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ABSTRACT

Vascularization plays a significant role in treating nerve injury, especially
to avoid the central necrosis observed in nerve grafts for large and long
nerve defects. It is known that sufficient vascularization can sustain cell
survival and maintain cell integration within tissue-engineered constructs.
Several studies have also shown that vascularization affects nerve regener-
ation. Motivated by these studies, vascularized nerve grafts have been
developed using various different techniques, although donor site morbid-
ity and limited nerve supply remain significant drawbacks. Tissue engi-
neering provides an exciting alternative approach to prefabricate
vascularized nerve constructs which could overcome the limitations of
grafts. In this review article, we focus on the role of vascularization in
nerve regeneration, discussing various approaches to generate vascularized
nerve constructs and the contribution of tissue engineering and mathemat-
ical modeling to aid in developing vascularized engineered nerve con-
structs, illustrating these aspects with examples from our research
experience. Anat Rec, 301:1657-1667, 2018. © 2018 The Authors. The
Anatomical Record: Advances in Integrative Anatomy and Evolutionary
Biology published by Wiley Periodicals, Inc. on behalf of Wiley-Liss, Inc.
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ROLE OF BLOOD VESSELS AND
ENDOTHELIAL CELLS IN GUIDING NERVE
REGENERATION

The vasculature plays a fundamental role in support-
ing the function of peripheral nerves through its supply of
blood, oxygen and other nutrients to the cells comprising
nerve tissue. Within the body, most cells reside within
around 100-200 pm from the nearest vascular source to
ensure sufficient delivery of oxygen by diffusion to meet

the demands of cellular metabolism (Jain et al., 2005).
The vasculature is also crucial in supporting nerve regen-
eration following injury (Ronald and Robert, 1995). The
vascular system of the peripheral nerve, the vasa ner-
vorum, can be categorized into two systems: extrinsic and
intrinsic (Best and Mackinnon, 1994). The extrinsic sys-
tem comprises a series of arteries and veins which run
along the surface of a peripheral nerve and mainly supply
the epineurial and perineurial regions (Fig. 1). By com-
parison, the intrinsic system operates independently from
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the extrinsic system. This system involves small arteries
that supply blood and dissolved nutrients to the inner,
endoneurial nerve compartment. Several features of the
nerve vasculature mean that peripheral nerve tissues
are prone to low oxygen conditions. First of all, the inter-
capillary distances in the vasa nervorum are larger than
other tissues such as muscle (Low et al., 1989), while
glial cell densities are relatively high. This can lead to a
reduction in oxygen concentrations compared to other
tissues, as a consequence of the balance between longer
diffusion distances and significant metabolic demand for
oxygen (Bell and Weddell, 1984). Further, the extrinsic
vasculature is capable of regulation in response to
changes in physiological conditions, (Appenzeller et al.,
1984, Zochodne, 2002), whereas vessels of the intrinsic
circulation lack the ability to autoregulate (Smith et al.,
1977). As a result, if the systemic blood pressure drops,
the intrinsic blood vessels fail to compensate for the
associated perfusion changes, making the nerve suscep-
tible to ischemia; this can lead to nerve hypoxia and
damage.

The fundamental importance of vascularization during
nerve regeneration is well-established. A nerve tran-
section event triggers the break up of the myelin sheath
surrounding a nerve fiber, as well as the degeneration of
axoplasm distally by the interactions of Schwann cells
and macrophages during Wallerian degeneration.
Schwann cells distal to the injury then proliferate and
form bands of Biingner, which can guide axons growing
from the proximal stump toward the distal end. Blood
vessels are commonly found to precede Schwann cell
migration as well as axonal extension, suggesting the
important link between neurite growth and vascular
growth (Hobson et al., 1997, 2000).

