lung Cancer Trial of brigatinib; ALTA,
ClinicalTrials.gov identifier: NCT02094573) that evaluated the efficacy and safety of two different
brigatinib dosage regimens (90 mg daily and 180 mg daily) in crizotinib-treated ALK+ locally advanced
or metastatic NSCLC patients [16]. After a median follow-up of 8 months, investigator-assessed ORR
was 45% and 54% in the 90 mg daily and 180 mg daily dosage groups, respectively. A confirmed partial
response in a patient with the G1202R mutation was also reported from the 180 mg daily group. In the
phase II study, most common treatment-emergent adverse events (TEAE) included GI symptoms,
headache and cough that were of low grade. AEs of grade >3 were hypertension, increased blood
creatine phosphokinase, pneumonia and increased lipase. Pulmonary AEs (dyspnea, hypoxia, cough,
pneumonia, and pneumonitis) with an early onset, usually within 24–48 h of treatment initiation,
were observed in phase I/II study as well as in the phase II study [16,125]. In the ALTA study, all the
pulmonary AEs occurred only at 90 mg brigatinib dose while no such events occurred after escalation
to 180 mg dose [119]. On 28 April, 2017, the FDA granted an accelerated approval to brigatinib for
the treatment of ALK+ metastatic NSCLC patients [126]. A phase III trial, ALTA-1L (NCT02737501) is
ongoing to compare the efficacy and safety of brigatinib with those of crizotinib as a first-line treatment
in patients with ALK+ metastatic NSCLC.

4.3. Other ALK TKI Under Development

Apart from the above mentioned inhibitors, there are other tyrosine kinase inhibitors that are
under development (pre-clinical or clinical). Table 2 lists currently available details regarding these
small molecule inhibitors. Given the developing resistance against the second-generation inhibitors,
these new inhibitors are anticipated to be more potent against ALK-driven tumor cells, have improved
intracranial penetrance as well the ability to overcome the existing drug resistance. One example
is lorlatinib (PF-06463922), a potent and brain-penetrant third generation TKI developed by Pfizer
through cyclization and further modification of their first-generation compound, crizotinib, with the
aim to improve brain penetration and inhibition of drug-resistant ALK mutants [127]. Indeed, lorlatinib
showed good brain exposure and broad activity against resistant mutations. The compound interacts
with the P-loop (L1122, G1123, and V1130) and with the conserved K1150. Lorlatinib inhibited
wilt-type and mutant ALK at a sub-nanomolar concentrations in cell-line models. It also exhibited high
potency against all known clinically acquired ALK mutations, including the highly resistant G1202R
mutant [128]. Zou HY et al. have demonstrated in in vivo experiments, that lorlatinib lead to regression
of EML4-ALK-driven brain metastases ensuring a prolonged mouse survival [128]. In a phase I study,
42% (11/26) ALK-positive NSCLC patients who had been previously treated and progressed on first-
and second-generation ALK TKIs, responded to lorlatinib. Also, lorlatinib showed both systemic and
intracranial activity. These results suggest that lorlatinib may be an effective therapeutic approach for
patients with ALK-driven NSCLC who have become resistant to the currently available TKIs, including
second-generation ALK TKIs [8].
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Table 2. FDA Approved and new ALK inhibitors under development.

Inhibitor Targeted Kinase/s Activity against
Mutant Forms Clinical Evidence Brain

Penetrance References

Crizotinib *
(Xalkori–Pfizer)

ALKc-MET
sROS1 EML4-ALKL1198F

Phase I
Phase II
Phase III

s(Complete)

No [9,10,101,102]

Ceritinib *
s(Zykadia–Novartis)

ALK
IGR-1R
INSR

STK22D

EML4-ALKI1171T/N,

L1196M, S1206C/Y, G1269A/S

Phase I
Phase II
Phase III

(NCT02393625)

Yes [11,109–111]

Alectinib *
(Alecensa–Roche)

