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Abstract 

Identifying the key molecular pathways that enable metastasis by analyzing the eventual 

metastatic tumor is challenging because the state of the founder subclone likely changes 

following metastatic colonization. To address this challenge, we labeled primary mouse 

pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their 

pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo 

metastatic potential prospectively. We identified a gene signature separating metastasis-high 

and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. 

The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and 

Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, 

motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, 

we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB 

targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored 

human PDAC tumors for our signature of metastatic potential from mouse and found that 

metastases have higher scores than primary tumors. Moreover, primary tumors with higher 

scores are associated with worse prognosis. We also found that our metastatic potential 

signature is enriched in other human carcinomas, suggesting that it is conserved across 

epithelial malignancies. This work establishes a strategy for linking cancer cell state to future 

behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for 

scoring human carcinomas based on metastatic potential.  
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Introduction 

Most patients with solid malignancies die from complications of metastasis1. This is true across 

diverse cancer subtypes, with few exceptions (e.g., glioblastoma). Due to the major clinical 

burden of metastasis, there is an urgent need to develop therapies targeting the metastatic 

cascade. However, we are currently hindered in our ability to develop such therapies by an 

incomplete understanding of the molecular mechanisms underlying metastasis.  

 

Lineage tracing studies utilizing patient samples have demonstrated that across multiple cancer 

subtypes, metastases develop from a small number of subclones within heterogeneous primary 

tumors2-6, indicating the existence of subclones with an intrinsic advantage in progressing 

through the metastatic cascade. The exact nature of this advantage is unclear – genetic 

comparison of metastases and primary tumors in patient samples has not identified clear 

individual drivers of metastasis7-9, suggesting that the metastatic advantage is conferred by 

small contributions from a large set of factors. However, identifying these factors by analyzing 

the eventual metastatic tumor is challenging because the massive expansion of cell numbers 

after the completion of the metastatic cascade, which coincides with intense cell-cell competition 

and selection within the tumor, is likely to diminish or mask the features that conferred the initial 

advantage in completing the metastatic cascade. Therefore, the observed cell states and active 

molecular pathways in a metastatic tumor are likely different than those that enabled the 

founder of that metastatic tumor to successfully progress through the cascade.  

 

Prior studies have sought to address this barrier by using somatic mutations10,11 or engineered 

DNA barcodes12-14 to identify the primary tumor subclones most closely related to the metastatic 

tumor and then characterize the molecular state of these subclones. These approaches have 

described transcriptomic features associated with metastatic potential, identifying a hybrid EMT 

(epithelial-to-mesenchymal transition) state in metastatic subclones in multiple cancer subtypes. 

However, a key limitation in this type of analysis is that the cell states of such retrospectively-

defined primary tumor subclones that share a common ancestor with metastases are likely to be 

different from the cells that founded the metastases because of cancer cells’ transcriptional 

plasticity and the changing selective pressures in the growing primary tumor over time. Other 

studies have labeled subclones to prospectively to compare their metastatic potential15,16. 

However, these studies either characterized a number of subclones too small to be 

representative or used immunocompromised hosts which precludes interrogation of cancer-

immune interactions. Given the well characterized role of immune surveillance in shaping the 

evolution of metastases15,17-19, this is expected to preclude discovery of important regulators of 

metastasis whose mechanism involves modulation of the immune response. Furthermore, they 

required post-hoc expansion of subclones identified in metastasis assays prior to 

characterization, limiting the fidelity of the captured cell states to the metastatic phenotypes 

observed.  
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To address these challenges, we generated subclones of mouse primary pancreatic ductal 

adenocarcinoma (PDAC) by capturing single cells and expanding them to produce monoclonal 

cell lines, each barcoded with a unique DNA sequence. We tested the relative metastatic 

potential of these subclones in competition assays in syngeneic immunocompetent mouse liver 

and peritoneum. These assays focused on the latter stages of the metastasis cascade, 

encompassing extravasating at the distant site, surviving the initial interactions with the 

metastatic microenvironment including the resident immune cells, and proliferating to form a 

macrometastasis. These latter steps of the metastatic cascade are the rate limiting steps20 and 

therefore the key to metastatic potential. Moreover, they are relevant to the adjuvant therapy 

setting when the primary tumor has been surgically removed and potential metastatic founders 

already distributed in the body. Our assays identified both metastasis-high and metastasis-low 

subclones, suggesting that we successfully captured primary tumor heterogeneity. We then 

performed ATAC-seq and RNA-seq on each subclone to respectively characterize its chromatin 

and transcriptomic states. This multi-omic characterization allowed us to connect the pre-

metastatic state of the subclones to their ultimate metastatic performance.  

 

We identified a set of metastasis-high (n = 207) and metastasis-low (n = 182) genes forming a 

metastatic potential axis orthogonal to the normal-to-PDAC and classical-to-basal axes. 

Metastasis-high genes were enriched for IL-1 pathway genes whereas metastasis-low genes 

were enriched for neuroendocrine, motility, and Wnt pathway genes. The majority of both the 

metastasis-high and -low genes are “pro-tumor”, meaning they are up-regulated in PDAC 

relative to normal pancreas, suggesting the met-high and -low states are separated 

predominantly by differential activation of shared pro-tumorigenic gene modules. In a targeted 

screen, we functionally validated the IL-1 pathway genes Fos and Il23a as well as other 

metastasis-high genes Myo1b and Tmem40 as positive regulators of PDAC metastasis. Finally, 

to explore the relevance of our metastatic gene signature to human disease, we created the 

MetScore, a single sample score based on expression of metastasis-high and metastasis-low 

genes, and applied it to multiple publicly available human PDAC cohorts. We found that 

metastases have higher MetScores than primary tumors across cohorts and that higher primary 

tumor MetScores correlate with worse overall survival. Remarkably, MetScores were similarly 

higher in metastases than primary tumors amongst all other human carcinomas evaluated, 

suggesting the signature of metastatic potential we uncovered may be conserved across 

epithelial malignancies. This work establishes a strategy for using DNA barcodes to track 

metastatic performance of individual subclones in competition with others, and to link this 

performance to high-resolution multi-omic characterization of each subclone’s cell state. It 

further reveals important functional regulators of PDAC metastasis, and establishes a method 

for scoring human carcinomas based on metastatic potential.  
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Results 

Isolation of primary PDAC subclones with high and low metastatic potential 

To characterize the molecular determinants of metastatic potential within PDAC tumors, we 

obtained cells isolated from the primary tumors of two KPC mice21-23 (i.e., Pdx1-Cre;LSL-

KrasG12D/+;Trp53R172H/+), which we denote here as KPC-1 and KPC-2. We barcoded each line by 

transposition of randomized DNA sequences24,25 (Fig. 1A). This strategy results in each cell 

receiving a unique combination of sequences that can act as a barcode for tracking it. From 

barcoded mixtures, we sorted single cells and expanded them to generate monoclonal lines. We 

obtained 10 barcoded subclones from KPC-1 and 7 from KPC-2 (Fig. 1B, top). We 

characterized the barcode in each subclone using high-throughput sequencing and 

cryopreserved several vials to enable downstream characterization and experimentation. In 

summary, we established 17 subclones from primary mouse KPC tumors, each with a unique 

and easily identifiable DNA barcode. 

 

We next characterized the range of metastatic potentials of the isolated subclones. To do so, we 

introduced equal mixtures of all KPC-1 or KPC-2 subclones into immunocompetent syngeneic 

C57BL/6 mice via splenic and intraperitoneal routes, a standard approach for modeling 

metastasis to the liver22,23 and peritoneum26, respectively (Figs. 1B,C). After a 4-week 

incubation period, we harvested the resulting metastatic tumors and sequenced the barcode 

amplicon in each to identify its source subclone(s). The results showed that 80% of the sampled 

metastases were polyclonal, with a plurality being biclonal (Fig. 1D). Therefore, we used the 

fraction of metastases in which a subclone is present as a measure of its metastatic potential. 

We did not use abundance in metastases as a measure to minimize confounding by growth 

potential after metastatic colonization. Metastatic potential showed a wide range in KPC-1 and 

KPC-2 subclones: some were present in nearly all metastases and others in nearly none (Fig. 

1E). We denote subclones present in more than 50% of all analyzed metastases as ‘metastasis-

high’ and the rest ‘metastasis-low’ subclones. Importantly, the subclones behaved consistently 

in both anatomic sites. This behavior indicates that the metastasis-high subclones captured 

here have a general advantage at forming metastases. Therefore, we have successfully 

deconvolved heterogeneous initial tumors into subclones with high or low metastatic potential.  

 

The advantage of metastasis-high subclones can be based on their ability to complete the 

metastatic cascade. Alternatively, it can be based on a proliferative advantage for metastasis-

high subclones. We assessed difference in proliferation in two ways. First, we performed in vitro 

proliferation assays (Supp. Fig. 1A). For both KPC-1 and KPC-2, the resulting growth curves 

were intermingled and did not exhibit separation between metastasis-high and metastasis-low 

subclones. Second, we performed in vitro competition assays mimicking our in vivo injections. 

We passaged equal mixtures of cells for the same length of time as in vivo growth and 

evaluated subclone dominance following the final passage by sequencing the barcode 

amplicon. Dominant subclones were strikingly different in the in vitro context compared to in vivo 
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for both KPC-1 and KPC-2 (Supp. Fig. 1B), which is inconsistent with a growth advantage 

accounting for the observed in vivo metastatic potentials.  

 

Another possible confounder for metastatic potential is that KPC tumors are heterogeneous and 

can include cells without Kras and Trp53 mutations, which would likely present as metastasis-

low in our assays. To test whether all isolated subclones are fully transformed, we genotyped all 

monoclonal lines and confirmed that they had all undergone recombination of the LSL-KrasG12D/+ 

and LSL-Trp53R172H/+ alleles (Supp. Fig. 1C). All monoclonal lines had also undergone loss of 

the wild-type Trp53 locus (i.e., loss of heterozygosity [LOH]) with the exception of KPC-2_Lo1, a 

metastasis-low line. Because LOH at the Trp53 locus is a pre-requisite for malignant 

transformation in the KPC mouse model27, we excluded KPC-2_Lo1 from further analyses to 

limit our cohort to only fully transformed subclones. Collectively, these results confirm that our 

metastasis-high PDAC subclones have an advantage in completing the metastatic cascade 

compared to the metastasis-low. 

  

The metastatic potential axis is orthogonal to the normal-to-PDAC and classical-to-basal 

axes 

To understand the genesis of metastasis-high and metastasis-low subclones, we sought to 

place them in the natural history of PDAC development. We mapped the genome-wide 

chromatin accessibility landscape of the five metastasis-high and eleven metastasis-low 

subclones using ATAC-seq. We also obtained ATAC-seq data from epithelial cells derived from 

normal pancreata, pre-neoplasia from KC mice (i.e., Pdx1-Cre;LSL-KrasG12D/+), pancreatitis, pre-

neoplasia with pancreatitis, and primary PDAC from KPC mice (KPC-0) that Alonso-Curbelo 

and colleagues28 generated in the same mouse strain as ours. To control for batch effects, we 

processed all the data (i.e., normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, 

primary PDAC, metastasis-low PDAC subclones, and metastasis-high PDAC subclones) using 

the same pipeline and then performed a batch correction on the KPC-1 and KPC-2 samples 

against KPC-0 using ComBat29. Our analysis strategy included alignment to the mouse genome, 

filtering of low quality, mitochondrial, and duplicate reads, and peak calling. We detected 

between 114,192 and 238,205 peaks per sample and all samples displayed greater than 10-fold 

enrichment of transcription start sites within their associated peaks, an important quality metric 

(Supp. Table 3). We then generated a consensus peak set common to all samples comprising 

323,924 peaks by merging overlapping peaks from the individual peak sets. We scored each 

sample for all peak locations, batch corrected the KPC-1 and KPC-2 samples against KPC-0, 

and performed principal component analysis (PCA). Consistent with previous description, the 

results showed that normal, pancreatitis, pre-neoplasia, pancreatitis+neoplasia, and PDAC 

states were arranged sequentially along the first principal component (Fig. 2A), forming a 

normal-to-PDAC trajectory.  