In a study undertaken in dogs, Tarlove and Epstein
(1945) reported that the rate of vascularization seemed to
limit the growth of axons into a peripheral nerve graft .
In a separate study, cutaneous nerve plexuses of albino
rabbits were crushed or transected to analyze the pattern
of regeneration, and regions where axonal regeneration
were prominent correlated with an abundance of larger
blood vessels (Weddell, 1942). Indeed, there is extensive
evidence that the architecture and functionality of capil-
laries in particular facilitate axonal regeneration.
Changes in capillary number (Nukada, 1988) and capil-
lary permeability (Weerasuriya, 1988, 1990) associated
with successful axonal regeneration suggest that there is
an interaction between blood vessels and regenerating
axons. For example, the number of endoneurial capil-
laries increases during regeneration, and the permeabil-
ity of these capillaries increases, which may encourage
clearance of debris and aid elongating axons. Hobson
et al. (1997) demonstrated the morphological inter-
relationships between angiogenesis and axonal regenera-
tion in a rat sciatic nerve model (Hobson et al., 1997). The
authors reported that Schwann cell migration and axon
regeneration were greatest in well-vascularized regions
where vessels were aligned longitudinally, and also that
the blood vessel front preceded Schwann cell penetration
and axonal regeneration. Vascular endothelial growth fac-
tor (VEGF) added in a silicone chamber was shown to sig-
nificantly increase vascularization and enhance axonal
regrowth and Schwann cell proliferation in a rat sciatic
nerve injury model, indicating the interdependence
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between the vascularization and nerve regeneration pro-
cesses (Hobson et al., 2000).

Endothelial cells, which form the inner lining of blood
vessels, are known to synthesize several factors that are
supportive of nerve regeneration (Kokaia and Lindvall,
2003, Black et al., 1990). When subventricular zone (SVZ)
explants of adult brain are co-cultured with endothelial
cells, neurite outgrowth and migration of neurons are
enhanced (Leventhal et al., 1999). Further, vitronectin
and heparin sulphate proteoglycans, glycoproteins
expressed on the surface of endothelial cells, are involved
in neurite activity and growth, as shown using dorsal root
ganglion explants in culture (Isahara and Yamamoto,
1995). Human umbilical vein endothelial cells (HUVECS),
a widely used source of endothelial cells in angiogenesis
studies, have been shown to secrete brain-derived neuro-
trophic factor (BDNF), a neurotrophic factor involved in
promoting neural cell growth and survival (Nakahashi
et al., 2000). Recent studies have shown that molecular
cues from nerves influence the branching and network
morphology of blood vessels and vice versa, suggesting
cross-talk between neural cells and vascular cells. This is
illustrated by the fact that VEGF and Sema3A, which are
proteins produced by endothelial cells and neurons
respectively, have an opposite effect on neural cells and
vascular cells (Bagnard et al., 2001, Miao et al., 1999).
Sema3A inhibits both endothelial cell and axonal motility
(which is mediated by Neuropilinl-binding sites),
whereas VEGF competes for the same binding sites to
stimulate endothelial cell motility. In addition, VEGF
antagonizes apoptosis induced by Sema3A. Conditions
where neural activity is improved are also seen to trigger
angiogenesis. For example, exercise induced increased
synaptic activity and a greater density of blood vessels in
the cerebellar cortex of adult rats (Black et al., 1990).
These studies provide further data to support the rela-
tionship between blood vessels and nerves, as well as sug-
gesting that endothelial cells could help promote neurite
elongation by providing molecular cues in the early stage
of regeneration.

There is also strong evidence that the surfaces of blood
vessels directly support Schwann cell migration and
hence axon growth (Cattin et al., 2015). This study was
performed in a rat sciatic nerve model; when nerves were
harvested, blood vessels, Schwann cells and axons were
quantified using confocal microscopy. This demonstrated
that Schwann cells migrated along the surface of blood
vessels and consequently, Schwann cell migration was
disrupted when blood vessel network architecture was
disorganized.

In summary, the interlinkage between vascularization
and nerve regeneration is well established. In the first
place, the vasculature provides nutrients such as oxygen
for regenerating axons and associated cells, and thus
increases long-term survival. Furthermore, endothelial
cells secrete molecules that can be beneficial for neuro-
genesis and nerve regeneration. Finally, blood vessels
also serve as tracks for Schwann cells to migrate along
and thus guide axonal growth. As a result, vascularized
artificial nerve conduits could be an exciting approach to
explore for the repair of peripheral nerve injuries. In the
following sections, vascularized nerve constructs are
reviewed, then future technological directions including
engineered tissues and mathematical modeling are dis-
cussed using examples from our current research.
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Fig. 1. Microcirculation system of a peripheral nerve. The extrinsic
vessels (EV) and branch radicular vessels (RV) supply the intrinsic
circulation of the vasa nervorum. The intrinsic circulation consists of
longitudinally oriented vessels that course to the perineurium (Peri)
(Lundborg and Hansson, 1988).