ALK
LTK
GAK

EML4-ALKL1152P/R,

C1156Y/T, L1196M,

F1174C/Y, S1206C/Y

DCTN1-ALKG1269/S

Phase I
Phase II
Phase III

(NCT02075840)

Yes [14,116,117,127,
129,130]

Brigatinib *
(AP26113-Ariad)

ALK
ROS1

EML4-ALKI1151Tins,

C1156Y/T, L1196M, L1152P/R,

F1174C/L/V, G1269A/S1

EML4-ALKG1202R

Phase I
Phase II
Phase III

(NCT02094573)

Yes [16,121,123–
125,131–133]

PF-06463922
(Lorlatinib-Pfizer)

ALK
ROS1

ROS1G2032R

ROS1L2026M

EML4-ALKL1196M,

G1269A,S1206Y,C1156Y,

F1174L,L1152R,1151Tins

Phase I
Phase II

(NCT01970865)
Phase III

(NCT03052608)

Yes
(NCT02927340) [8,127,134–136]

RXDX-101
(Entrectinib-Ignyta)

ALK
ROS1
TrkA
TrkB
TrkC

EML4-ALKC1156Y, L1196M

Phase I
(ALKA-372-001

and
STARTRK-1;

NCT02097810)

Yes [137,138]

ASP3026
(Astellas Pharma)

ALK
ACK
ROS1

EML4-ALKL1196M

NPM-ALKI231N

NPM-ALKL256Q

Phase I
(NCT01284192) N.D. [139–141]

X-376 and X-396
(Xcovery)

ALK
MET EML4-ALKL1196M, C1156Y

Phase I/II
(X-396)

(NCT01625234)
Yes [142,143]

CEP-28122 (Teva) ALK
FAK N.D. Phase I

(NCT01922752) N.D. [144]

TSR-011
(Tesaro)

ALK
TrkA
TrkB
TrkC

N.D. Phase I/IIa
(NCT02048488) N.D. [145]

Abbreviations (alphabetic order): FAK, focal adhesion kinase; MET, proto-oncogene, receptor tyrosine kinase; N.D.,
not described; ROS1, ROS proto-oncogene 1, receptor tyrosine kinase; TrkA, tyrosine kinase receptor A; TrkB,
tyrosine kinase receptor B; TrkC, tyrosine kinase receptor C. *; FDA approved. 1 Brigatinib was reported to have
activity against the G1202R mutation [124,125,146], however, G1202R mutation has also been detected in biopsy
specimens from ALK-positive NSCLC patients who relapsed on brigatinib [129].

In the phase I, dose escalation study, commonly observed AEs were hypercholesterolemia,
hypertriglyceridemia, peripheral neuropathy, and peripheral edema in 72%, 39%, 39%, and 39%
patients, respectively. GI symptoms (constipation and nausea) were less frequent and predominantly
grade 1. The authors also reported mild neurocognitive side-effects (difficulty multitasking, slowing
of speech, and short-term memory deficits) and mood side-effects that were reversible with dose
interruption or dose reduction. However, how lorlatinib affects the lipid metabolism and causes
hypercholesterolemia, hypertriglyceridemia, AEs unique to lorlatinib treatment, is still not known [8].
A phase III study comparing lorlatinib with crizotinib as monotherapy in terms of prolonging
progression-free survival and overall survival in treatment naïve advanced ALK-positive NSCLC
patients is currently ongoing (NCT03052608). Even though lorlatinib is a potent inhibitor, the L1198F
resistant mutation was reported in one ALK+ NSCLC patient after receiving lorlatinib treatment for
8 months [147]. The patient had been treated with two prior TKIs; crizotinib and ceritinib and became
refractory to both of them. Surprisingly, the L1198F lorlatinib resistant tumor regained sensitivity to
crizotinib [147].
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5. ALK TKI Resistance Mechanisms

Resistance to targeted therapies can be either primary or acquired. Primary resistance to a
targeted therapy implies an intrinsic lack of response to the treatment from the beginning while
acquired resistance denotes disease progression after an initial response (partial or complete) to the
therapy [120]. Though mechanisms of intrinsic resistance are poorly understood, acquired resistance
mechanisms broadly fall under two categories; ALK-dependent or ALK-independent mechanisms
of resistance.