 

When we analyzed the position of our captured subclones in this normal-to-PDAC trajectory, we 

observed that metastasis-high subclones occupy the same overall state as metastasis-low 
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subclones (Fig. 2A). The metastasis-high and metastasis-low subclones were intermingled 

without any separation between them along the principal components. To evaluate whether 

batch correction may have introduced bias masking global differences between metastasis-high 

and metastasis-low subclones, we performed PCA utilizing the single batch of data that 

contained normal, pancreatitis, pre-neoplasia, pancreatitis+pre-neoplasia, and primary PDAC 

samples only. We then transferred the loadings from the first two principal components to 

compare the metastasis-high and metastasis-low subclones in the context of these PCA axes 

(Supp. Fig. 2). Our subclones formed two clusters, largely concordant with their parental line, 

suggesting either biological or batch effect between KPC-1 and KPC-2. Still, this analysis did 

not separate metastasis-high and -low subclones, supporting our conclusion that metastasis-

high and -low subclones occupy the same position along the normal-to-PDAC axis.   

 

Landmark studies evaluating the transcriptomes of human primary PDAC tumors30-32 have 

identified recurrent molecular subtypes termed classical and basal, which have distinct 

molecular characteristics and clinical behavior. Subsequent single cell sequencing studies have 

deepened our understanding of this classification by demonstrating that within a single tumor, 

PDAC cells can display a spectrum of states existing along a classical to basal axis, with the 

fraction of each subtype varying between tumors33. To identify the molecular subtype of our 

captured subclones, we analyzed the transcriptomes of the five metastasis-high and 11 

metastasis-low subclones using RNA-seq. We then classified each subclone as classical or 

basal utilizing a molecular classifier called PurIST34 that generates a single sample score 

representing the probability of basal-state occupancy from bulk transcriptomic data. PurlST 

categorized all metastasis-high and metastasis-low subclones as classical (Fig. 2B). Together, 

these results put forth a model wherein highly and poorly metastatic subclones arise from 

distinct branches during PDAC tumorigenesis that diverge along a metastatic potential axis 

orthogonal to the normal-to-PDAC and classical-to-basal axes.  

 

Identifying gene signatures for metastasis-high and metastasis-low states by integrating 

chromatin accessibility and gene expression 

To characterize the chromatin features that define this metastatic potential axis, we identified 

ATAC-seq “peaks” (i.e., open chromatin regions) with differential accessibility between 

metastasis-high and metastasis-low subclones. To accomplish this, we generated a consensus 

peak set considering only the metastasis-high and metastasis-low samples, quantified the 

number of insertions at each peak location for each sample, and normalized the peak counts by 

the total reads aligning to peak regions for each sample. Principal component analysis 

demonstrated that the metastasis-high and -low samples capture the expected heterogeneity of 

different subclones within a primary tumor (Fig. 3A). We then applied a generalized linear 

model using DESeq235 with the normalized peak insertion counts as the response variable, the 

metastatic potential (i.e., high vs. low) as a fixed effect, and parental group (i.e., KPC-1 vs. 

KPC-2) as a random effect. Out of the 176,964 total shared peaks, we identified 2,725 peaks 

(1.5%; Supp. Table 4) with increased accessibility in metastasis-high subclones and 5,720 
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peaks (3.2%; Supp. Table 4) with increased accessibility in metastasis-low subclones (Figs. 

3B-D) using an FDR cutoff of 0.05. The majority of the differential peaks fall in distal intergenic 

regions (40.9%) or introns (36.6%), and thus are likely to represent enhancers (Fig. 3E). 

Indeed, 76.3% of the differentially accessible peaks overlap candidate regulatory elements 

(REs) identified by the ENCODE project and 62.7% of all peak-RE overlaps involve candidate 

enhancers (Fig. 3F). The plurality of the remaining peaks fall in promoter regions (16.9%; Fig. 

3E) and a small number fall in exons (4.0%). The observation that most of the identified 

differential peaks are located in putative enhancer regions aligns with the prevailing model of 

gene regulation, which posits that enhancers play a critical role in cell type-specific gene 

expression36; in contrast, promoters are generally more consistently accessible across different 

cell types, contributing to a uniform regulation of gene expression. In summary, we identified 

8,445 peaks in our ATAC-seq data whose accessibility differed between metastasis-high and 

metastasis-low PDAC subclones. 

 

The epigenetic comparison above identified chromatin features which segregate with observed 

differences in metastatic potential. Since metastatic potential is mitotically heritable, we expect 

its underlying features to be among these chromatin features. To link the differentially 

accessible peaks to biological pathways that may be important for metastasis, we evaluated 

whether the metastasis-high and metastasis-low peaks are enriched in regulatory regions of 

genes in Gene Ontology37,38 (GO) Biological Process pathways using GREAT39 (Genomic 

Regions Enrichment of Annotations Tool). There were 218 GO pathways enriched amongst the 

metastasis-high peaks’ target genes (Fig. 3G; Supp. Table 5), with seven out of the top 10 

being related to inflammation (e.g., “inflammatory response”), and there were 150 GO pathways 

enriched amongst the metastasis-low peaks’ target genes (Fig. 3H; Supp. Table 5), with five 

out of the top ten being related to tissue or organ development or differentiation (e.g., 

“regulation of cardiocyte differentiation”), considering only pathways passing an FDR cutoff of 

0.05 for both binomial and hypergeometric tests. While this analysis likely points to some 

pathways that are important for metastasis, given the large number and diversity of pathways 

identified, it is unlikely that all of the identified pathways are functionally related to metastatic 

potential.    

 

To narrow down this list to a high confidence set of genes more likely to be functionally related 

to metastasis, we reasoned that in our assay to measure metastatic potential (Fig. 1B), 

successful cells must realize their advantage in completing the latter half of the metastatic 

cascade immediately after injection; therefore, these cells are likely to be expressing the genes 

that confer them this advantage at the time of injection. To identify which differentially 

accessible open chromatin regions were also associated with gene expression differences 

between metastasis-high and metastasis-low subclones, we used the RNA-seq data generated 

from the five metastasis-high and eleven metastasis-low subclones. Again, we utilized the 

generalized linear model functionality of DESeq2, this time to isolate differentially expressed 

genes between metastasis-high and metastasis-low subclones while controlling for parental 
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group status, identifying a total of 932 significant genes, 498 with increased expression in 

metastasis-high subclones and 433 with increased expression in metastasis-low subclones 

(Fig. 4A; Supp. Table 6) using an FDR cutoff of 0.05. Next, we assigned ATAC-seq peaks to 

their nearest gene and observed correlation of differentially accessible peaks with differential 

gene expression (Fig. 4B). 84% of differentially accessible peaks were assigned to genes with 

unchanged expression after filtering out 124 peaks assigned to predicted genes lacking an 

Ensembl ID and 2,640 peaks linked to genes that were lowly expressed in both metastasis-high 

and metastasis-low subclones. This result is expected as some peaks may not regulate any 

genes, their target gene may be in a poised state, or their target may not be the nearest gene. 

For differentially accessible peaks linked to differentially expressed genes, the genes tended to 

follow the expected pattern, with 97% of significant genes linked to peaks with increased 

accessibility in metastasis-high subclones having increased expression in metastasis-high 

subclones, and 91% of significant genes linked to peaks with increased accessibility in 

metastasis-low subclones having increased expression in metastasis-low subclones. All peaks 

assigned to the top 50 genes with significantly higher expression in metastasis-low subclones 

had greater accessibility in metastasis-low subclones and a substantial majority (i.e., 79%) of 

peaks assigned to the top 50 genes with significantly higher expression in metastasis-high 

subclones had greater accessibility in metastasis-high subclones (Fig. 4C). We define the 

genes with differential expression concordant with the differential accessibility of at least one 

assigned peak to be ”metastasis-high genes” (n = 207) or ”metastasis-low genes” (n = 182). To 

highlight two representative examples, multiple peaks in the promoter region and first intron of 

Il18r1, a metastasis-high gene, displayed increased accessibility in concert with increased 

expression of Il18r1 in metastasis-high subclones (Fig. 4D), and conversely multiple peaks in 

the proximal and distal intergenic regions surrounding Mnx1, a metastasis-low gene, as well as 

its promoter region displayed increased accessibility in concert with increased expression of 

Mnx1 in metastasis-low subclones (Fig. 4E). 

 

In summary, we have identified a bi-directional gene signature associated with the metastatic 

potential of PDAC subclones: metastasis-high genes show higher relative expression in 

subclones with a high metastatic potential while metastasis-low genes are relatively increased in 

subclones with a lower metastatic potential. Because each of these genes is also associated 

with chromatin regions showing a concordant degree of openness, they are more likely to be 

under stable epigenetic regulation required for the mitotic transmission of metastatic potential.  

 

IL-1 pathway genes are enriched amongst metastasis-high genes and neuroendocrine, 

motility, and Wnt pathway genes are enriched amongst metastasis-low genes 

The metastasis-high and metastasis-low genes represent our most confident sets of genes that 

can contribute to metastatic potential. To gain insights into the biological functions enabled by 

these genes, we applied gene set enrichment analysis to the metastasis-high and metastasis-

low sets using the GO37,38 Biological Process and Kyoto Encyclopedia of Genes and Genomes40 

(KEGG) Pathway databases. The top three out of the five total KEGG gene sets significantly 
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enriched within the metastasis-high genes using an FDR cutoff of 0.05 are related to infection or 

inflammation (i.e., “TNF signaling pathway”, “Pertussis”, and “Leishmaniasis”; Fig. 5A; Supp. 

Table 8). No GO terms were enriched within the metastasis-high genes using an FDR cutoff of 

0.05. Further examination indicated that these GO terms coalesce on the IL-1 signaling 

pathway: Nearly all (9/11) of the genes present in these infection/inflammation gene sets (Fig. 

5B) fall within this pathway, including an IL-1 family cytokine (Il1a)41 and cytokine receptor 

(Il18r1)41, machinery for converting extrinsic IL-1 signals into NF-κB activity (Irak1, Tab3)42, and 

well-established NF-κB transcriptional targets (Nos2, Il1a, C3, Cxcl5, Fos, Xiap)43-48. We define 

an “IL-1 Pathway” module as the set comprising these nine genes (Fig. 5E). 

 

Amongst metastasis-low genes, there were 50 GO pathways significantly enriched using an 

FDR cutoff of 0.05 (Fig. 5C; Supp. Table 8). These pathways were divided by manual curation 

into three classes: development (19/50; e.g., “muscle cell differentiation”); motility (16/50; e.g., 

“ameboidal-type cell migration"); and Wnt (7/50; e.g., “Wnt signaling pathway”). The remaining 

eight pathways could not be confidently assigned into one of these groups. No KEGG terms 

were enriched within the metastasis-low genes using an FDR cutoff of 0.05. Review of 

metastasis-low genes present in the development gene sets identified multiple genes required 

for proper islet development including Isl149, Mnx150, Pbx151, Foxp152, Rarb53, Tshz154, and 

Ssbp355 (Fig. 5D), which we collectively define as the “Neuroendocrine” module (Fig. 5E). This 

observation is consistent with the “developmental constraint” model of cancer evolution56, which 

posits that cancer cells evolve by accessing gene programs specific to developmental lineages 

adjacent to the cell of origin, which in this case is controversial but is most likely either the 

mature pancreatic acinar cell or mature pancreatic ductal cell57. Furthermore, this observation is 

consistent with a prior observation of subpopulations of human PDAC cells in a neuroendocrine-

like differentiation state58.  