VASCULARIZED NERVE SUBSTITUTES

Vascular substitutes can be categorized into four main
groups: (1) Vascularized nerve grafts, (2) Vascularized
grafts by vascular implantation, (3) Blood vessel-
including tubulation, and (4) Biogenic vascularized nerve
conduits. Next we discuss these options in turn, including
the features that limit their use as clinical repair options.
A summary of all approaches is provided in Table 1.

VASCULARIZED NERVE GRAFTS

Vascularized Nerve Grafts (VNGs) involve transplant-
ing nerve grafts complete with vasculature to the site of
nerve regeneration and have been developed to address
numerous physiological challenges. VNGs could promote
intra-neural perfusion and nutrient delivery in poorly
vascularized zones in humans (Schonauer et al., 2012),
avoiding the early ischemia of conventional nerve grafts
by restoring neural blood vessels.

In a nonvascularized nerve graft (NVNG), neovascular-
ization, the onset of new blood vessel formation at the
interface with host tissue, usually occurs by the third day
after surgery under supportive conditions (Mani et al.,
1992). Conversely, neovascularization in VNGs can occur
before the onset of ischemia, due to the presence of vascu-
lar structures within the graft (Mani et al., 1992). As a
result, VNGs are considered to be superior to NVNGs and
have been successfully used in several clinical cases
(Shibata et al., 1988, Rose and Kowalski, 1985, Restrepo
et al., 1985, Koshima and Harii, 1985). An early example
of VNGs can be seen in a study done by St. Clair Strange
in 1947 (Strange, 1947). He successfully harvested the
ulnar nerve together with its blood supply to graft the
median nerve. In 1976, Taylor and Ham introduced a
VNG from the superficial radial nerve (based on the
radial artery) and used this to repair a median nerve
(Taylor and Ham, 1976).

It has been shown that the ability to enhance nerve
regeneration of VNGs is superior to NVNGs as length
and size of the nerve injury increase, and as vasculariza-
tion decreases, which can be seen in a scarred wound bed
(Koshima and Harii, 1985, Restrepo et al., 1985, Shibata
et al., 1988). In a rabbit sciatic nerve model, 45 mm of the
nerve was transected and bridged with vascularized
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sciatic nerve graft with a vascular pedicle and conven-
tional sciatic nerve grafts (NVNGs) (Restrepo et al.,
1985). After 8 weeks, vascularized nerve grafts revealed
better performances than the conventional graft in terms
of number and diameter of nerve fibers. In the functional
outcomes aspect, Kanaya et al. (1992) showed in their
work that in a rat sciatic nerve model the vascularized
sciatic nerve graft group exhibited an improved mean sci-
atic function index (SFI) compared with the nonvascular-
ized group (Kanaya et al., 1992).

The criteria for selecting which nerves to use as VNGs
were primarily based on whether there were dominant
arterial pedicles or large supplying vessels that run for a
distance outside the nerves. The vascularized radial or
ulnar nerve graft has been demonstrated to be successful
in several clinical cases by Taylor and Ham, which is
ascribed to their dependable blood supply and suitable
diameter for microsurgical transfer (El-Barrany et al.,
1999, Townsend and Taylor, 1984). However, due to the
fact that a radial nerve’s blood supply is the major limb
artery (El-Barrany et al., 1999) and the ulnar nerve is
considered important (Townsend and Taylor, 1984), these
limit their clinical uses in this context. In general, saphe-
nous and sural nerve grafts are the most popular for
grafting because of their dominant arterial pedicles as
well as acceptable morbidity at the donor site (El-Barrany
et al., 1999, Staniforth and Fisher, 1978).

Although VNGs have the potential to improve nerve
repair, the major limitation is the lack of donor sites.
VNGs function well in large nerves, specifically in long
gaps. However, to harvest such a large nerve, significant
donor-site morbidity and scarring is inevitably involved.
Despite the fact that this hurdle can be solved in part by
the use of cable grafting (i.e., several vascularized nerve
graft strands), this leads to harvesting more nerve graft
strands and thus increased subsequent donor site morbid-
ity (D’Arpa et al., 2015).

VASCULARIZED GRAFTS BY VASCULAR
IMPLANTATION

Several techniques have been studied to achieve the
benefits of VNGs but avoid harvesting a nerve graft with
its vascular supply to reduce the donor site-related mor-
bidity described above. One option is to fabricate a nerve
graft and preimplant it between a host artery and vein to
promote vascularization, then subsequently remove and
implant to bridge the repair site (Falco et al., 1992).