5.1. ALK-Dependent Resistance Mechanisms

5.1.1. Secondary Mutations in the ALK Tyrosine Kinase Domain

In general, secondary mutations within the target kinase cause drug resistance by re-activation of
the kinase and its downstream signaling pathways despite the presence of the TKI. These resistance
mutations often occur around the surface lining the drug binding site (Figure 2C), although a number of
mutations have been described that lie far from the active site. Depending on their location, mutations
can directly hamper TKI binding to the target kinase, alter the conformation of the kinase, and/or
modify the ATP-binding affinity of the kinase.

Resistance against Crizotinib

Despite the remarkable responses that have been observed in patients with ALK rearrangements,
resistance to crizotinib eventually develops and rather quickly, making durable response unachievable,
particularly in NSCLC. One of the important mechanisms of acquired resistance to crizotinib is the
selection of point mutations within the drug target that alter drug sensitivity (Table 3). The first case of
resistance against crizotinib was reported in an EML4-ALK-positive NSCLC patient [148]. The tumor
resumed growth after an initial partial response over a period of 5 months. Deep sequencing analysis
of the patient sample revealed a L1196M mutation and a C1156Y substitution at a relatively high
frequency. The L1196 residue is a conserved gatekeeper residue located close to the ATP pocket
and crizotinib binding site. In this secondary mutation, a smaller residue (leucine) is replaced by
a larger residue (methionine) (Figure 2A,B). In contrast to a larger residue, a smaller one does not
block the access of the inhibitor to the adjacent hydrophobic pocket [149]. Methionine substitution,
in addition, has been reported to increase the enzyme activity by strengthening the hydrophobic
R-spine which then promotes the formation of the active protein conformation [150]. L1196M mutant
EML4-ALK protein was found to have higher phosphorylation levels [142]. These results show that
the L1196M substitution confers drug resistance by increasing the protein kinase activity. On the
other hand, the C1156Y mutation creates a displacement of crizotinib along with some conformational
changes in the binding site of the drug that eventually decreases crizotinib affinity and leads to
drug resistance [151]. Interestingly, a different gatekeeper mutation (L1196Q) was identified in
crizotinib-resistant ALCL cells in vitro [152]. The same paper described an I1171N mutant that was
resistant to all tested inhibitors; this mutation was later identified in an ALCL patient progressing
on crizotinib [17]. Sasaki and colleagues described another case of crizotinib resistance in an IMT
patient [153]. These investigators found the F1174L mutation in the RANBP2-ALK kinase domain in
the relapsed tumor lesions. The F1174L mutation had earlier been detected in neuroblastoma [95].
The 1174 residue is found at the carboxyterminal end of the αC-helix and has been shown to reduce
ALK sensitivity to crizotinib by increasing ATP binding affinity in neuroblastoma cell lines and in vivo
models [154]. Another mutant variant at the same position, F1174V, was also found in an ALK+
NSCLC patient resistant to crizotinib [155]. Secondary mutation L1152R with an EGFR and c-Met
hyperactivation was reported in a cell line established from the NSCLC patient who relapsed after
3 months of crizotinib treatment [156]. The L1152R mutation affected crizotinib-mediated inhibition of
downstream AKT and ERK phosphorylation in the resistant cells. As the L1152R mutation does not
seem to be in direct contact with the ATP-binding pocket [157], how L1152R mediates ALK inhibitor
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resistance is still unclear. A number of other secondary mutations such as S1206Y, G1202R, 1151Tins,
G1269A were also found in crizotinib-refractory NSCLC patients (Figure 2C) [158,159]. Both, G1202R
and S1206Y, are located at the solvent front of the kinase domain and presumably interfere with
inhibitor binding due to steric hindrance and conformational changes of the kinase. While the insertion
of a threonine residue at 1151 position is speculated to lead to a change in the affinity of ALK for
ATP [157]. The Gly1269 residue is situated at the end of the ATP-binding pocket of ALK and its
substitution with the larger Ala residue leads to a decrease in the binding of crizotinib to ALK due
to steric hindrance [159]. Another ALK mutation found commonly in neuroblastoma is R1275Q [94],
which has been shown to increase the ATP-binding affinity in the mutated ALK in vitro [154].