 

Metastasis-low genes found in motility gene sets include the semaphorins Sema3a, Sema3d, 

and Sema5a, which function under normal physiology as axon guidance cues59 (Fig. 5D). 

Semaphorins are generally believed to have a tumor-promoting role in PDAC development. 

SEMA3A and SEMA3E are recurrently amplified in human PDAC60. Experiments performed in 

mouse models suggest that semaphorins promote metastasis both through cancer-cell intrinsic 

mechanisms such as stimulating migration61,62 and cancer-cell extrinsic mechanisms such as 

polarizing macrophages towards an M2 phenotype63 and recruiting neurons64. The metastasis-

low genes found in motility gene sets also include a number of genes that have been shown to 

stimulate motility of cancer cells under certain circumstances including Enpp265, Hdac966, 

Ccn367, Fstl168, Emb69, Pdgfd70, Vav371, Hspb172, Itga473, and Ece174. We define a “Motility” 

module as the set comprising these ten genes as well as the three above mentioned 

semaphorin genes (Fig. 5E). While we did not initially expect to observe motility-related genes 

enriched in the metastasis-low subclones given the general assumption that a motile state is 

advantageous for a cell to complete the metastatic cascade, as we will show below, these 

genes are still upregulated in the metastasis-high subclones compared to normal pancreatic 
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epithelium. Therefore, one possible explanation is that metastasis requires a moderate level of 

increased motility but that extreme dysregulation is inhibitory. Another possible explanation is 

that motility may be important for egress from the primary tumor but dispensable for the latter 

stages of the metastatic cascade that are being captured by our assays. Yet another possible 

explanation is that certain pro-motility genes, which may be metastasis enabling, are co-

regulated with a broader set of genes that are anti-metastatic. 

 

Metastasis-low genes found in Wnt pathway gene sets include the canonical Wnt ligand 

Wnt10b75 (Fig. 5D) as well as Wls, whose gene product WLS facilitates the secretion of 

canonical Wnt ligands. However, there are also a number of genes encoding canonical Wnt 

pathway antagonists amongst the metastasis-low genes (Dkk2, Dkk3, Sfrp4, Axin2, and Tle4)75. 

In addition, a gene encoding a non-canonical Wnt ligand, Wnt5b75, as well as an essential 

planar cell polarity gene, Prickle1, are found amongst the metastasis-low genes. We define a 

“Wnt” module as the gene set comprising these nine genes (Fig. 5E). This is challenging to 

interpret given the presence of both agonists and antagonists amongst the metastasis-low 

genes as well as both canonical Wnt and non-canonical Wnt/planar cell polarity genes but 

suggests differential dysregulation of the Wnt pathways between the metastasis-high and 

metastasis-low subclones. 

 

Above, we identified genes and pathways with different expression levels in metastasis-high 

and metastasis-low PDAC subclones relative to each other. An important missing context of this 

analysis is that the directionality of gene expression changes relative to the baseline normal 

pancreas state is unclear. To address this, we used RNA-seq data from epithelial cells derived 

from normal pancreata and primary PDAC from KPC mice (KPC-0), again generated by Alonso-

Curbelo and colleagues28 using the same mouse strain as ours. We performed differential gene 

expression analysis using the KPC-0 and normal pancreata samples, allowing us to identify 

each metastasis-high and metastasis-low gene as down-regulated in tumor (anti-tumor) or up-

regulated in tumor (pro-tumor). Combining this information with the enrichment level of each 

gene in metastasis-high versus metastasis-low subclones allowed us to place each gene on 

both an anti-metastasis to pro-metastasis axis and an anti-tumor to pro-tumor axis (Fig. 5F; 

Supp. Table 9). The majority of both the metastasis-high (133/207 [64.3%]) and the metastasis-

low (123/182 [67.6%]) genes were identified as being pro-tumor. Thus, most of the differences 

between the two states are related to genes being activated during primary tumorigenesis to a 

more or less pronounced degree in each state. The IL-1 Pathway module genes are largely 

(82%) pro-tumor (Nos2, Il18r1, Il1a, Cxcl5, Fos, Tab3, and Xiap) with the exception of C3 and 

Irak1, which are anti-tumor. Similarly, 5/7 (71.4%) of the Neuroendocrine module genes, 11/13 

(84.6%) of the Motility module genes including all three semaphorin genes, and all (9/9) Wnt 

Pathway module genes are pro-tumor. Taken together, these results suggest that a majority of 

metastatic potential is regulated by differential prioritization of pathways that are already 

important for tumorigenesis. They also identify candidate genes which may be positively 

contributing to initial tumorigenesis but dispensable or detrimental to metastatic potential. 
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NF-κB and mesenchymal transcription factors regulate the metastasis-high state 

whereas CDX2 and HOXA13 regulate the metastasis-low state 

Coordinated activation of multiple genes in each module associated with metastasis-high or 

metastasis-low subclones points to transcription factors (TFs) helping drive or maintain these 

states. To identify TFs associated with the metastasis-high and metastasis-low states, we used 

TF footprinting76, which searches for sites within ATAC-seq peaks that show a dip in openness 

signal. Such dips can be attributed to a TF binding to the DNA at that site and preventing the 

Tn5 transposase from inserting in that position, thereby creating a ‘footprint’ within the peak. We 

first merged aligned ATAC-seq reads from the five metastasis-high subclones and, separately, 

from the eleven metastasis-low subclones after downsampling the reads for each to match the 

least covered subclone in that group to ensure equal representation of each subclone. We then 

utilized the package TOBIAS76 to identify footprints and calculate the differential binding scores 

(DBSs) for 511 TF motifs in the JASPAR database77 whose TFs are expressed across the 

tested subclones. There were 209 (~41%) motifs with significantly greater DBSs in metastasis-

high subclones and 290 (~57%) motifs with significantly greater DBSs in metastasis-low 

subclones (Bonferroni adjusted p-value < 0.05; Fig. 6A; Supp. Table 10). Validating these 

predicted sets, motifs corresponding to the four TFs involved in islet development previously 

identified as metastasis-low genes, i.e., Isl1, Mnx1, Pbx1 and Foxp1, all had DBSs favoring the 

metastasis-low subclones (two-sided T test, adjusted p-value < 1E-16 for all four). Furthermore, 

4 of 6 motifs assigned to the inflammation-related metastasis-high gene Fos had DBSs favoring 

the metastasis-high subclones (two-sided T test, adjusted p-value < 1E-16 for FOS motif 1, 

FOS::JUN motif 1, FOS::JUNB, FOS::JUND).  

 

The top motifs with differential binding scores favoring the metastasis-low subclones belong to 

CDX2 and HOXA13 (two-sided T test, adjusted p-value < 1E-16 for both), which are both 

involved in anterior-posterior patterning during development. CDX2, part of the ParaHox cluster, 

is expressed in gut epithelium caudal to the stomach beginning with hindgut invagination and 

continuing throughout development and into adulthood and functions to suppress the default 

state of forestomach endoderm and promote a caudal phenotype78. Hox family members are 

generally not expressed in gut endoderm but are expressed primarily in developing ectodermal 

and mesodermal tissues and are responsible for segmental specification of the musculoskeletal 

and nervous systems78. HOXA13 may be a rare exception to this rule as it has been shown to 

be expressed in the endoderm of the cloacal region of the developing chick79. Both Cdx2 and 

Hoxa13 genes have increased expression in metastasis-low subclones relative to metastasis-

high subclones (log2 fold change [metastasis-high / metastasis-low] -1.771, Wald test adjusted 

p-value 6.5E-4 for Cdx2; log2 fold change -5.549, adjusted p-value 2.6E-3 for Hoxa13). These 

results are again consistent with the developmental constraint model of cancer evolution56 in 

which cancer cells evolve by co-opting gene modules belonging to developmental lineages 

adjacent to the cancer’s cell of origin, in this case navigating in the reverse direction along the 

developmental map from the mature acinar or ductal cell to the pancreatic progenitor cell to 
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primitive gut endoderm. They also suggest that the transcriptional program activated by Hox 

and ParaHox transcription factors may blunt the metastatic potential of PDAC subclones. 

 

The top motifs with differential binding scores favoring the metastasis-high subclones belong to 

the mesenchymal TFs ZEB1, SNAI2, SNAI3, and SNAI1 and NF-κB subunits NFKB2 and 

NFKB1 (two-sided T test, adjusted p-value < 1E-16 for all five). The Zeb and Snail family 

transcription factors promote epithelial-to-mesenchymal transition (EMT) in the context of 

carcinomas such as PDAC80. Maintenance of E-cadherin expression in the metastasis-high 

subclones compared to the metastasis-low (Wald test, adjusted p-value 0.23 for Cdh1) points to 

the metastasis-high subclones being in a hybrid-EMT state. This is consistent with a prior 

lineage tracing study demonstrating that PDAC subclones in hybrid-EMT states have greater 

metastatic potential than subclones in fully epithelial or fully mesenchymal states12. There are 

five NF-κB subunits42 including the two previously mentioned and all five have associated motifs 

with DBSs favoring the metastasis-high subclones (adjusted p-value < 1E-16 for REL, RELA, 

and RELB). This is consistent with our prior discovery that Il1a, Il18r1 (an IL-1 family receptor), 

and multiple validated NF-κB transcriptional targets (Nos2, Il1a, C3, Cxcl5, Fos, and Xiap)43-48 

have increased expression in the metastasis-high subclones in concordance with an open state 

of chromatin at their nearby cis-regulatory elements (Figs. 4C-D & 5A-B). Overall, these results 

identify NF-κB, Zeb, and Snail families as the most prominent among the transcriptional 

regulators of the metastasis-high subclones, pointing to inflammatory response and EMT as 

important modulators of metastatic potential. 

 

To evaluate the functional impact of NF-κB pathway activity on metastatic potential, we 

performed a targeted shRNA screen that included NF-κB target genes (Il1a, Il18r1, Nos2, Fos, 

Il23a), other metastasis-high genes (Tmem40, Myo1b, Notch4), and a few non-metastasis-high 

genes from the mouse genome to serve as controls. We focused on liver metastasis since liver 

is the most common site of human PDAC metastasis and liver metastasis portends an 

especially poor prognosis81. We infected the KPC-1_Hi2 subclone with a lentiviral shRNA library 

containing three unique shRNAs targeting each gene as well as three control non-targeting 

shRNAs. We then used these cells to generate liver metastases by performing splenic 

injections. For our control condition, we generated primary tumors via orthotopic injection to 

separate general pro-tumor effects, such as proliferation and engraftment, from specific 

contributions to liver metastasis. Following an incubation period, we harvested the resulting 

tumors and sequenced the shRNA amplicon contained therein. The results show that shRNAs 

targeting Fos and Il23a were significantly depleted in liver metastases relative to primary tumors 

(linear model, weighted combined p-value 3.9E-3 for Fos and 0.011 for Il23a), indicating that 

these NF-κB target genes involved in the IL-1 pathway are novel functional enablers of 

metastasis and consistent with an overall positive effect of NF-κB pathway activity on metastatic 

potential. In addition, shRNAs targeting the metastasis-high genes Myo1b, which encodes an 

atypical myosin82, and Tmem40, which encodes a transmembrane protein with poorly 

characterized function83, were similarly significantly depleted in liver metastases relative to 
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primary tumors (weighted combined p-value 6.3E-3 for Myo1b and 0.020 for Tmem40), 

validating these two additional genes as novel functional enablers of metastasis and, in 

combination with the results for Fos and Il23a, providing confidence that our approach is an 

effective strategy for nominating candidate functional enablers.  