Cavadas and Vera-Sempere examined this approach in
1994 when they attempted to construct a vascularized
nerve graft by implanting an arteriovenous fistula into the
sciatic nerve in a rat model for 5 weeks (Cavadas and
Vera-Sempere, 1994). Such experimental surgeries have
been performed, but their success in terms of promoting
neural regeneration needs to be evaluated relative to the
VNG approach. Using an arteriovenous bundle, Saray
et al. (2002) vascularized sciatic nerve grafts from a rabbits
by placing them into the groove between the femoral artery
and vein and then removing after 3, 7, or 17 days to ana-
lyze. By day 3, the nerve graft was well vascularized and at
day 14 the resident Schwann cells and graft integrity were
still preserved (Saray et al., 2002). However, this study did
not evaluate nerve regeneration using the prefabricated
graft. In another study, Ozcan et al. vascularized an
amnion tube by placing it between the femoral artery and
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vein in a rat model for 3 weeks (Ozcan et al., 1993). The
microcirculation was successfully visualized at the repair
site in all amnion tubes. At 3 months postoperatively, the
vascularized amnion conduits showed comparable nerve
regeneration to conventional vascularized nerve grafts in
terms of number of myelinated axons, axon diameter and
myelin thickness. This revealed the ability of vascularized
amnion conduits to promote nerve regeneration and bridge
the femoral nerve gap. Indeed, the authors concluded that
vascularized amnion conduits were superior to their non-
vascularized counterparts. More recently, nerve conduits
made of polyglycolic acid (PGA) vascularized by host super-
ficial inferior epigastric (SIE) vessels were successfully con-
structed and this facilitated the regeneration as well as re-
myelination of the rat sciatic nerve (Iijima et al., 2016).

Although prefabricated VNG through AV fistula
implantation could be useful clinically for reducing donor-
site morbidity, this approach involves a two-stage surgery
which prolongs the delay before nerve repair and might
increase the risk of complications. Therefore, there
remain significant opportunities for improving on this
approach in developing clinically-feasible nerve repair
solutions.

BLOOD VESSEL-INCLUDING TUBULATION

This technique includes native blood vessels directly
within a nerve conduit to promote the vascularization
process. One of the first studies was conducted by Kaki-
noki et al. (1997) where a silicone tube containing the
sural vessels implanted in a longitudinal orientation was
used to bridge a sciatic nerve gap of 25 mm in a rat. The
proximal and distal end of the sciatic nerve were sutured
to the silicone tube. After 6 months, axons had regener-
ated across a 25 mm nerve gap in the rats and reinner-
vated the tibialis anterior muscle (Kakinoki et al., 1997);
however, there was no control where tubes without blood
vessels were tested, so it is difficult to determine the
improvement that resulted from including blood vessels
in the tube. In another study, a subcutaneous artery adja-
cent to the injured nerve was mobilized and then inserted
into a silicone tube (Kosaka, 1990). This was used to
bridge a 5 mm rat sciatic nerve gap, with the nerve
stumps inserted alongside the artery into each end of the
tube, and the repair analyzed after 4, 8, and 15 weeks.
The results demonstrated more capillaries were present
in the vessel-containing conduits, with rapid capillary-
like structure formation taking place within the tube; by
4 weeks postoperatively, the total number of intraneural
microvasculature vessels was almost four times greater
than that in a control group. Also, the tube containing the
artery exhibited greater morphological and functional
recovery of the regenerating nerve.

Although results are promising, studies in this area
have tended to use silicone tubes which are non-biode-
gradable, may cause compression, negatively affect joint
movement and induce synovitis (Lanzetta et al., 1994), so
the tubes would need to be removed after several months
if this approach were used clinically. To overcome this
limitation, biodegradable or biological tube materials are
available for clinical use, and it would be interesting to
use these in future vascularization studies rather than
silicone. Furthermore, their porosity and permeability to
oxygen and nutrients may influence the outcomes. In
addition, experiments using larger nerve gap lengths and
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longer follow-up would be useful to investigate the perfor-
mance of these approaches effectively.

VASCULARIZED BIOGENIC CONDUITS

Prefabricated vascularized biogenic nerve conduits can
be generated by placing an artificial conduit near a donor
nerve or blood supply. After a certain period of time (usu-
ally 1-3 weeks), the artificial conduit is enclosed by pseu-
dosheath; in this stage, the tube is removed leaving intact
pseudosheath as a vascularized biogenic nerve conduit.
This conduit can then be used on its own, filled with bio-
materials, or incorporated with a nerve graft.

