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Chlamydia species infect a large range of vertebral hosts and have become of
major economic and public health concern over the last decades. They are obligate
intracellular bacteria that undergo a unique cycle of development characterized by the
presence of two distinct bacterial forms. After infection of the host cell, Chlamydia
are found inside a membrane-bound compartment, the inclusion. The surrounding
membrane of the inclusion contributes to the host-Chlamydia interface and specific
pathogen-derived Inc proteins shape this interface allowing interactions with distinct
cellular proteins. In contrast to many other bacteria, Chlamydia species acquire
sphingomyelin from the host cell. In recent years a clearer picture of how Chlamydia
trachomatis acquires this lipid emerged showing that the bacteria interact with vesicular
and non-vesicular transport pathways that involve the recruitment of specific RAB
proteins and the lipid-transfer protein CERT. These interactions contribute to the
development of a new sphingomyelin-producing compartment inside the host cell.
Interestingly, recruitment of CERT is conserved among different Chlamydia species
including Chlamydia psittaci. Here we discuss our current understanding on the
molecular mechanisms used by C. trachomatis and C. psittaci to establish these
interactions and to create a novel sphingomyelin-producing compartment inside the
host cell important for the infection.

Keywords: Chlamydia, sphingolipid, sphingomyelin (SM), ceramide (CER), CERT (CERamide Transfer protein), Inc
proteins, infection, RAB proteins

INTRODUCTION

Lipids are important factors in bacterial infections. They serve as energy source, structural
components and are involved in the immune response. Like many bacteria, Chlamydia
trachomatis is able to synthesize most phospholipids except for sphingomyelin, cholesterol and
phosphatidylcholine. Sphingomyelin is mainly produced by eukaryotic cells thus; the detection of
sphingomyelin inside chlamydial cells was astonishing. This review summarizes recent advances in
our understanding of how Chlamydia spp. acquire sphingolipids from the host cell and describes
their functions for Chlamydia biology.

CLINICS OF Chlamydia trachomatis AND C. psittaci
INFECTIONS

Chlamydia trachomatis strains can be divided into biovars. The trachoma biovar (serovars A-C)
can cause trachoma, the leading cause of preventable blindness that is hyperendemic in many rural
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areas of Africa, Central and South America, Asia, Australia
and the Middle East. Infections with the urogenital tract
biovar (serovars D-K) are among the most frequently sexually
transmitted bacterial infections world-wide. They affect mainly
young adults and persons with multiple sex partners (Newman
et al., 2015). Symptoms range from asymptomatic to urethritis
and proctitis in both genders and cervicitis in females. In
particular, untreated or re-occurring infections in women
have been associated with severe outcomes including pelvic
inflammatory diseases (PID), ectopic pregnancies and infertility.
Furthermore, during pregnancy, untreated C. trachomatis
infections are a risk factor of preterm birth, conjunctivitis and
pneumonia of the newborn. C. trachomatis belonging to the
lymphogranuloma venereum biovar (LGV, L1-L3) is also sexually
transmitted and can cause urogenital or anorectal infections in
humans that can be more invasive by disseminating to the lymph
nodes (Elwell et al., 2016).

Chlamydia psittaci is a zoonotic pathogen that causes
respiratory disease in humans and avian species, also known
as psittacosis or ornithosis (Knittler et al., 2014; Knittler and
Sachse, 2015). The agent was originally isolated from birds,
but meanwhile it has been found in different mammalian hosts
like cattle, horses and pigs (Longbottom and Coulter, 2003).
C. psittaci can be transmitted from domestic birds to humans by
inhalation of aerosolized bacteria from the feces of infected avian
species (Knittler et al., 2014; Knittler and Sachse, 2015). In many
cases C. psittaci infections remain undetected and undiagnosed
due to unspecific symptoms (fever, chills, headache, malaise,
myalgia) (Knittler et al., 2014; Knittler and Sachse, 2015).

BIOLOGY OF Chlamydiaceae

Both C. trachomatis and C. psittaci belong to the family of
Chlamydiaceae. A hallmark of all members of this family is their
obligate intracellular, biphasic cycle of development that takes
place in a membrane-bound compartment inside a eukaryotic
host cell (Moulder, 1991; Hybiske, 2015).