 

Taken together, the results so far paint a complex picture of factors associated with metastatic 

potential, which involves hundreds of genes and tens of transcription factors. However, a clear 

feature of the metastasis-high subclones is the activation of inflammation-related genes while 

metastasis-low subclones show activation of gene expression programs specific to adjacent 

development lineages, specifically pancreatic endocrine progenitor and primitive gut endoderm.   

   

Metastasis-high and metastasis-low genes define a metastasis signature in human 

carcinomas 

We next assessed the relevance of our bi-directional metastatic gene signature in the KPC 

mouse model to human PDAC. We focused on two cohorts of human PDAC with gene 

expression profiles for primary and metastatic tumors available: the International Cancer 

Genome Consortium PACA-CA cohort, which includes RNA-seq from tumor biopsies harvested 

from patients with untreated locally advanced or metastatic PDAC enrolled in the COMPASS84 

and PanGen85 trials, and a second cohort herein denoted as “PACA-US” that includes 

microarray data from primary and metastatic tumors harvested from deceased individuals with 

PDAC enrolled in the Nebraska Medical Center Rapid Autopsy Pancreatic Program and the 

Johns Hopkins Gastrointestinal Cancer Rapid Medical Donation Program as well as resected 

primary PDAC from living patients at the Johns Hopkins Medical Institutions, Northwestern 

Memorial Hospital, NorthShore Hospital and UNC hospitals31. We reasoned that if primary 

tumor subclones with elevated expression of metastasis-high genes and diminished expression 

of metastasis-low genes indeed have increased odds of seeding distant metastases, the gene 

signature is likely to persist, at least partially, in the eventual metastatic tumor. Therefore, we 

tested whether human PDAC metastases show evidences of enrichment for our gene signature 

compared to the primary tumor. To do so, we utilized singscore86 which uses rank-based 

statistics to score a sample’s gene expression profile with respect to a gene signature. The 

gene signature can include both an up-regulated set and a down-regulated set. We identified 

the human orthologs of our metastasis-high genes (n = 202) and metastasis-low genes (n = 

174) and used them respectively as the up-set and the down-set for singscore. We call this 

version of singscore the MetScore. We observed that the MetScore is significantly higher in 

metastatic tumors compared to primary tumors in both PACA-CA and PACA-US cohorts (two-

sided Wilcoxon rank-sum test, p-value 0.040 for PACA-CA and 9.1E-6 for PACA-US) (Fig. 7A). 

The large sample sizes in PACA-US provided adequate statistical power to perform a primary to 

metastasis comparison stratified by classical/basal classification. Across both molecular 

subtypes, metastases demonstrated higher average MetScores than primary tumors (p-value 

4.1E-4 for classical and 0.048 for basal), suggesting that our gene signature is relevant to both 

classical and basal PDAC despite being borne out of an analysis of classic subclones only. 
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Furthermore, the difference in MetScores between primary tumors and metastases was still 

apparent when we isolated the rapid autopsy patients in the PACA-US cohort harboring both 

primary tumors and metastases at the time of sampling and performed a paired intra-patient 

comparison (linear mixed effects model, p-value 4.5E-4; Supp. Fig. 3A), thereby eliminating 

any potential confounding relating to inter-patient differences. MetScores appeared to be similar 

across anatomic sites in the two cohorts (Supp. Fig. 3C), suggesting that our signature is 

associated with a generalized metastatic advantage rather than tropism to a specific anatomic 

site. These results suggest that our bi-directional gene signature identified in the mouse is also 

associated with metastatic potential in human PDAC.  

 

To evaluate whether the entire metastasis-high and metastasis-low gene sets are needed for 

MetScore to differentiate between primary and metastatic PDAC tumors or conversely whether 

its discriminative ability is largely dependent on the performance of a handful of highly 

informative genes, we assessed MetScore’s ability to discriminate between primary and 

metastatic PDAC with increasing numbers of genes randomly removed from the up and down 

sets. In both cohorts, discriminatory power, as measured with a bootstrap test that computes the 

average p-value for primary to metastasis MetScore comparisons across 1000 random 

samplings from the up and down sets for that total gene number, diminished immediately and 

rapidly as gene number decreased (Fig. 7B). When using PACA-CA as our test data, the 

smaller of the two cohorts, MetScore was particularly sensitive to decreases in gene number 

and required above 315 genes to consistently reach statistical significance. When using PACA-

US as our test data, a larger cohort, MetScore was more robust, requiring above only 124 

genes to consistently reach statistical significance. These results are consistent with metastatic 

potential being driven by the collective contributions of a large number of genes.  

 

The steps of the metastatic cascade are similar for different cancer subtypes; we thus wondered 

whether the factors that determine metastatic potential are conserved across subtypes. We 

found that MetScores were significantly higher in metastases compared to primary tumors in all 

carcinoma cohorts we tested, including two colon adenocarcinoma (COAD) cohorts (two-sided 

Wilcoxon rank-sum test, p-value < 1E-16 for Colon-MCC87 and < 1E-16 for Colon-Consortium87), 

two breast invasive carcinoma (BRCA) cohorts (p-value 6.0E-5 for Breast-AURORA-US88 and 

0.018 for Breast-MBC89), and one prostate adenocarcinoma (PRAD) cohort90 (p-value 3.4E-12; 

Fig. 7C). These results suggest that similar mechanisms underlie metastatic potential in a broad 

group of carcinomas, which are all epithelial in origin. In contrast to carcinomas, we observed an 

inversed trend in a melanoma cohort91with primary tumors having significantly higher MetScores 

than metastases (p-value 7.9E-5) (Fig. 7D). Melanoma is non-epithelial in origin92. Therefore, 

the gene signature associated with metastatic potential in mouse PDAC is enriched specifically 

in metastases of human carcinomas. These results suggest that similar factors underlie 

metastatic potential in carcinomas but are not broadly shared with melanoma.  
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MetScore is associated with overall survival in localized human PDAC and pMMR COAD 

We reasoned that localized PDAC patients whose primary tumors have a higher MetScore are 

likely to have worse overall survival because heterogenous primary tumors with a greater 

fraction of subclones in a metastasis-high state would likely engender distant recurrence earlier. 

We analyzed the survival curves of localized PDAC patients in two cohorts that have primary 

tumor transcriptomic data available. One cohort includes localized PDAC patients isolated from 

the previously-analyzed PACA-US cohort and the second is The Cancer Genome Atlas’s 

(TCGA’s) Pancreatic Adenocarcinoma (TCGA-PAAD) cohort93. In each cohort, we compared 

the overall survival of patients with tumors in the top half of MetScores to those in the bottom 

half (Fig. 7E). Multiple tumor properties other than metastatic potential contribute to overall 

survival, including therapy resistance, ability to induce cachexia, and thrombogenicity. Despite 

these complexities, the patients in the top half of tumor MetScores had a significantly worse 

overall survival in both cohorts (Log rank test, p-value 0.02 for PACA-US and 0.01 for TCGA-

PAAD). Similarly, patients with localized mismatch repair proficient (pMMR) COAD in the 

TCGA-COAD cohort94 in the top half of tumor MetScores had significantly worse overall survival 

(p-value 0.02; Fig. 7F). We could not explore the relationship between MetScore and overall 

survival for the localized mismatch repair deficient (dMMR) COAD patients in the TCGA-COAD 

cohort because none of those patients died during the study period. There was not a statistically 

significant association between primary tumor MetScore and overall survival for patients with 

ductal or lobular histologies of BRCA in the TCGA-BRCA cohort95 or patients with localized 

PRAD in the TCGA-PRAD96 cohort or melanoma in the TCGA-SKCM cohort (Supp. Fig. 3C), 

which is expected given that initial metastatic potential is less likely than drug resistance to be 

the major determinant of patient outcome for these cancer subtypes in which certain patients 

have robust and long-lasting therapeutic responses. Overall, these results demonstrate the 

clinical relevance of our findings which provide a pathway for estimating how rapidly a patient 

with an early-stage pre-metastatic carcinoma is expected to develop distant metastases. 

 

Discussion 

In the present study, we used DNA barcoding to uniquely label heterogeneous subclones in 

mouse primary PDAC tumors and measure their performance in metastasis assays. We 

observed a striking bimodality in the metastatic potential of subclones, with only a subset having 

high metastatic potential. We then analyzed open chromatin and transcriptome in each 

subclone in its pre-metastatic state to understand the molecular features associated with its 

metastatic potential. This analysis identified a set of genes enriched in subclones with a high 

metastatic potential and another set depleted in these subclones, a combination we call the 

metastatic gene signature. This gene signature identified IL-1 pathway genes with NF-κB and 

mesenchymal transcription factor activity resulting in a higher metastatic potential while genes 

involved in neuroendocrine differentiation, motility, and the canonical and non-canonical Wnt 

pathways with CDX2 and HOXA13 activity were associated with lower metastatic potential. This 

bi-directional gene signature is enriched in a broad set of human carcinoma metastases and 
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has prognostic value in pancreatic ductal adenocarcinoma and mismatch repair proficient colon 

adenocarcinoma, predicting patient survival.  

 

This work establishes an approach for linking the molecular state of a cancer cell to its future 

fate and behavior in the metastatic cascade by combining DNA barcoding and in vivo 

competition assays. The unique complexities of metastasis make standard fate mapping 

approaches challenging to implement. It is not possible to track the thousands of cells that leave 

the primary tumor each day using live imaging. Even if imaging was possible, high-throughput 

molecular characterization of these single cells would be a formidable challenge. Moreover, 

because each tumor develops in a different and unique fashion, time course sampling from 

different tumors will not be informative. Our approach, in essence, captures cells in a mid-

metastasis state, barcodes them, expands them for molecular characterization, then returns 

them to the mid-metastatic position to compare their performance. The competitive nature of 

these assays is a key accurate quantification of metastatic potential, allowing us to compare 

different cells in the exact same condition. Indeed, we observed high variation in overall 

metastatic tumor burden between different mice (data not shown) which would have easily 

masked clone-to-clone differences had we tested each clone separately. This approach builds 

on a strong body of literature in tracking metastatic performance of cancer cells using DNA 

barcodes12-16,97-99. Prior applications of DNA barcoding for studying clonal dynamics during 

PDAC metastasis necessitated the use of immunocompromised hosts12,16. In contrast, our 

models permit interrogation of metastatic mechanisms that rely on interactions with the host 

immune system. Furthermore, our approach is readily translatable to other cancers as well as 

processes beyond metastasis, such as drug resistance.  

 

Placing metastasis-high and metastasis-low subclones in the natural history of PDAC 

development was insightful. The metastasis-high and metastasis-low subclones occupied a 

similar position along the normal-to-PDAC developmental trajectory and all belonged to the 

classical subtype. These observations run counter to a prevailing theory of PDAC development 

which predicts highly metastatic subclones as being the most advanced along a normal-to-

PDAC axis100. We speculate that the metastasis-high and -low states represent a branch at the 

terminus of the normal-to-PDAC axis, both with a high fitness in the primary tumor, but one far 

more adept at navigating the metastatic cascade. Accordingly, the majority of the metastasis-

high and metastasis-low specific genes are upregulated in PDAC cells compared to normal; 

they are activated to a greater or lesser degree in one state versus the other.  