In many studies, silicone tubes have been used to gen-
erate vascularized biogenic conduits. Due to the non-
absorbable characteristics of silicone, a pseudo-synovial
sheath forms around the silicone tube when implanted
subcutaneously (Gu et al., 2011), and this was first used
as a tendon graft (Culp, 1993). A study in a primate
model conducted by Hunter et al. (1983) showed that the
pseudo-synovial sheath consists of three layers: (1) the
intima layer which contains cells that provide a soft and
sliding surface, (2) the media layer that was dense with
collagen and vascularity, and (3) the adventitia layer
which was composed of vascular fibrous tissue. This
pseudo-synovial sheath provides a highly vascular struc-
ture throughout all layers (Hunter et al., 1983). There is
an evidence suggesting that this vascularized pseudo-
synovial sheath could be used as a nerve graft (Wolford
and Stevao, 2003). Lundborg and Hansson used this
pseudo-synovial sheath as a biogenic nerve conduit to
repair peripheral nerve injuries with gaps of 10 to 12 mm
in rats (Lundborg and Hansson, 1980). Subsequently, sev-
eral studies have reported success with biogenic conduits
to repair nerve injuries in rat models (Penna et al., 2011,
Yapici et al., 2017, Zadegan et al., 2015).

In one study, a polyvinyl chloride (PVC) tube was
implanted parallel to the rat sciatic nerve (Penna et al.,
2011). After 4 weeks, this PVC tube had been covered
with pseudo-synovial sheath and had a higher number of
blood vessels per cross section compared to an autologous
nerve graft. When used to repair a 15 mm nerve gap
injury, there was successful regeneration with signifi-
cantly higher axon area than an autologous nerve graft.
Recently, Yapici et al. (2017) fabricated vascularized bio-
logical conduits by placing a silicon rod next to the sciatic
nerve of the rat (Yapici et al., 2017). Without damaging
the fibrovascular sheath formed around the rod, the sili-
cone rod was removed at the 8-week time point leaving
the vascular sheath which was then used as a nerve con-
duit. This provided better nerve regeneration when com-
pared to non-vascularized conduits (connective tissue
sheath from a silicone tube placed to the dorsum of the
rat) and autografts, both histologically and electrophysio-
logically. This vascular sheath was also shown to reduce
adhesion and scar formation compared to non-
vascularized conduits.

Vascularized biogenic conduits avoid sacrificing a donor
nerve with its blood vessel supply (nerve tissue transfer),
as well as decreasing the adverse effects of scarring at
the nerve injury site. Furthermore, a biogenic conduit
provides the soft lumen, good vascularization, and a sta-
ble structure that could be effectively used to envelop the
nerve graft segment (Zadegan et al., 2015). However,
these conduits require a two-stage procedure for
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implementation clinically, and the delay associated with
the prevascularization step would inevitably limit nerve
regeneration capacity in a clinical setting.

Overall, vascularized nerve substitutes are generally
accepted as a valuable reconstructive tool for nerve
repair. However, the donor site morbidity associated with
the vascular substitutes presents a significant limitation
to clinical uptake. Therefore, several techniques have
been developed to try to reduce this donor site-related
morbidity while enhancing nerve regeneration compared
to the gold-standard, as described in the four sections
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above. Despite better outcomes coming from those substi-
tutes, problems associated with the long delay required to
generate prevascularized nerve conduits, and the limited
anatomical supply, still remain.

ENGINEERED NEURAL TISSUES

Tissue engineering using vascular endothelial cells and
biomaterial scaffolds to prefabricate a vascularized nerve
construct provides an alternative approach to vasculariza-
tion in long gap nerve repair. There are not many studies

Fig. 2. Self-alignment of HUVECs and formation of tube-like structures within tethered collagen gels. Confocal micrographs (A()) and
immunofluorescence images (A(ii)) show aligned HUVECs forming vascular networks after 2, 4, and 8 days in culture, z-distance 20 um, step size
1 pm. Three-dimensional image analysis was used to calculate the angle of deviation between HUVEC/tube alignment and the longitudinal axis of
the gel (B). Boxes show interquartile range and median values, whiskers indicate maximum and minimum angles (N = 3 gels). The length of tube-
like structures (C), shape factor which determine how round the object is (values closer to 1 indicate more rounded shape) (D) and surface area (E)
were compared in 2-day, 4-day, and 8-day cultured gels. Graphs show mean value + SEM. (N = 3 gels). Scale bars in (A()) = 120 pm and in (A