Table 3. Mutational profile of ALK that induce TKI resistance.

TKI Sensitive Mutants Resistant
Mutants Disease Evidence (In Vitro/

In Vivo/Clinical) Reference

Crizotinib L1198F

I1151Tins
L1152R
C1156Y

I1171T/N
F1174L
L1196M
L1196Q
L1198P
G1202R
D1203N
S1206Y
G1269A

NSCLC
NSCLC
NSCLC
NSCLC

IMT
NSCLC
NSCLC

EML4-ALK BaF3 cells
NSCLC
NSCLC
NSCLC

NSCLC, IMT

Clinical
Clinical
Clinical
Clinical
Clinical
Clinical
Clinical
In vitro
Clinical
Clinical
Clinical
Clinical

[158]
[156]
[148]
[160]
[156]
[148]
[161]
[162]
[158]
[161]
[158]

[159,163]

Ceritinib G1269A, I1171T,
S1206Y, L1196M

R1275Q
L1152P/R

D1203
G1202R

F1174C/V
L1198F

C1156Y/T

Neuroblastoma
NSCLC
NSCLC
NSCLC
NSCLC
NSCLC
NSCLC

In vitro
In vitro
Clinical
Clinical
Clinical
In vitro
In vitro

[94]
[107]
[164]
[107]
[107]
[165]
[107]

Alectinib
G1269A, S1206Y,
L1152R, F1174L,

1151Tins

I1171T
V1180L
G1202R

NSCLC
NSCLC
NSCLC

Clinical
In vitro
Clinical

[119]
[155]

Brigatinib

G1269A, S1206Y,
L1152R, F1174C,
1151Tins, I1171T,
D1203N, E1210K,

F1245C

F1174V+L1198F
G1202R

S1206C/F

ALCL
NSCLC
NSCLC

In vitro
Clinical
Clinical

[166]
[167]

Lorlatinib L1196M, G1202R,
G1269A L1198F NSCLC Clinical [147]

Resistance to Second-Generation ALK TKIs

Even though the second generation of ALK inhibitors is proven to be more potent and highly
selective with tolerable adverse events, the biggest setback still stays in the form of acquired resistance
against them. For example, while ceritinib was able to overcome some of the secondary ALK resistance
mutations that arise after crizotinib treatment, G1202R, F1174C/V mutations were reported to be
selected by ceritinib. Structural analysis revealed that G1202R substitution causes a significant loss in
ceritinib binding due to steric hindrance [107]. Other secondary mutations such as C1156Y, 1152Tins, and
L1152R, G1123S have also been documented to be associated with resistance against ceritinib [160,168].

On the other hand, alectinib was shown to be effective against crizotinib or ceritinib resistant
mutations, but leads to the acquisition of I1171T and V1180L resistant mutations in vitro and in a
patient upon alectinib treatment. Interestingly, these two mutations could be overcome with ceritinib
treatment which supports the idea of using two different inhibitors/combinatorial therapy. Again, the
G1202R emerged as a highly intractable mutant [169]. Indeed, this mutation was reported to be resistant
to all clinically available inhibitors, thereby representing the biggest current clinical challenge [123].
Point mutations L1122V, F1174V+L1198F, S1206C, and L1198F have been shown to confer resistance
against brigatinib in ALCL cell lines [166]. Except for the S1206C mutation, most of the brigatinib
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resistance could be overcome by switching back to crizotinib, other ALK TKIs or using alternative
inhibitors such as heat shock protein 90 (HSP90) inhibitors [166].