 

Among the genes that are associated with a higher metastatic potential, an inflammation 

program stands out. A well-established link exists between inflammation and PDAC 

tumorigenesis, with pancreatitis being a significant clinical risk factor for PDAC101 and necessary 

for tumorigenesis in Kras-driven mouse models102. Furthermore, previous studies have 

suggested that inflammation promotes PDAC metastasis103,104. However, progress towards 

targeting inflammation in PDAC patients has stalled. Clinical trials of broad anti-inflammatory 
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drugs in advanced PDAC patients have been disappointing105,106, likely because inflammatory 

pathways are active not only in cancer cells but in the many stromal cells present in the tumor 

microenvironment leading to pleiotropic effects. We are encouraged by the discovery of two 

downstream transcriptional targets of NF-κB, Fos and Il23a, as being novel functional mediators 

of PDAC metastasis whose inhibition may elicit a more cancer cell-specific response. While c-

Fos, the AP-1 family transcription factor encoded by Fos, has been implicated in PDAC 

pathogenesis107,108, our experimental design allowed us to detect a specific contribution for c-

Fos to liver metastasis. The pro-inflammatory cytokine IL-23α, encoded by Il23a, has been 

demonstrated to promote metastasis of other cancer subtypes109,110 but its role in PDAC 

metastasis has been unclear. Both c-Fos and IL-23α have specific inhibitors111-113 in clinical use 

that can be advanced to pre-clinical testing. The 196 genes unrelated to inflammation 

upregulated in subclones with a high metastatic potential did not associate as clearly with a 

single pathway, pointing to the complexity of metastatic potential. We validated two of these 

additional met-high genes, Myo1b and Tmem40, as being novel functional regulators of PDAC 

metastasis. While Myo1b has been shown to promote metastasis of other cancer 

subtypes114,115, we believe we are the first to demonstrate that Tmem40 is a functional mediator. 

Their respective gene products, MYO1B and TMEM40, can be advanced to drug development 

while larger screens should be performed to evaluate the functional impact of all the remaining 

metastasis-high genes on metastatic potential.  

 

Our dataset highlighted the activation of developmental transcription factors as a prominent 

feature of the metastasis-low state. These included transcription factors related to islet 

specification and development (e.g., ISL1, PBX1, MNX1, and FOXP1) and the ParaHox 

transcription factor CDX2, which differentiates developing post-gastric gut endoderm, giving rise 

to the pancreas, from pre-gastric. These findings are consistent with the developmental 

constraint model of cancer evolution in which cancer cells evolve by accessing gene programs 

specific to developmental lineages adjacent to the cell of origin56. However, the Hox family TF 

HOXA13, which is strongly activated in the metastasis-low subclones, is expressed in 

developing mesoderm and ectoderm for anterior-posterior patterning of the musculoskeletal and 

nervous systems and not endoderm, which gives rise to pancreatic epithelium78. This 

observation points to a complex multi-lineage state involving extreme dedifferentiation, which 

would broaden the constraints in the developmental constraint model. The accentuated 

activation of developmental transcription factors in metastasis-low subclones suggests their 

positive selection in the primary tumor, while their deemphasis in metastasis-high subclones 

implies their dispensability or detriment for metastasis. Future studies are needed to delineate 

the specific effects of each developmental program in each tumor compartment.  

 

To explore the relevance of our findings in mouse models to human PDAC biology, we 

developed the MetScore, which produces single sample numerical scores based on enrichment 

and depletion of our identified metastasis-high and metastasis-low genes, respectively, in bulk 

transcriptomic data. We observed that human PDAC metastases have higher MetScores than 
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primary tumors and that localized PDAC patients whose primary tumors have higher MetScores 

have worse overall survival, indicating that the signature we discovered in mice is at least 

partially conserved in humans. Remarkably, in all other human carcinomas evaluated, 

metastases similarly had higher MetScores than primary tumors, suggesting this signature may 

also be conserved across epithelial cancer subtypes. These results suggest that the MetScore 

may be a useful tool for predicting metastasis risk for patients with localized carcinomas. This 

would provide critical prognostic information to patients, empowering them to make better 

informed decisions about their care, and may also serve as a predictive biomarker for the 

treating oncologist in cases where the optimal intensity of adjuvant therapy is unclear (e.g., 

stage II colon adenocarcinoma). The metastasis risk prediction tools OncotypeDX®116 and 

MammaPrint®117 have revolutionized the care of early-stage breast cancer by allowing 

oncologists to de-escalate the intensity of adjuvant therapy for women with a low risk of distant 

recurrence, thereby preventing overtreatment. We envision MetScore having a similar impact for 

other carcinoma subtypes where decisions regarding the intensity of adjuvant therapy are 

currently made using clinical risk factors alone. Furthermore, in contrast to the OncotypeDX® 

and MammaPrint®, MetScore utilizes a large number of genes (376 total as opposed to 21 for 

OncotypeDX® and 70 for MammaPrint®) and generates its score based on not only enrichment 

of met-high genes but also depletion of met-low genes, which we predict will make MetScore an 

especially robust scoring metric. 

 

The limitations of this study include the number of subclones and tumors which may be small 

relative to the diversity of metastatic states that could exist within a tumor and across tumors. 

However, the correlations and prognostic prediction in humans indicate that the signature 

identified here captures an important fraction of genes associated with metastatic potential. 

Capturing the full diversity of highly metastatic states in the future is likely to provide a more 

comprehensive set of metastasis-associated genes and refine the present set.  

 

Overall, this study describes a new approach for linking cell state to future cellular behavior and 

provides important insights into the underlying biology of PDAC metastasis, laying the 

groundwork for novel therapeutic strategies and diagnostic tools and offering hope for improved 

outcomes for patients with this devastating disease. 

 

Methods 

Cell Lines 

The KPC-1 and KPC-2 cell lines were a gift from Dr. Lei Zheng. They were generated from 

primary tumors of KPC mice21 (i.e., Pdx1-Cre;LSL-KrasG12D/+;Trp53R172H/+) as described 

previously22,23. Cell lines were tested for mycoplasma contamination using a PCR-based kit 

(Bulldog Bio 2523348) and were found to be mycoplasma negative.  
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Barcoding 

The DNA barcodes utilized in this study were based on a previously published homing guide 

RNA (hgRNA) library24,25. Two transposable plasmid libraries with random bases were mixed. 

The first library contains two stretches of degenerate bases, one 15 bases in length 

(“LeftBarcode”) and the other 10 bases in length (“RightBarcode”). These two stretches are 

separated by a constant 94 base region. It was constructed from Addgene #104536 plasmid as 

described previously24. The second library is very similar. It contains two stretches of 

degenerate bases, one 19 bases in length (“LeftBarcode”) and the other 10 bases in length 

(“RightBarcode”) that are separated by a constant 94 base region; however, it also contains a 

puromycin resistance marker expressed by the EF-1α promoter. It was constructed from 

Addgene #104537 plasmid as described previously24. The inserts in both plasmid libraries are 

flanked by PiggyBac inverted repeats which enables their integration into the genome using the 

PiggyBac transposase. The constructs express the barcodes in small RNA form from a U6 

promoter. The universal amplification primers for these barcodes allow reliable identification in 

sequencing based upon either the forward or reverse reads. 

 

Nucleofection was used to introduce the barcode libraries into KPC cells (Lonza Basic 

NucleofectorTM Kit for Primary Mammalian Epithelial Cells [VPI-1005] and Nucleofector® II 

Device using program T-020). Barcode libraries were co-transfected with Super PiggyBac 

Transposase Expression Vector (System Biosciences PB210PA-1) to facilitate integration of the 

barcode construct into the genome. Two strategies were utilized to encourage a large number of 

barcode insertions per cell. The first strategy was co-transfection of the Ins21 and Ins25-puro 

libraries in a 19:1 ratio. Under these conditions, only cells with a large number of integrations 

would be likely to have integrated a puromycin resistance gene containing construct, allowing us 

to eliminate cells with few integrations during antibiotic selection. The second strategy was 

using a transposase:transposon ratio of 1:10 rather than the more typically used 1:3. Because 

PiggyBac can both integrate and excise transposons, having less PiggyBac in the cells reduces 

the likelihood that barcode constructs integrated into the genome will be removed during the 

initial transposition process. 

 

Following barcode integration, the cells underwent puromycin (InvivoGen ant-pr-1) selection for 

seven days. Puromycin resistant cells were then sorted as single cells into wells of a 96 well 

plate using a Sony Sorter SH800. Propidium iodide (Invitrogen 00-6990-50) was used to 

exclude dead cells. The resulting colonies were expanded over the course of several weeks 

while remaining under puromycin selection and then cryopreserved in fetal bovine serum 

(Thermo Fisher 16140071) with 10% DMSO (Sigma-Aldrich D2650).  

 

Barcode sequencing – library preparation and sequencing 

Genomic DNA was isolated from cells or mouse tumors using a DNeasy Blood and Tissue kit 

(Qiagen 69504) as per the manufacturer’s instructions. The hgRNA locus was amplified and 

sequenced using next generation sequencing as described previously25. Briefly, the hgRNA 
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locus was amplified using primers with overhangs containing primer binding sites for Illumina 

sequencing by synthesis (i.e., PCR1). Then, a second PCR amplification was performed using 

primers with overhangs containing either P5 or P7 to facilitate binding to the Illumina flow cell 

and a random DNA sequence (i.e., the i5 or i7 index sequence) to facilitate pooling and 

deconvolution of multiple samples in the same sequencing run (i.e., PCR2). Deviating from the 

published protocol, a set of four forward and four reverse degenerate PCR1 primers were used 

to increase library diversity and custom PCR2 indexing primers were used to allow for pooling of 

a large number of samples (Supp. Table 1). The resulting libraries were then pooled, purified 

using a DNA Clean and Concentrator-5 kit (Zymo D4004), and quantified using either a Qubit® 

dsDNA HS Assay Kits (Thermo Fisher Q32851) or an NEBNext® Library Quant Kit for Illumina® 

(NEB E7630). The final libraries were sequenced using an Illumina MiSeq device and MiSeq 

Reagent Kit v2 (Illumina MS-102-2002). 

 

Barcode sequencing – data processing and analysis 

Raw sequencing data was processed on a high-performance computing cluster (The Advanced 

Research Computing at Hopkins [ARCH] “Rockfish” cluster [https://www.arch.jhu.edu/about-

arch/]) using the previously published pipeline25. Briefly, this pipeline decompresses the raw 

sequencing data, compiles Read 1 and Read 2 sequences from each sample to a list of paired 

LeftBarcodes and RightBarcodes, sequentially corrects for sequencing errors in the LeftBarcode 

and RightBarcode regions, and then compiles complete lists of LeftBarcode-RightBarcode  

counts for each sample.  

 

To characterize the barcodes specific to each subclone, local Python scripts were used to first 

filter out unique LeftBarcode-RightBarcode pairs with fewer than 3-4 reads depending on 

sequencing depth. Then the RightBarcode sequences specific to that subclone were defined by 

filtering out RightBarcodes whose reads made up less than one percent of the total reads. 

Finally, each RightBarcode’s LeftBarcode mate was defined as the most abundant LeftBarcode 

out of those paired with that RightBarcode. 