(ii)) = 100 pm.
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Fig. 3. Aligned endothelial cells within collagen gels support and guide neurite growth in vitro. Neurites from explanted rat DRG (A) and from
dissociated DRG neurons (B) elongated along the longitudinal axis of the gel and were associated with the aligned endothelial cells. Scale bars

in A, B =100 pm.

that report specifically the engineering of vascularized
nerve tissue constructs. One study demonstrated that by
co-culturing Schwann cells and vascular endothelial cells
within fiber-reinforced 3D composite scaffolds, vascularized
nerve engineered constructs can be formed (Gao et al.,
2013). According to that study, the combination of Schwann
cells and vascular endothelial cells, both taken from rabbits
and mixed at a ratio of 2:1, were cultured and then this
mixed cell population was injected at both ends of the fiber-
reinforced scaffolds to form a vascularized tissue engi-
neered nerve construct. These constructs were assessed in
sciatic nerve injury rabbit models of 20 mm gap at three
different postoperative periods (4, 8, and 16 weeks) and
were beneficial in promoting nerve repair in terms of con-
duction velocity, number of nerve fibers and myelin thick-
ness. In another study conducted by Gingras et al. (2003), a
tissue-engineered model of peripheral nerve regeneration
was developed which consisted of collagen-chitosan sponges
populated with human endothelial cells and/or fibroblasts
(Gingras et al., 2003). When the endothelial cells were pre-
sent, there was a significant increase in neurite elongation
after 14 days in culture, supporting the utility of having
endothelial cells in an engineered nerve construct.
Combining the concept that vascularization of nerve
grafts can improve their effectiveness with the observations
that endothelial cell-seeded constructs are beneficial and
that vascular structures can guide Schwann cell migration,
leads to the hypothesis that engineering vascular structures
within scaffolds could help to improve nerve repair con-
struct design. Several approaches have been studied to gen-
erate microvascular networks in vitro. Many studies
attempted to form patterns with cells using techniques such
as soft lithography (Whitesides et al., 2001), micropattern-
ing (Folch and Toner, 2000), and photolithography (Kaihara
et al., 2000). Another approach involves using the ability of
endothelial cells to form networks within scaffolds. Endo-
thelial cells can spontaneously form capillary-like networks
when cultured in 3D under permissive conditions in vitro.
They have been demonstrated to be able to form tube-like
structures within hydrogels either by co-culturing with
other cell types like fibroblasts or pericytes, or by adding
angiogenic growth factors (Berthod et al., 2006, Berthod
et al.,, 2012). In our lab, we successfully created aligned
tube-like vascular structures within collagen hydrogels
using human umbilical vein endothelial cells (HUVECSs)

(Fig. 2). The engineered vascular tissue was constructed
using the same approach as previously applied to create
aligned cellular collagen gels containing Schwann cells or
other therapeutic cells for nerve repair termed Engineered
Neural Tissue (EngNT) (Georgiou et al., 2013, Georgiou
et al., 2015, Martens et al., 2014, O'Rourke et al., 2015,
Sanen et al., 2017). In this process, cells embedded within
tethered collagen hydrogels self-align in response to tension
generated through natural cell-matrix interactions, then
the aligned cellular gels are stabilized using plastic com-
pression (Brown et al., 2005).

These collagen gels containing aligned tube-like struc-
tures have been shown to promote neurite outgrowth
in vitro when co-cultured with dorsal root ganglion (DRG)
explants (Fig. 3A) and dissociated DRGs (Fig. 3B), sug-
gesting their ability to support and guide neuronal
regeneration.