It is characterized by the switch between the extracellular,
infectious elementary bodies (EBs) and the intracellular,
non-infectious, metabolically active reticulate bodies (RBs)
(Figure 1). EBs are 0.3 µm in size and enter the host cell
by receptor-mediated endocytosis or phagocytosis, involving
bacterial adhesins, host cell receptors, and host-specific heparan
proteoglycans (Elwell et al., 2016). After internalization, EBs
are found in vacuoles, termed inclusions that protect the
bacteria from the immune response of the host cell. By releasing
effector molecules into the host cell via a type III secretion
system, the inclusion membrane is modified and can escape
the phagolysosomal pathway (Moore and Ouellette, 2014).
Within the inclusion, EBs differentiate into the osmotically
instable RBs. These 1 µm small, structurally flexible bacteria
divide asymmetrically (Nunes and Gomes, 2014; Abdelrahman
et al., 2016). RBs synthesize a family of special proteins, the Inc
proteins, which are unique to Chlamydia spp. and are integral
parts of the bacterial inclusion membrane. They are important
bacterial constituents of the inclusion-host cell interface and

confer stability to the inclusion membrane (Mirrashidi et al.,
2015; Weber et al., 2017). Inc proteins were originally identified
in C. psittaci. They are a family of Chlamydia-specific proteins
lacking sequence homology to any known proteins, or to
themselves. Interestingly, genomic comparison of different
Chlamydia strains showed that some Inc proteins are conserved
between different species and others are species-specific. These
non-conserved Inc proteins may be involved in tissue tropism
(Dehoux et al., 2011; Lutter et al., 2012).

At 16–20 h post infection (p.i.) some RBs start to transform
back into EBs, while other RBs continue to replicate. Depending
on chlamydial species and growth conditions, at 48–72 h p.i.
both developmental stages are released from the host cell by
either complete lysis of the host cell or by a mechanism called
extrusion – the release of the intact inclusion enveloped by host
cell plasma membrane (Figure 1; Hybiske and Stephens, 2007).
Freed EBs can infect neighboring host cells and start a new
round of infection.

SPHINGOLIPID SYNTHESIS IN
EUKARYOTIC CELLS

Sphingolipids are major integral components of eukaryotic
cell membranes. They function as structural and signaling
molecules that can regulate apoptosis, cellular proliferation and
stress responses (Heung et al., 2006; Breslow and Weissman,
2010). Defects in sphingolipid metabolism have been linked to
different diseases including carcinogenesis, cardiovascular and
neurodegenerative diseases (Heung et al., 2006).

A sphingoid base linked to a specific fatty acid is the building
block of the diverse family of sphingolipids. In sphingomyelin,
this backbone is linked to a head group of phosphocholine
whereas complex glycosphingolipids are generated by addition of
a specific sugar residue. Sphingolipids are a family of structurally
and functionally diverse lipids and are synthesized by three
distinct pathways: (1) de novo synthesis, (2) sphingomyelinase
pathways, and (3) salvage pathway that involve specific enzymes
localized to distinct organelles inside the cell.

De novo sphingolipid synthesis begins with condensation
of serine and palmitoyl coenzyme A (CoA) which takes
place at the cytosolic leaflet of the endoplasmic reticulum
(ER) catalyzed by the highly conserved palmitoyltransferase
(SPTLC) (Yard et al., 2007; Breslow and Weissman, 2010;
Hannun and Obeid, 2018). The product of SPTLC, 3-
ketosphinganine, is further reduced by 3-ketosphinganine
reductase (KDSR) and N-acylated by the action of fatty
acid specific dihydroceramide synthases (CERS1-6). Finally,
dihydroceramide is desaturated by dihydroceramide desaturase
(DEGS) to generate ceramide. Ceramide represents the central
precursor molecule of the sphingolipid metabolism, which in
turn is used to generate several sphingolipids, like sphingomyelin,
sphingosine or complex glycosphingolipids. Ceramide is then
transported from the ER to the Golgi apparatus by vesicular
trafficking or by transport proteins (Bartke and Hannun, 2009;
Hanada, 2010). Within the Golgi, ceramides are modified at the
head-group position by adding phosphocholine and phosphate

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2019 | Volume 7 | Article 223