 

To characterize the subclones present in a tumor or in vitro culture, local Python scripts were 

used to first filter out unique LeftBarcode-RightBarcode pairs with fewer than three reads. Then, 

the identifier-spacer pairs found in that tumor were cross-referenced against LeftBarcode-

RightBarcode pairs specific to each subclone included in the experiment (i.e., either all KPC-1 

derived subclones or all KPC-2 derived subclones). Since all LeftBarcode-RightBarcode pairs 

were unique to their assigned subclone, the presence of a single LeftBarcode-RightBarcode pair 

was sufficient to indicate the present of its assigned subclone in the tumor. Using this strategy, 

each tumor was noted for the presence or absence of each subclone included in the 

experiment.  
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Mouse models 

All animal procedures were approved by Johns Hopkins University’s Animal Care and Use 

Committee (ACUC). C57BL/6J mice were obtained from The Jackson Laboratory (strain 

#000664). Eight-week-old female mice were used. Splenic, intraperitoneal, and orthotopic 

injections were performed as described previously22,23,26,118. For splenic and intraperitoneal 

injections, 500,000 cells were injected. For orthotopic injections, 50,000 cells were injected. In 

all cases, the injected animals were allowed to incubate for 4 weeks prior to sacrifice. Tumors 

were harvested in all cases with microdissection using a dissection microscope (ZEISS SteREO 

Discovery.V8).  

 

Gross pathology and histology 

Photographs of mouse tumors were taken using an iPhone 13.  

 

Mouse tumors were fixed in 10% neutral buffered formalin for 48 hours, after which they were 

processed into paraffin embedded tissue blocks as described previously118. They were then 

sectioned and stained with hematoxylin and eosin (H&E) as described previously118. Light 

micrographs of the H&E-stained sections were captured using a Zeiss Axio Vert.A1 microscope.  

 

Proliferation assays 

KPC-1 and KPC-2 derived monoclonal lines were seeded onto wells of a 96 well plate (5,000 

cells for KPC-1 and 10,000 cells for KPC-2). At 24 and 48 hours, culture medium was aspirated 

and the cells were placed at -70°C. Relative cell number at each timepoint was quantified using 

a CyQUANT Cell Proliferation Assay, for cells in culture (Thermo Fisher C7026), as per the 

manufacturer’s instructions. 

 

Genotyping 

Genomic DNA was isolated from each KPC-1 and KPC-2 derived monoclonal line using a 

DNeasy Blood and Tissue kit (Qiagen 69504) as per the manufacturer’s instructions. 

Genotyping PCR reactions were performed according to The Jackson Laboratory for Pdx1-

Cre119, and the Tyler Jacks Laboratory for Lsl-KrasG12D 120 and for Lsl-Trp53R17H 121. PCR 

products were separated on a 1% agarose gel run at 8V/cm for one hour and visualized with 

SYBR Gold reagent (Thermo Fisher S11494) as per the manufacturer’s recommendations.  

 

ATAC-seq – library preparation 

ATAC-seq libraries were generated from 50,000 cryopreserved cells harvested from in vitro 

cultures as described previously122. Libraries were then pooled and sequenced on a Novoseq 

6000 using 100 bp paired end reads. 
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ATAC-seq – data processing and analysis 

Data processing 

Raw sequencing data was processed on a high-performance computing cluster (the Rockfish 

cluster described in Barcode sequencing – data processing and analysis) using the ENCODE 

project’s publicly available ATAC-seq pipeline123 with default settings. Briefly, adapters were 

trimmed using cutadapt 1.9.1, trimmed reads were aligned to the mm10 genome using 

Bowtie2124 2.2.6, low quality, mitochondrial, and duplicate reads were filtered out using 

SAMtools125 1.7 with Picard126 1.126 to mark duplicates, and peaks were called using Macs2127 

2.1.0. For two samples, KPC-2_LoC and KPC-2_HiA, two independent libraries were prepared 

from separate aliquots of cryopreserved cells (i.e., technical replicates). Raw sequencing data 

from technical replicates was pooled prior to processing.   

 

ATAC-seq data from normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and 

primary PDAC generated by Alonso-Curbelo and colleagues28 was downloaded from NCBI 

(BioProject #PRJNA548087) and processed in the same manner. 

 

Locally in R, a consensus peak set was generated by merging overlapping peaks from the 

individual samples’ peak sets using DiffBind128 3.14.1. Then, a normalized count matrix, i.e., the 

number of reads aligning to each peak, normalized by the total reads in peaks for that sample, 

across all samples, was generated using DiffBind.  

 

Batch correction 

For analyses that included both the metastasis-high and metastasis-low subclones generated in 

this study as well as the normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and 

primary PDAC generated by Alonso-Curbelo and colleagues28, the normalized count matrix was 

batch corrected using ComBat29 from the sva package (version 3.52.0). A parametric batch 

correction was performed with sample type (i.e., normal, pancreatitis, pre-neoplasia, pre-

neoplasia+pancreatitis, PDAC) included as a covariate and with the Alonso-Curbelo et al. 

samples defined as the reference batch.   

 

Principal component analysis 

Principal component analysis was performed using the lo𝑔2(𝑥 + 1) transformed and scaled 

normalized count matrix using base R’s prcomp() function.  

 

Differential accessibility analysis 

The generalized linear model functionality of DESeq235 was utilized to identify differentially 

accessible peaks between metastasis-high and metastasis-low subclones while controlling for 

parental group status by modeling the metastatic potential (i.e., high vs. low) as a fixed effect 

and parental group (i.e., KPC-1 vs. KPC-2) as a random effect (design: ~parental_group 

+ metastatic_potential). An FDR cutoff of 0.05 was used.  
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Peak profile plot 

To visualize ATAC-seq signal profiles for peaks with increased accessibility in metastasis-high 

subclones and separately for peaks with increased accessibility in metastasis-low subclones 

across all of the tested subclones, a matrix containing scores for the genomic regions of interest 

was first generated using the plotProfile() function of DiffBind 3.14.1 and then plots were 

generated using the plotProfile command of deeptools129 3.5.5.  

 

Peak annotation 

Significantly differentially accessible peaks were assigned to their nearest genes using the 

annotatePeak() function from ChIPseeker130 1.40.0 with the mm10 genome as the reference 

genome. In addition to identifying the nearest gene, this function also assigned the peaks to one 

of several bins based on its distance to the nearest gene’s transcription start site (TSS). For 

visualization purposes, the “Distal Intergenic” and “Downstream (<=300bp)” categories were 

merged into a “Distal Intergenic” category and the “Promoter (<=1kb)”, “Promoter (1-2kb)”, and 

“Promoter (2-3kb”) categories were merged into a “Promoter” category (Fig. 3E). All mouse 

candidate cis-regulatory elements (CREs; mm10 genome) identified by the ENCODE project 

were downloaded from SCREEN: Search Candidate cis-Regulatory Elements by ENCODE 

Registry of cCREs V3131. First, peaks were assessed for overlap with any identified candidate 

CRE. Then, overlaps were broken down by category. For visualization purposes, “pELS” and 

“dELS” categories were merged into “Enhancer”; “PLS” and “CA-H3K4me3” categories were 

merged into “Promoter”; and “CA”, “CA-TF” and “TF” were merged into “Candidate RE, NOS” 

(Fig. 3F). 

 

Analysis of peak enrichment within regulatory regions corresponding to genes in GO37,38 (Gene 

Ontology) Biological Process gene sets 

Metastasis-high and metastasis-low peaks were separately inputted into the GREAT39 

(Genomic Regions Enrichment of Annotation Tools) web portal using the mm10 genome as the 

reference genome. Default settings were used. All enriched pathways reported here passed an 

FDR threshold of 0.05 for both binomial and hypergeometric tests.  

 

RNA-seq – library preparation 

Total RNA was isolated from KPC cells being grown in vitro by performing a TRizol (Thermo 

Fisher 15596026) chloroform (Sigma-Aldrich C2432) extraction followed by cleanup using an 

RNA Clean and Concentrator-5 kit (Zymo R1013) as per the manufacturer’s instructions. mRNA 

was then isolated using a NEBNext Poly(A) mRNA Magnetic Isolation Module (New England 

Biolabs E7490). Libraries were prepared using an xGen RNA Library Prep Kit (IDT 10009814) 

and xGen UDI indexing primers (IDT 10005922) according to the manufacturer’s instructions. 

The final libraries were sequenced on a Novoseq 6000 using 150 bp paired end reads.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.14.607813doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607813
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNA-seq – data processing and analysis 

Data processing 

Raw RNA-seq data was processed on a high-performance computing cluster (the Rockfish 

cluster described in Barcode sequencing – data processing and analysis). Adapter sequences 

were trimmed using Trimmomatic132 0.39. Transcripts were then quantified using Salmon133 

1.10.1 in the mapping-based mode with GC bias correction. The M33 (GRCm39) transcript 

sequences from GENCODE134 were used as the reference transcriptome.  

 

RNA-seq data from normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and primary 

PDAC generated by Alonso-Curbelo and colleagues28 was downloaded from NCBI (BioProject 

PRJNA547612) and processed in the same manner. 

 

Then, locally in R, transcript quantifications were imported and summarized to the gene level 

using Tximeta135 1.22.1.  

 

Differential expression analysis 

For the metastasis-high vs. metastasis-low comparison, genes with fewer than 50 reads across 

all KPC samples were first excluded. Then, the generalized linear model functionality of 

DESeq2 1.44.0 was utilized to identify differentially expressed genes between metastasis-high 

and metastasis-low subclones while controlling for parental group status by modeling the 

metastatic potential (i.e., high vs. low) as a fixed effect and parental group (i.e., KPC-1 vs. KPC-

2) as a random effect (design: ~parental_group + metastatic_potential). An FDR 

cutoff of 0.05 was used.  

 

For the primary PDAC vs. normal pancreas comparison, genes with fewer than 100 reads 

across all KPC and in vivo samples were first excluded. Then, DESeq2 was used to identify 

differentially expressed genes between primary PDAC samples and normal pancreas samples. 

An FDR cutoff of 0.05 was used.  

 

Classical/basal subtype classification 

To classify the KPC subclones as being either classical or basal subtype, the PurIST classifier34 

was used to calculate the probability of basal subtype classification for each sample. This was 

performed in R by following the publisher’s instructions. The human classical and basal subtype 

defining genes used by the classifier were converted to their mouse orthologs using the 

Ensembl136 BioMart web portal. Bulk RNA-seq data from each subclone was used as input to 

the classifier, specifically gene TPM (transcripts per million; see RNA-seq – library preparation 

and RNA-seq – data processing and analysis).  

 

Signal tracks 

Since the raw RNA-seq data was initially processed using a pseudoalignment method (Salmon), 

it was re-processed here as aligned reads are needed for visualization as a signal track. 
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Adapter trimmed RNA-seq reads were aligned to the mm10 genome using STAR137 2.7.10a with 

default settings.  

 

Aligned reads, ATAC-seq or RNA-seq, for each sample were converted to bigWig track format 

using bamCoverage from deeptools 3.5.5. A bin size of 25 bp was used and signals were 

normalized by total library size (RPKM; reads per kilobase per million mapped reads). Average 

bigWig tracks were then generated for the metastasis-high and metastasis-low groups of 

samples using the mean command from the WiggleTools138 package (version 1.2) followed by 

conversion of the resulting Wig formatted tracks back to bigWig format using the wigToBigWig 

command from the UCSC Genome Browser139 suite of command-line utilities.    

 

Signal tracks were then plotted using CoolBox140 0.3.8.   

 

All of the above steps were performed on a high-performance computing cluster (the Rockfish 

cluster described in Barcode sequencing – data processing and analysis).  

 

Analysis of gene set enrichment amongst metastasis-high and metastasis-low genes 

Enrichment of GO37,38 and KEGG40 (Kyoto Encyclopedia of Genes and Genomes) pathways 

amongst metastasis-high and metastasis-low genes was assessed in R using the enrichGO() 

and enrichKEGG() functions in clusterProfiler141 4.12.0. An FDR cutoff of 0.05 was used.  