Besides using endothelial cells to generate vascular
structures within tissue-engineered nerve constructs, vas-
cularization of engineered constructs can be promoted
through embedding angiogenic factors. This can enhance
local angiogenesis and promote integration of constructs
with the host vasculature. In nerve tissue engineering
studies, vascular endothelial growth factor (VEGF) has
been added to nerve constructs and used to repair rat sci-
atic nerves, resulting in increased numbers of blood ves-
sels as well as axons when compared to constructs
without added VEGF (Hobson, 2002, Hobson et al., 2000,
Mohammadi et al., 2013, Sondell et al., 1999). Further-
more, there are several growth factors used to induce and
support vascularization for tissue engineering that can be
applied for nerve constructs such as basic fibroblast
growth factor (bFGF) and platelet-derived growth factor
(PDGF) (Carmeliet, 2000, Nomi et al., 2002). Novel angio-
genic small molecules have also been investigated, such
as in a study by Wieghaus et al. (2006) which developed
SC-3-149, a non-peptide-based inducer, that can increase
the proliferation of human microvascular endothelial cells
and network formation in vitro (Wieghaus et al., 2006).
Another approach is to genetically manipulate cells to
overexpress a proangiogenic factor, the most widely used
of which is VEGF. Geiger et al. (2007) used bone marrow
stromal cells (BMSCs) transfected with the VEGF plas-
mid to enhance vascularization of a bone substitute. Their
results showed that genetic modification of BMSCs
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significantly improved vascularization and osteogenesis
for in vivo bone healing (Geiger et al., 2007).

MATHEMATICAL MODELING AS A TOOL TO
AID IN THE FABRICATION OF VASCULARIZED
NERVE CONSTRUCTS

Vascularized nerve constructs have potential to contrib-
ute to the next generation of living replacement tissues;
however, there are numerous outstanding questions
related to their optimal design and fabrication. For a vas-
cular nerve repair construct to be successful, it must sup-
port angiogenesis in vivo while minimizing loss of valuable
therapeutic cells, and also provide the physical and chemi-
cal cues to support axon regeneration. This requires sensi-
tive consideration of the spatial and temporal distribution
of material, cells, and chemical factors which is challeng-
ing to do in conventional experimental settings in isola-
tion. For example, cell populations such as endothelial or
therapeutic Schwann cells are usually added to constructs
at standard densities, without exploring the effect of vary-
ing these seeding densities on regeneration outcomes. Sim-
ilarly, the spatial distribution of seeded cells is rarely
considered; typically cells are cultured on the luminal sur-
face of a construct tube, distributed throughout the lumen
of the tube in suspension, or grown on/in materials packed
inside the construct. The seeded cell density and its spatial
distribution is critically important, as they determine how
gradients of oxygenation and vascular growth factors are
established over time in vivo. In turn, these gradients reg-
ulate hypoxia, cell death rates, and the success of angio-
genesis in vascularizing the construct.

These features are highly challenging to characterize
experimentally due to the cost and time limitations of
extensive in vitro and in vivo experimentation. However,
combining mathematical modeling with the experimental
programme has significant potential to streamline the
design process and accelerate the pipeline toward clinical
translation, and this is the approach taken in our lab (Coy
et al., 2016). Such mathematical models should be devel-
oped in parallel with preliminary experimentation, so that
iteration between model predictions and experimental
measurements can inform parameters (e.g., cell prolifera-
tion or oxygen consumption rates, etc.) within the mathe-
matical framework, and outputs of the mathematical
models can inform the parameter range to explore experi-
mentally. This parameterized framework can then be used
to run virtual (or in silico) tests of design features (such as
seeded cell densities and their spatial distribution), before
prioritizing the most promising designs for more extensive
experimental testing. In this way, the programme is
focused on the experiments that will generate the most
meaningful data and promising outcomes.

An experimental-computational approach has the
potential to capitalize on the diverse and advanced tissue
engineering, biomaterial and cell technologies now avail-
able, and streamline the process of combining them to
maximize regeneration using vascularized nerve con-
structs. It would also exploit a growing literature in com-
putational modeling of blood flow, tissue oxygenation,
and angiogenesis (Anderson and Chaplain, 1998, Secomb
et al.,, 2013) for the benefit of peripheral nerve tissue
engineering.
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CONCLUSIONS

Vascularization is likely to be an important component
in the development of successful new nerve repair strate-
gies. It is required in order for the living components of
cellular constructs to survive following implantation, as
well as being involved directly in supporting and guiding
Schwann cell migration and neuronal regeneration
(Iijima et al., 2016, Auger et al., 2013, Cattin et al., 2015).
Various techniques have been investigated including free
and pedicled vascularized nerve grafts, vascular implan-
tation, blood vessel-including tubulation, and vascular-
ized biogenic conduits. These in turn inform the
development of vascularized tissue-engineered nerve con-
structs, providing new opportunities to develop sophisti-
cated living artificial tissue.
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