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00223 October 1, 2019 Time: 16:42 # 3

Banhart et al. Sphingolipids in Chlamydia Infections

FIGURE 1 | The chlamydial developmental cycle. The biphasic developmental cycle of Chlamydia spp. starts with the attachment and invasion of host cells by
infectious elementary bodies (EBs). Within their membrane-bound vacuole, termed inclusion, EBs differentiate into metabolically active reticulate bodies (RBs). RBs
undergo repeated cycles of replication before they finally re-differentiate into EBs. The life cycle ends with the release of EBs from the host cell by either host cell lysis
or extrusion formation to start a new round of infection.

to produce sphingomyelin and ceramide 1-phosphate (Tafesse
et al., 2006; Hannun and Obeid, 2018). Ceramide is converted
to sphingomyelin by sphingomyelin synthases (SMS) located
at the lumen of the trans-Golgi (SMS1 and SMS2) and at the
plasma membrane (SMS2) (Tafesse et al., 2006; Yamaji and
Hanada, 2015). Precursor of complex glycosphingolipids, such
as glucosylceramide and galactosylceramide, are formed by the
addition of glucose and galactose residues in a glycosidic linkage
to ceramide (Breslow and Weissman, 2010; Yamaji and Hanada,
2015). Ultimately, sphingolipids and glycosphingolipids are
transported through secretory pathways to plasma membranes
and subcellular organelles.

Alternatively, ceramides can be generated by the breakdown
of complex sphingolipids, termed salvage pathway (Kitatani
et al., 2008). Sphingolipids and glycosphingolipids are degraded
in acidic subcellular compartments, such as late endosomes
and lysosomes, to form sphingosine (Kitatani et al., 2008).
In contrast to ceramide, which is not capable to leave the
lysosome, sphingosine is able to enter different cell compartments

(Bartke and Hannun, 2009). Released sphingosine may re-enter
sphingolipid pathways and is reused by the ceramide synthase to
generate ceramides again via re-acylation (Kitatani et al., 2008).

The third pathway, termed sphingomyelinase pathway, occurs
in the plasma membrane and endosome/lysosome systems
(Yamaji and Hanada, 2015; Teo et al., 2016). Within these
compartments, sphingomyelin is converted to ceramide by acid
sphingomyelinases (Kitatani et al., 2008). At plasma membranes,
SMS2 adds phosphocholine head groups to ceramide, which leads
to the production of sphingomyelin.

SPHINGOLIPID TRANSPORT IN
Chlamydia-INFECTED CELLS

Twenty four years ago, Hackstadt et al. (1995) showed that
fluorescently labeled sphingomyelin is acquired by C. trachomatis
from the host cell. Based on the observation that purified
EBs contained fluorescent sphingomyelin the authors concluded
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that Golgi-derived sphingomyelin accumulates in bacteria rather
than its precursor ceramide. Classical protein markers of the
transport between the Golgi apparatus and the plasma membrane
were not found in the inclusion membrane suggesting that a
subset of Golgi-derived exocytic vesicles is targeted (Hackstadt
et al., 1996; Scidmore et al., 1996a). C. trachomatis protein
synthesis is required for this interaction and bacterial factors that
mediate fusogenicity with sphingomyelin-containing vesicles
seem to be continually replenished (Scidmore et al., 1996b, 2003).
Shortly after these initial observations, quantitative analysis
indicated that C. trachomatis membranes contain up to 4%
of sphingolipids (Wylie et al., 1997). Interfering with bacterial
sphingolipid acquisition resulted in less infectious bacteria,
leads to the formation of aberrant chlamydial forms and
demonstrated the requirement of sphingolipid metabolism for
reactivation after INFγ treatment of C. trachomatis-infected
cells (van Ooij et al., 2000; Rejman Lipinski et al., 2009;
Robertson et al., 2009). Interestingly, synthesis of sphingomyelin
from ceramide seems to be a prerequisite for sphingolipid
uptake into the inclusion and into the bacteria, as a ceramide
derivative that cannot be converted to sphingomyelin (1-O-
methyl-ceramide) was not translocated across the inclusion

membrane but rather accumulated around the inclusion (Banhart
et al., 2014). This ceramide derivative showed strong anti-
chlamydial activity suggesting that C. trachomatis generates
a sphingomyelin-producing compartment inside the host cell
which is important for chlamydial growth (Banhart et al.,
2014; Saied et al., 2015). Surprisingly, a recent study suggests
that sphingomyelin uptake by Chlamydia species is linked to
host adaptation and/or virulence rather than to its obligate
intracellular life style (Dille et al., 2015).