Emergence of compound mutations upon sequential TKI treatment appears to be the next hurdle.
Given the structural differences among the available ALK TKIs, it is perhaps not surprising that each
ALK TKI appears to be associated with a specific profile of secondary ALK resistance mutations
(Table 3). One such example of the compound mutations is the presence of a double mutation, C1156Y
and L1198F in an advanced ALK+ NSCLC patient treated sequentially with crizotinib, ceritinib and
lorlatinib [147]. Even though C1156Y mutation is sensitive to lorlatinib, the addition of L1198F
disrupts binding of the drug with the kinase and leads to lorlatinib resistance. But interestingly,
in vitro studies showed that L1198F mutation paradoxically leads to re-sensitization to the less potent
and selective inhibitor crizotinib. Based on these findings, the patient was retreated with crizotinib
and had a durable response [170]. Other examples of the compound mutation phenomenon include
detection of C1156Y and I1171N double mutation after progression on crizotinib, ceritinib, and alectinib
sequential treatment and presence of E1210K with D1203N mutation after sequential crizotinib and
brigatinib treatment [129]. Given the number of different ALK TKIs that are being approved and their
implementation in clinic for sequential TKI treatment, we are bound to see an increase in the number
and variety of compound mutations (Table 3).

5.1.2. Amplification of ALK

Another ALK-dependent resistance mechanism is the amplification of ALK gene which occurs
less frequently than secondary mutations, but is a recognized cause of acquired resistance to crizotinib.
Katayama et al. reported high-level of wild type EML4-ALK gene amplification in 1 of the 15 patients
that progressed on crizotinib [158]. The authors did not find any additional secondary mutations
in the sample. Doebele et al. also documented an increase in the copy number of rearranged ALK
gene per cells in 2 out of 12 patients’ samples from post-crizotinib treatment [159]. Copy number
gain (CNG) in the rearranged ALK gene was accompanied by the resistant mutation G1269A in
1 of these 2 samples. Based on the present clinical evidence it is difficult to say under which
circumstances/factors, amplification of ALK gene is sufficient enough to render the tumor cells
resistant. Genomic amplification of ALK locus has also been described to mediate ALK TKI resistance
in ALCL cell lines [166,171]. Ceccon et al. observed that the brigatinib resistant ALCL cells had
overexpressed NPM-ALK due to the ALK amplification [166]. Interestingly, the resistant cells were
dependent/addicted to the TKI for their growth and proliferation [172]. Remarkably, drug withdrawal
lead to apoptotic death of these drug-addicted TKI resistant cells mediated by the activation of the
DNA damage response pathway due to an unbalanced NPM-ALK signaling [172].

5.2. ALK-Independent Resistance Mechanisms

5.2.1. Activation of Bypass Signaling Pathways

One important category of ALK-independent resistance mechanism is the activation of bypass
signaling pathways through genetic alterations, autocrine signaling, or dysregulation of feedback
signaling which leads to the survival and growth of tumor cells even when the target driven gene is
inhibited with the TKI.

One such example is the epidermal growth factor receptor (EGFR) activation [156,158,173]. Studies
conducted in ALK-rearranged lung cancer cell lines have shown an increment of EGFR phosphorylation
in crizotinib-resistant cell lines which did not present secondary ALK mutation/up-regulation, when
compared with parental crizotinib-sensitive cells, leading to a persistent activation of downstream
ERK and AKT signaling. However, those cells did not present any EGFR mutations or amplification,
telling that EGFR activity may result from receptor or ligand up-regulation [156,173]. Gene expression
profiling of crizotinib-resistant versus crizotinib-naive NSCLC tumor samples using RNA sequencing
followed by single-sample gene set enrichment analysis (ssGSEA) has identified EGFR and HER2
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(members of the HER receptor family) signatures as two of the most enriched gene expression marks
in resistant tumors [174].