 

Transcription factor footprinting 

Non-redundant vertebrate transcription factor binding profiles, i.e., motifs, were downloaded 

from the JASPAR database77. Locally in R, this set of motifs was then filtered to exclude motifs 

corresponding to non-expressed or lowly expressed transcription factors in the KPC cells. Non-

expressed genes were defined as those having fewer than 50 total reads across all samples in 

our RNA-seq dataset and lowly expressed genes were defined as those whose statistical 

significance was not calculated by DESeq2 due to low expression in our differential expression 

analysis.  

 

Then, on a high-performance computing cluster (the Rockfish cluster described in Barcode 

sequencing – data processing and analysis), aligned ATAC-seq reads for every KPC sample 

were downsampled to the coverage of the least covered sample using the view command in 

samtools 1.15.1. Then, aligned ATAC-seq reads were merged amongst the metastasis-high 

samples and separately amongst the metastasis-low samples using the merge command in 

samtools 1.15.1. 

 

Finally, on the Rockfish cluster, transcription factor footprinting was performed by inputting the 

filtered motifs (n = 511), the metastasis-high and metastasis-low merged aligned ATAC-seq 

reads, and the complete consensus peak set for all KPC samples (n = 176,964 peaks) to 
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TOBIAS76 0.15.1. The ATACorrect command was used to correct the ATAC-seq signal in the 

merged samples for Tn5 insertion bias. Then, the ScoreBigwig command was used to 

calculate a continuous footprint score across peaks in the consensus peak set based on the 

depletion of signal and the general accessibility of the nearby region. Finally, the BINDetect 

command was used to (1) identify putative TF binding sites within peak regions by matching the 

known motifs to the peak region DNA sequences using MOODS142 (MOtif Occurrence Detection 

Suite); (2) classify each putative TF binding site as being either bound or unbound in each 

condition (i.e., metastasis-high and metastasis-low) based on a footprint score cutoff; (3) 

calculate the 𝑙𝑜𝑔2 fold change in footprint score between the two conditions for each binding 

site; (4) calculate a differential binding score (DBS) for each motif representing the global 

distribution of 𝑙𝑜𝑔2 fold changes across binding sites for that motif; and (5) calculate a p-value 

for each motif by comparing its DBS to 100 DBSs generated from randomly sampled 𝑙𝑜𝑔2 fold 

changes from the background distribution. 

 

Locally in R, differential binding score p-values were adjusted for multiple hypothesis testing 

using a Bonferroni adjustment. An adjusted p-value cutoff of 0.05 was used.  

 

Targeted shRNA screen 

shRNA design 

We designed three miR-30-based shRNAs targeting each gene included in the screen as well 

as three negative control shRNAs targeting luciferase, which the KPC cells do not express. The 

majority of the shRNA sequences used were designed using the SplashRNA algorithm143. For 

genes for which the SplashRNA algorithm did not produce at least three shRNA sequences with 

SplashRNA scores greater than one, the remaining sequences were selected from the shRNAs 

in Table 3 in Fellmann et al., 2013144. All shRNA sequences used in this study can be found in 

Supplementary Table 2. 

 

Cloning and lentiviral transduction 

shRNAs were cloned in a pooled fashion into the SGEP lentiviral expression vector as 

described previously145. SGEP was obtained from Addgene (#111170). The resulting shRNA 

library was packaged into lentiviral particles via co-transfection with VSV.G (Addgene #12259) 

and gag/pol (Addgene #12263) plasmids into HEK293T cells (ATCC CRL-3216) using 

LipofectamineTM 2000 Transfection Reagent (Thermo Fisher 11668027). Lentiviral particles 

were concentrated via precipitation with lentiviral concentration solution (4X stock is 40% [W/V] 

PEG-8000 and 1.2M NaCl in PBS [pH 7]). KPC cells were transduced in the presence of 

polybrene using a low multiplicity of infection. GFP positive cells were isolated using a Sony 

Sorter SH800S. Dead cells were excluded using propidium iodide (Thermo Fisher 00-6990-50). 
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shRNA amplicon sequencing 

Genomic DNA was isolated from a day zero pre-injection sample and mouse tumors using a 

DNeasy Blood and Tissue Kit (Qiagen 69504) according to the manufacturer’s instructions. 

When tumors were too large to be digested and loaded onto a single spin column, they were 

subdivided into smaller chunks, each of which was digested and library prepped separately. 

Three independent draws of the day zero pre-injection sample were library prepped separately 

(i.e., three technical replicates). The shRNA locus was amplified using primers flanking the 

entire shRNA sequence with overhangs containing primer binding sites for Illumina sequencing 

by synthesis (i.e., PCR1; Supp. Table 1). Then, a second PCR amplification was performed 

using primers with overhangs containing either P5 or P7 to facilitate binding to the Illumina flow 

cell and a random DNA sequence (i.e., the i5 or i7 index sequence) to facilitate pooling and 

deconvolution of multiple samples in the same sequencing run (i.e., PCR2; Supp. Table 1). The 

resulting libraries were then pooled, purified using a DNA Clean and Concentrator-5 kit (Zymo 

D4004), and quantified using a NEBNext® Library Quant Kit for Illumina® (NEB E7630S). The 

final libraries were sequenced using an Ilumina MiSeq device and MiSeq Reagent Kit v2 

(Illumina MS-102-2002). 

 

Data processing and analysis 

First, reads from each sample were mapped to the expected shRNA sequences present in the 

library. To accomplish this, Bowtie146 1.3.0 was used to align the region of Read1 expected to 

correspond to the variable region of the shRNA-guide stem against a reference composed of 

the variable regions present in the library. One base pair mismatches were allowed to account 

for sequencing error. This produced a list of counts for each shRNA in the screen for each 

sample. This analysis was performed on a high-performance computing cluster (the Rockfish 

cluster described in Barcode sequencing – data processing and analysis). 

 

Next, locally in R, shRNA counts for the three day zero pre-injection samples were combined to 

create a pooled day zero pre-injection sample. shRNAs whose abundance in the pooled day 

zero pre-injection sample was less than 0.25% were excluded from further analysis steps. 

Tumors with less than 100 shRNA counts were also excluded from further analysis steps.  

 

The tumor samples were then normalized by dividing counts for each shRNA by the total 

shRNA counts for that respective sample. Normalized shRNA counts in samples derived from 

the same tumor (i.e., cases in which the tumor was too large to be digested and loaded onto a 

single spin column) were combined and the resulting pooled samples were re-normalized by 

dividing the normalized counts for each shRNA by the total normalized counts for that pooled 

sample.  

 

Enrichment/depletion of shRNAs between liver metastases and primary tumors was evaluated 

as described previously147. Briefly, normalized shRNA counts were subjected to linear 

regression modeling with the sample type (i.e., primary tumor vs. liver metastasis) as a 
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covariate using the lm() function in R. The resulting coefficients, standard errors (SE), t-values, 

and p-values were extracted for each shRNA. To account for variability and normalize the data, 

𝑙𝑜𝑔2 fold changes of the non-targeting control shRNAs were normalized using the 

bestNormalize package (version 1.9.1) to create a transformation object. This transformation 

was then applied to the 𝑙𝑜𝑔2 fold changes of targeting shRNAs to calculate z-scores. 

 

For weighted combined p-value calculation, z-scores were divided by the SE, and weights were 

defined as the inverse of the SE squared. Subsequently, shRNAs targeting the same gene were 

aggregated, and the adjusted z-scores were summed and normalized by the square root of the 

sum of the weights to generate combined z-scores for each gene. The combined z-scores were 

then used to calculate p-values by applying a two-tailed normal distribution test (2*pnorm(-

abs(combined.z))). A p-value cutoff of 0.05 was used. 

 

Scoring human tumor samples for a metastatic gene signature (i.e., the MetScore) 

The mouse metastasis-high (n = 207) and metastasis-low (n = 182) genes were converted to 

their human orthologs using the Ensembl136 BioMart web portal. Since not all of these genes 

have well characterized human orthologs, this produced slightly smaller sets of human 

metastasis-high (n = 202) and metastasis-low (n = 174) genes. 

 

Bulk transcriptomic data corresponding to human primary tumors and metastases in the form of 

normalized signal (microarray) or normalized count (RNA-seq) matrices were obtained from the 

following sources: 

 

Cohort    Source 

PACA-CA84,85    pdacR148 

PACA-US31    pdacR148  

TCGA-PAAD93   UCSC Xena Browser149 

Colon-MCC87    Gene Expression Omnibus150, GSE131418 

Colon-Consortium87   Gene Expression Omnibus150, GSE131418 

Breast-AURORA-US88  Gene Expression Omnibus150, GSE193103 

Breast-MBC151    cBioPortal152-154    

Prostate-Michigan90   Gene Expression Omnibus150, GSE35988 

TCGA-SKCM91   UCSC Xena Browser149 

TCGA-COAD94   UCSC Xena Browser149    

TCGA-BRCA95   UCSC Xena Browser149  

TCGA-PRAD96   UCSC Xena Browser149 

 

For microarray datasets in which there were multiple probes per gene (Colon-MCC, Colon-

Consortium, Prostate-Michigan), the probe with the greatest average signal for each gene was 

kept and the remaining probes for that gene were discarded.  
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For microarray datasets in which there were multiple probe sets utilized (Prostate-Michigan), 

only genes present in all probe sets were considered.  

 

For RNA-seq datasets (Breast-MBC) in which there were multiple entries assigned to the same 

gene, presumably corresponding to different mRNA isoforms, the normalized counts for these 

independent entries were summed to create a single entry for each gene.  

 

In certain cases, filtering to isolate tumors with the desired histologic subtype or molecular 

phenotype was required. From the TCGA-PAAD dataset, tumors with neuroendocrine histology 

were excluded. From the TCGA-COAD dataset, primary tumors with mismatch repair 

proficiency or deficiency were separately isolated and tumors lacking any annotation were 

excluded. From the TCGA-BRCA dataset, tumors with ductal ("Infiltrating duct carcinoma, 

NOS") or lobular (“"Lobular carcinoma, NOS") histology were separately isolated.  

 

For RNA-seq datasets, non- and lowly expressed genes were excluded (average FPKM < 1 for 

TCGA datasets and average TPM < 1 for PACA-CA, Breast-AURORA-US, and Breast-MBC). 

 

To calculate the MetScore for each sample, the genes within that sample were first ranked 

using rankGenes() from singscore86 1.24.0 in R. Then, the MetScore was calculated using 

singscore() with the human metastasis-high genes as the upSet and the human metastasis-

low genes as the downSet. Notably, not all of our metastasis-high and metastasis-low genes 

were detected in each dataset after filtering out non- or lowly expressed genes. Only the 

detected metastasis-high and metastasis-low genes after filtering steps were considered. 

 

Average MetScores were then compared between primary tumor and metastasis samples within 

each patient cohort. Statistical significance was determined using a two-sided Wilcoxon rank 

sum test. A p-value cutoff of 0.05 was used. 

 

For one cohort, PACA-US, a subset of the rapid autopsy patients for which both primary tumor 

and metastasis samples were available was isolated (Supp. Fig. 3A). For this sub-cohort, 

MetScores were compared between primary tumor and metastasis samples while controlling for 

inter-patient differences by modeling anatomic site as a fixed effect and patient as a random 

effect in a linear mixed effects model. A p-value cutoff of 0.05 was used.  

 

The relationship between primary tumor MetScore and overall survival was then explored. 

Primary tumor samples from localized cancer patients for which survival information was 

available were isolated from the PACA-US, TCGA-PAAD, TCGA-COAD, TCGA-BRCA, TCGA-

PRAD, and TCGA-SKCM cohorts. Samples were stratified by MetScore with patients in the top 

half of their respective cohort being designated “high” and patients in the bottom half being 

designated “low”. Kaplan-Meier curves were generated using the survival155,156 3.5-8 and 
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ggfortify157,158 0.4.17 packages in R. Statistical significance was determined using log rank tests 

with a p-value cutoff of 0.05.  