In recent years, vesicular and non-vesicular transport
pathways were identified that were hijacked by C. trachomatis
to obtain sphingolipids from the host cell (Figure 2). These
pathways are not redundant and play distinct roles during
the chlamydial cycle of development. It has been shown that
C. trachomatis can intercept vesicular transport routes from
different organelles including Golgi mini-stacks or multivesicular
bodies (MVBs). Transport of sphingolipid-containing vesicles
derived from Golgi mini-stacks requires cellular GTPases RAB14,
RAB6A and RAB11A, ARF1 and its guanine nucleotide exchange
factor GBF1 (Heuer et al., 2009; Elwell et al., 2011). Interestingly,
RAB14, RAB6A, and RAB11A appear to be important for
Chlamydia progeny formation whereas ARF1 and GBF1 seem

FIGURE 2 | Sphingolipid acquisition during Chlamydia infection. Acquisition of sphingolipids takes place by both vesicular and non-vesicular pathways and is
ensured by interactions with several subcellular compartments and host cell proteins. Vesicular transport of sphingolipids to C. trachomatis is realized by rerouting
vesicles from fragmented Golgi mini-stacks or multivesicular bodies, involving several RAB GTPases such as RAB6, RAB11, RAB14, and RAB39. Recruitment of
RAB GTPases is thought to be mediated by Inc proteins and interaction of RAB11 with CT556 has been described (Mirrashidi et al., 2015). Non-vesicular routes to
C. trachomatis include recruitment of SMS and the formation of ER/inclusion membrane contact sites that contain the ceramide transport protein CERT. In contrast,
little is known for C. psittaci, except for fragmentation of the Golgi apparatus and recruitment of CERT.
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to be dispensable (Rejman Lipinski et al., 2009; Capmany
and Damiani, 2010; Elwell et al., 2011). The recruitment
of RAB14-postive vesicles was shown to be controlled by
the Akt signaling pathway, a pathway that is activated by
C. trachomatis infections (Capmany et al., 2019). Several other
kinases have also been implicated in sphingomyelin transport to
the C. trachomatis inclusion. These include SRC family kinase
Fyn and serine/threonine kinases that have been identified
in an RNAi screen and based upon inhibition by rotterlin,
respectively (Shivshankar et al., 2008; Mital and Hackstadt, 2011).
The precise mechanisms how rotterlin inhibits sphingomyelin
uptake by C. trachomatis remains elusive as rotterlin appears to
have multiple targets inside the host cell (Lei et al., 2012). In
addition, sphingomyelin is transported from MVBs by RAB39
(Gambarte Tudela et al., 2019). The MVB marker protein
CD63 has been detected inside C. trachomatis inclusion but its
functional role remains elusive (Beatty, 2006, 2008). In contrast,
much less is known for sphingolipid acquisition in C. psittaci
infections (Figure 2). For both species, infection results in
fragmentation of the cellular Golgi apparatus into smaller Golgi
mini-stacks thereby increasing Golgi surface (Heuer et al., 2009;
Knittler et al., 2014). This phenotype has been shown to boost
sphingolipid acquisition in C. trachomatis infections (Heuer
et al., 2009). In sum, multiple cellular processes contribute to
sphingolipid acquisition in Chlamydia infections (Moore, 2012).
How these factors regulate sphingolipid transport and influence
the infection is currently not completely understood.

The recruitment of cellular proteins, especially RAB proteins,
is species dependent (Damiani et al., 2014). In the past, the
localizations of RAB proteins were investigated during infection
of different Chlamydia species and showed that a core subset
of RAB proteins is recruited to the inclusion membrane of
different Chlamydia species whereas a few RAB proteins are
species-specific (Rzomp et al., 2003). Interestingly, although
recruitment of a RAB protein is conserved between different
Chlamydia species (Rab4 in C. trachomatis serovar L2 and
D, C. muridarum, and C. pneumoniae), its identified bacterial
interaction partner that is responsible for the interaction (CT229
in C. trachomatis serovar L2) has not been found in the other
chlamydial species (Rzomp et al., 2006). This leaves a question
mark on of how the mechanisms of functional recruitment differ
between Chlamydia species.