In ALK-positive lung adenocarcinoma cell lines and mouse xenograft models, the RAS–MEK
pathway was found to be the critical downstream effector of EML4–ALK. In a recent study, using
next generation sequencing analysis in a patient-derived ALK-translocated lung cancer cell line after
ceritinib treatment, a MAP2K1-K57N activating mutation was found as the primary genetic alteration
which was leading to MEK activation. More importantly, a separate study verified that ALK/MEK dual
blockade may be effective not only in overcoming but also in delaying ALK TKI resistance [175,176].
In addition, c-KIT gene amplification in the presence of stem cell factor (SCF) has also been reported
to impart some degree of resistance against crizotinib in patient samples [158]. A combination of
crizotinib and imatinib (c-KIT/ABL inhibitor) treatment was able to overcome the resistance in c-KIT
overexpressing crizotinib-resistant H3122 cells [158].

Laimer et al. [117] have shown in a mouse model of NPM-ALK-triggered lymphomagenesis,
that the activator protein 1 family members JUN and JUNB promote lymphoma development and
tumor dissemination via transcriptional regulation of platelet-derived growth factor receptor-β
(PDGFRβ). When PDGFRβ is inhibited therapeutically, the survival of NPM-ALK transgenic mice is
prolonged. Also, its inhibition leads to an increased efficacy of an ALK-specific inhibitor in transplanted
NPM-ALK tumors. Remarkably, a patient with refractory late-stage ALK-rearranged ALCL treated
with PDGFRα and PDGFRβ inhibitors had a rapid and complete remission [177].

Doebele et al. reported mutation in KRAS gene in 2 of the 11 NSCLC patients who relapsed
on crizotinib [159]. One patient had a KRASG12C mutation which was detected in both, pre- and
post-crizotinib biopsy samples. The second patient had a G12V substitution in KRAS gene only in the
post-crizotinib biopsy sample. Interestingly, when the author introduced the G12V substitution in
H3122 cells to evaluate its effect on resistance, they did not see a significant difference in IC50 values
between parental and mutant cells [159]. Additionally, re-activation of MAPK signaling pathway due
to a copy number gain (CNG) of wild-type KRAS gene or reduced levels of MAPK phosphatase DUSP6
was also reported to impart resistance against ALK TKIs in mouse models [175]. Using an upfront
dual ALK and MEK-inhibitor therapy the authors were able to suppress the development of resistance
in vitro. Other examples of bypass mechanisms clinically implicated in ALK TKI resistance include
PIK3CA mutations (one of 27 samples (3.7%), post-alectinib; a case post-ceritinib) [129,176], IGF1R
activation (four of five samples (80%), post-crizotinib [178]; and SRC activation [176]) (Figure 1B).

5.2.2. Other Mechanisms

In case of NSCLC, change in morphology has also been shown to contribute towards TKI
resistance. Epithelial-to-mesenchymal transition (EMT) is one such morphological change in which
epithelial cells lose their polarity and cell-to-cell junction and become more fibroblastic as well as more
motile and invasive. EMT has been reported to confer resistance against first and second generation
ALK TKIs in NSCLC cell lines [179] as well tumor samples [129]. However, how exactly and to what
extent EMT contributes to this resistance still needs to be uncovered. Another recently identified
mechanism of resistance against ALK TKIs is the histological transformation from a NSCLC entity to
Small Cell Lung Cancer (SCLC). Several reports have been published reporting the transformation in
NSCLC patients after progression on crizotinib [180,181], alectinib [182–184] and also on ceritinib [185].
In all of these reported cases, the SCLC tumor cells retained the ALK expression. None of the
investigators were able to firmly demonstrate if the SCLC transformation appeared as a novel resistance
mechanism or the SCLC cells could have co-existed but not discovered during the initial diagnoses.
Even though the transformation mechanism is not yet completely understood, loss of retinoblastoma
(RB) gene seems to be important for this type of transformation. Mutations in TP53 and PTEN genes
have also been found in a patient presenting with the SCLC transformation [185].
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6. Other Therapeutic Strategies to Overcome ALK-Related Resistance