 

Data accessibility 

All ATAC-seq and RNA-seq data generated in this study has been submitted to the National 

Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under project ID 

PRJNA960830. All other raw data is available upon reasonable request.  

 

Data visualization and schematics 

Heatmaps were generated in R using ComplexHeatmap159 2.20.0. Unless otherwise noted, all 

other plots were generated in R using ggplot2160 3.5.1. Schematics were created using 

BioRender.com. 
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Figure 1. Isolation of primary PDAC subclones with high and low metastatic potential. (A) 

Schematic depicting barcode construct. (B) Schematic depicting process for producing 

barcoded monoclonal KPC lines and experimental design for in vivo metastasis competition 

assays. (C) Representative photographs and light micrographs of H&E stained FFPE sections. 

Scale bars indicate 500 µm on low magnification images and 50 µm on high magnification 

insets. (D) Histograms depicting distributions of tumor clonalities (i.e., the number of unique 

subclones detected in a given tumor) across the four experiments as denoted by the labels on 

the right-hand side. (E) Fractions of metastases in which each subclone was observed in each 

of the four experiments as denoted by the labels on the top and right-hand side. Individual mice 

represented by points and means across mice represented by bars with error bars representing 

S.E.M. (D-E) Sample sizes: KPC-1 liver, n = 27 mets across 3 mice; KPC-1 peritoneum, n = 24 

mets across 5 mice; KPC-2 liver, n = 46 mets across 5 mice; KPC-2 peritoneum, n = 60 mets 

across 5 mice).  
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Supplementary Figure 1. Related to Figure 1: Isolation of primary PDAC subclones with 

high and low metastatic potential. (A) In vitro growth curves for KPC-1- and KPC-2-derived 

barcoded monoclonal lines. Points represent the mean average of four technical replicates with 

error bars representing the S.E.M. (B) Fraction of three 10-cm dishes in which each subclone 

was observed after 28 days of passaging. (C) Agarose gel electrophoresis of PCR products 

from genotyping assays for the presence of the Pdx1-Cre transgene and for recombination of 

the Lsl-KrasG12D and Lsl-TrpR172H alleles.  
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Figure 2. The metastatic potential axis is orthogonal to the normal-to-PDAC and 

classical-to-basal axes. (A) Principal component analysis of scaled normalized accessibility of 

a consensus ATAC-seq peak set. (B) Probabilities of basal-like molecular subtype occupancy 

for the metastasis-high and metastasis-low subclones based on application of the PurIST 

classifier to bulk RNA-seq data. A value less than 0.5 indicates likely classical state occupancy.  
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Supplemental Figure 2. Related to Figure 2: The metastatic potential axis is orthogonal to 

the normal-to-PDAC and classical-to-basal axes. Principal component analysis (PCA) of 

scaled normalized accessibility of a consensus ATAC-seq peak set. The left panel shows PCA 

considering the WT, Kras, WT_inflamed, Kras_inflamed, and PDAC samples only. The right 

panel compares the metastasis-low and metastasis-high subclones on the same PCA axes as 

the left panel.  
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Figure 3. Identifying differentially accessible open chromatin regions specific to 

metastasis-high and metastasis-low PDAC subclones. (A) Principal component analysis of 

normalized accessibility of a consensus peak set. (B) Pie chart illustrating the fraction of total 

peaks in the consensus peak set found to have significantly different accessibility between 

metastasis-high and metastasis-low subclones when controlling for parental group status using 

the generalized linear model feature of DESeq2. An FDR cutoff of 0.05 was used. (C) Averaged 

ATAC-seq signals for peaks with increased accessibility in metastasis-low subclones (left) and 

increased accessibility in metastasis-high subclones (right). Each line represents a subclone 

colored based on its metastatic potential with red indicating high and blue indicating low (D) 

Heatmap depicting the normalized accessibility for each differential peak (row) for each 

subclone (column). Subclones were clustered based on Pearson correlation (E) Bar plot 

depicting the breakdown of genomic locations for the identified significant differentially 

accessible peaks with respect to gene annotations. Promoter here is defined as the region up to 

3 kb upstream of the transcription start site. (F) Pie charts depicting (left) the fraction of 

significant differentially accessible peaks overlapping candidate regulatory elements (REs) 

identified by the ENCODE project and (right) the breakdown for the overlaps with respect to the 

candidate RE type. (G-H) Bar plots demonstrating the most significant GO Biological Process 

pathways when applying Genomic Regions Enrichment of Annotations Tool (GREAT) to 

significant peaks with increased accessibility in metastasis-high (G) or metastasis-low (H) 

subclones. Default settings for GREAT were used. Pathways ranked in order of decreasing 

significance based on binomial FDR q-value. Pathways meeting a threshold of FDR < 0.05 for 

both binomial and hypergeometric tests were considered significant.  
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Figure 4. Isolating metastasis-high and metastasis-low defining genes by integrating 

chromatin accessibility and gene expression. (A) Heatmap depicting normalized expression 

for each significantly differentially expressed gene (row) for each subclone (column). An FDR 

cutoff of 0.05 was used. (B) Scatterplot depicting, for each significantly differentially accessible 

peak (see Fig. 3), that peak’s differential accessibility between metastasis-high and metastasis-

low subclones on the X axis and the nearest gene’s differential expression between metastasis-

high and metastasis-low subclones on the Y axis. The color of the peak indicates whether the 

nearest gene is significantly differentially expressed. (C) Diamond plot depicting the top 50 most 

downregulated and top 50 most upregulated genes in metastasis-high subclones relative to 

metastasis-low. The position of the gene label on the Y axis indicates that gene’s differential 

expression. The genes are arranged by rank from most downregulated in metastasis-high on 

the left to most upregulated in metastasis-high on the right. Above each gene label are arranged 

diamonds representing significantly differentially accessible peaks for which the noted gene is 

the closest gene. The color of the diamond indicates that peak’s normalized differential 

accessibility between metastasis-high and metastasis-low subclones. (D-E) Signal tracks 

depicting chromatin accessibility and gene expression of genomic regions containing Il18r1 or 

Mnx1, representative metastasis-high and metastasis-low genes, respectively, in the 

metastasis-high and metastasis-low subclones. Asterisks indicate peaks identified to be 

differentially accessible between metastasis-high and metastasis-low subclones. 
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Figure 5. IL-1 pathway genes are enriched amongst metastasis-high genes and 

neuroendocrine, motility, and Wnt pathway genes are enriched amongst metastasis-low 

genes. (A) The left panel is a dotplot depicting gene ratio and gene count (i.e., the number of 

metastasis-high genes present in the pathway in question), for all significantly enriched KEGG 

pathways amongst the metastasis-high genes using an FDR cutoff of 0.05. The right panel is a 
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pie chart depicting the fraction of enriched pathways manually curated as being related to 

inflammation (B) Bar plot depicting, for all of the genes found within any inflammation-related 

pathway enriched amongst metastasis-high subclones, the number of inflammation-related 

pathways in which it is found. (C) The left panel is a dotplot depicting gene ratio and gene count 

for all significantly enriched GO pathways amongst the metastasis-low genes using an FDR 

cutoff of 0.05. The right panel is a pie chart depicting the fractions of enriched pathways 

manually curated as being related to development, motility, or Wnt. (D) Bar plot depicting, for all 

of the genes found within any pathway within the denoted manually curated groups of pathways 

(i.e., development, motility, or Wnt), the total number of pathways in that manually curated 

group of pathways in which that gene is found. (E) Schematic depicting genes defining each of 

the four metastasis-high and metastasis-low specific gene modules. (F) Scatterplot depicting 

each gene in the metastasis-high and metastasis-low gene sets. Position on the X axis indicates 

log2 fold change between primary PDAC and normal pancreas samples. Position on the Y axis 

depicts log2 fold change between metastasis-high and metastasis-low subclones. Color 

indicates that gene’s membership in one of the gene modules defined in E. 
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Figure 6. NF-κB and mesenchymal transcription factors regulate the metastasis-high 

state whereas CDX2 and HOXA13 regulate the metastasis-low state. (A) Rank-ordered plot 

of differential binding scores for significant transcription factor motifs using a Bonferroni adjusted 

p-value cutoff of 0.05. Only motifs in the JASPAR CORE vertebrates nonredundant set 

expressed in the KPC subclones were considered (n = 511) and only motifs with significant 

DBSs (n = 499) are being shown here. Motifs are arranged on the x-axis by rank according to 

their differential binding scores. The y-axis represents the differential binding score, with positive 

values indicating increased binding in metastasis-high subclones and negative values indicating 

increased binding in metastasis-low subclones. Motifs with the greatest effect sizes are 

highlighted. (D) Scatterplot depicting genes included in a targeted shRNA screen with position 

along the X axis representing mean 𝑙𝑜𝑔2 fold change in abundance amongst all shRNAs 

targeting each gene between primary tumor and liver conditions and position along the Y axis 

representing the −𝑙𝑜𝑔10 weighted combined p-value generated using a linear model. Sample 

sizes: six primary tumors across six mice and 36 liver metastases across four mice. 
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Figure 7. Metastasis-high and metastasis-low genes define a metastasis signature in 

human carcinomas. (A, C-D) Box plots depicting distributions of MetScores with overlaid 

points representing individual tumors for primary and metastatic samples in the indicated human 

patient datasets. p-values calculated using two-sided Wilcoxon rank sum tests. (B) Generalized 

additive model trendlines with 95% confidence intervals for p-values for primary to metastasis 

MetScore comparisons as a function of the number of genes from the complete metastasis-high 

and metastasis-low gene sets utilized. For each gene number, 1000 random samplings from the 

starting gene sets were performed. For each random draw, MetScores were calculated for all 

samples in the indicated cohort, primary and metastatic samples were compared, and a two-

sided Wilcoxon rank sum test was used to generate a p-value. Random draws with zero genes 

in either the upregulated set or the downregulated set were discarded and not replaced. The p-

values for all random draws at all tested gene numbers were used to generate the shown 

trendline. (E-F) Kaplan-Meier curves depicting overall survival for patients in the noted datasets 

stratified by MetScore. Patients in each dataset were ranked by MetScore, the top half of which 

being considered “High” and the bottom half considered “Low”. p-values were calculated using 

log-rank tests. 
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Supplementary Figure 3. Related to Figure 7: Metastasis-high and metastasis-low genes 

define a metastasis signature in human carcinomas. (A) Box plots depicting distributions of 

MetScores with overlaid points representing individual tumors for primary and metastatic 

samples in the PACA-US cohort stratified by molecular subtype as previously annotated by the 

authors of the original study (Moffitt et al., 2015). p-values calculated using two-sided Wilcoxon 

rank sum tests. (A) Dot plots depicting MetScores for primary and metastatic samples amongst 

the rapid autopsy patients in the PACA-US cohort that had both primary tumors and metastases 

at the time of sampling. Within each patient, lines connect each primary tumor sample to each 

metastatic sample. p-value calculated using a linear mixed effect model with anatomic site as a 

fixed effect and patient as a random effect. (C) Swarm plot depicting MetScores for all 

metastatic samples in the indicated cohorts stratified by anatomic site. Each point represents a 

tumor. (D) Kaplan-Meier curves depicting overall survival for patients in the noted datasets 

stratified by MetScore. Patients in each dataset were ranked by MetScore, the top half of which 

being considered “High” and the bottom half considered “Low”. p-values were calculated using 

log-rank tests. 
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