6.1. ALK TKIs Combined with Other Inhibitors Targeting Different Kinases

The majority of studies performed on ALK TKI resistance has focused on the development of
next-generation ALK inhibitors, which can overcome at least some of resistant mutants. Around
30% of crizotinib resistance in ALK-positive NSCLC is related to secondary ALK mutations and/or
amplifications, which maintain their sensitivity to next-generation ALK inhibitors. However, nearly to
40% of the resistant cases to second-generation inhibitors is no longer ALK-dependent. Activation of
bypass signaling has emerged as other potential strategy to combat ALK TKI resistance. Combination
strategies that target both ALK and a second kinase may be needed to overcome the different bypass
pathways that mediate ALK resistance.

As mentioned above, MEK reactivation is a key example of resistance mechanism involving other
TKs. Crystal et al. in a patient-derived ALK-rearranged lung cancer cell line post-ceritinib harboring
MAP2K1K57N activation mutation of MEK, have shown that the MEK inhibitor selumetinib was a
potent hit when combined with ceritinib [176]. Confirming these results, a separated study lead by
Hrustanovic et al. demonstrated that the dual blockage of ALK/MEK may be effective not only in
overcoming but also in delaying ALK TKI resistance [175]. Based on these findings, a large variety of
combination therapies of ALK and MEK inhibitors may be a potential therapeutic strategy.

Current clinical trials are testing the efficacy of ALK TKI in combination with other target agents.
Alectinib combined with bevacizumab (angiogenesis agent targeting vascular endothelial growth
factor–VEGF) is being tested in patients with ALK-rearranged NSCLC with at least one target lesion
in CNS (NCT02521051) and combinations of ceritinib with either LEE011 (CDK4/6 inhibitor) or
everolimus (mTOR inhibitor) are in early-phase testing in NSCLC (NCT02292550 and NCT02321501,
respectively). Other potential combinations include ALK TKI with EGFR inhibitor, cKIT inhibitor
and SRC inhibitor. The selection of the appropriate combination should be individualized based
on the resistance mechanism identified and toxicities of combinations may be a major limitation.
MET activation is a very well-known bypass signaling pathway in EGFR-mutant NSCLC but in
ALK-rearranged NSCLC does not cause resistance to the first-generation TKI crizotinib, which is also a
potent MET inhibitor [186,187]. However, some of the next-generation ALK TKIs do not have activity
against MET and indeed, MET has been reported as a bypass signaling mechanism in a patient who
has failed second-generation ALK inhibitors. This patient subsequently responded to crizotinib [188].
Similarly, the fact that each ALK TKI is associated with a unique spectrum of ALK resistance mutations,
suggests that combinations of ALK TKIs could also be beneficial and enable more durable responses
than those achieved in monotherapies.

6.2. ALK Inhibitors Combined with Immunotherapy

6.2.1. Immune Checkpoint Inhibitors

Immunotherapy with immune checkpoints inhibitors, specifically PD-1 and PD-L1, has demonstrated
good responses in advanced NSCLC, ranging from 15 to 20%, with some patients exhibiting durable
responses after discontinuing therapy [189–194]. In 2015, two immune checkpoints inhibitors received
FDA approval for second-line therapy of NSCLC, namely nivolumab and pembrolizumab both
targeting the programmed cell death-1 (PD-1). In 2016, another checkpoint inhibitor (atezolizumab,
a programmed cell death-ligand 1 [PD-L1]) received its approval from FDA for first-line NSCLC
treatment in patients with high PD-L1 expressing tumors [189,195–198]. Some clinical trials are
investigating the efficacy and safety of an ALK TKI combined with immunotherapy in lung cancer,
namely, crizotinib with nivolumab or ipilimumab (NCT01998126) or pembrolizumab (NCT02511184);
alectinib with atezolizumab (NCT02013219); ceritinib combined with nivolumab (NCT02393625) and
lorlatinib with avelumab (NCT02584634). Yet, there are still limited preclinical data to support this
combination strategy. Although those immune checkpoints inhibitors have demonstrated durable
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responses after disruption of the therapy, only 20% of the patients benefit this effect and it has been
associated with high expression levels of PD-L1, high mutational load and smoking history [189,191].
Patients bearing ALK-rearrangements tend to be never-smokers and with a low tumor mutational
load [199] and to respond poorly to PD-1 blockade [200]. Thus, the potential benefit of the addition of
immunotherapy to ALK TKI treatment is still unclear.

6.2.2. Vaccine Therapy

The administration of immunogenic tumor-associated antigens or cells in conjunction with an
immune-adjuvant that elicits specific antitumor immune response, boost the immune system against
tumor cells [201]. These therapeutic vaccines identify specific tumor-associated antigen and elicit
the immune system against them. ALK has unique biological characteristics that are attractive for a
tumor antigen. First, ALK is not expressed in obviously detectable levels by non-tumoral cells with
the exception of specific regions of the central nervous system and the testis, both immunologically
privileged sites. Many evidences support that ALK is spontaneously recognized as a tumor antigen
in human patients [202]. Circulating antibodies against NPM-ALK and EML4-ALK proteins were
found in ALK-positive ACLC and NSCLC, respectively [203,204]. In 2008 we have demonstrated
in vivo the efficacy of a DNA-based vaccine encoding portions of the cytoplasmic domain of ALK.
This combination enhanced the survival of mice challenged with ALK-positive lymphomas [205].
More recently, our group has shown that ALK vaccination induce a strong and specific immune
response either prophylactically or therapeutically against ALK+ lung tumors in preclinical models.
The ALK vaccine in combination with ALK TKI treatment significantly delayed tumor relapse after TKI
suspension [206]. Many of the vaccine trials in NSCLC showed an immune response after vaccination,
usually in form of an increase of target specific cytotoxic T-cells. Unfortunately, this has not translated
into significant survival advantage in the phase III trials to date. In terms of toxicity, most of these
vaccine-based therapies show less toxicity when compared to traditional chemotherapies or other
immune therapies. While vaccine therapy trials in NSCLC have so far failed to show significant clinical
benefit, the demonstration of enhanced immune response in these trials suggests that an ALK-directed
vaccine therapy could have more degree of clinical efficacy in combination with checkpoint inhibitors.

7. Conclusions

ALK represents a validated therapeutic target in numerous malignancies such as NSCLC, ALCL,
IMT and neuroblastoma. Since its discovery as a fusion oncogene, four ALK inhibitors have been
approved and will become standard of cure for NSCLC patients harboring ALK-rearrangements.
More ALK inhibitors are in clinical development and some have already shown strong efficacy in
cohorts of patients with ALK-positive tumors. Notwithstanding these remarkable responses, ALK TKIs
effect is transient and never achieves a complete cure. Patients invariably relapse due to acquired
resistance, which represents a significant barrier to the successful treatment of ALK-positive patients.
Therefore, the development of strategies to overcome/prevent/delay resistance is a priority. With the
current knowledge of the complex and heterogeneous mechanisms process behind ALK resistance,
multiple next-generation ALK inhibitors and combinatorial treatment approaches can be envisioned.
These potential new therapeutic strategies have the promise to improve the treatment of an increasing
portion of patients ALK-positive cancers.
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