Future research regarding the role of these different vesicular
pathways in infections with different Chlamydia species,
the identification of transported lipids and bacterial factors
controlling these interactions is needed to understand the
intricate relationship.

CERT-DEPENDENT ACQUISITION OF
SPHINGOLIPIDS AND BEYOND

New studies showed that C. trachomatis and C. psittaci hijack
the cellular ceramide transport protein CERT to obtain ceramide
from the host cell (Derre et al., 2011; Koch-Edelmann et al., 2017).
CERT transfers ceramide from the ER to the Golgi apparatus in
uninfected cells using the C-terminal START domain (Ponting

and Aravind, 1999). Its N-terminal pleckstrin homology (PH)
domain binds phosphatidylinositol-4-phosphate (PI4P) (Peretti
et al., 2008) at the cis-face of the Golgi apparatus and is linked
with the ER due to its central FFAT motif binding VAPs (Vesicle-
associated membrane protein-associated protein) (Loewen et al.,
2003). In C. trachomatis-infected cells, CERT is recruited to
the inclusion membrane by interaction with IncD (Figure 2).
Targeted deletion of CERT domains showed that the FFAT
motif is relevant for binding and co-recruiting VAPs to the
inclusion membrane, but lack of the PH domain interrupts
association to the inclusion (Agaisse and Derre, 2014). The
interaction of IncD with CERT is driven by the charged and
hydrophobic motif in its C-terminus as well as the charged
motif in the N-terminus (Kumagai et al., 2018). These motifs are
conserved in C. trachomatis, C. suis, C. muridarum, C. caviae, and
C. felis. Also, the proximity of both domains and the possibility
of forming homooligomers mediated by the transmembrane
domain are necessary for increasing the affinity to CERT. After
CERT recruitment to the inclusion membrane, ceramide is likely
transported from the ER to the inclusion membrane at ER-
inclusion contact sides where ceramide is subsequently converted
into sphingomyelin by the also recruited host SMS2 (Figure 2;
Elwell et al., 2011). IncD belongs to the non-conserved Inc
proteins that are not found in all Chlamydia species, for example
C. psittaci. Thus, it is currently not known how CERT is
recruited to C. psittaci inclusions (Koch-Edelmann et al., 2017).
In uninfected cells, the CERT PH domain binds to PI4P-enriched
membranes in the trans-Golgi region. It has been suggested,
that PI4P is present at C. trachomatis inclusion membranes
and might thereby partially mediate CERT binding (Moorhead
et al., 2010). Assuming that C. psittaci inclusions are PI4P
positive, this mode of binding could be conserved between the
different Chlamydia species. In addition, proteomic analysis of
C. trachomatis inclusions revealed that VAPB, a binding partner
of CERT is significantly enriched in the inclusion proteome
(Aeberhard et al., 2015). Whether VAPB is also associated with
C. psittaci inclusions or if a currently unknown C. psittaci factor
facilitates CERT recruitment still needs to be determined. Thus,
future experiments are needed to reveal the nature of CERT
binding to C. psittaci inclusions.

Sphingomyelin is one of the essential host-derived lipids
that is incorporated into chlamydial membranes (Saka and
Valdivia, 2010) and is described to play a role in bacterial
replication and inclusion growth (Hackstadt et al., 1996; Rejman
Lipinski et al., 2009; Elwell et al., 2011). Further evidence
for this suggestion is that CERT recruitment is conserved
among Chlamydia spp. (Koch-Edelmann et al., 2017). For
C. trachomatis and C. muridarum it has been shown by RNA
interference that CERT seems to be essential for the production
of infectious progeny, indicating that CERT is a crucial factor in
chlamydial development (Derre et al., 2011; Elwell et al., 2011).
Recent studies using CRISPR/Cas9-mediated CERT-knockout
cells demonstrated that deficiency of CERT in C. psittaci
infections also leads to decreased infectious progeny formation
(Koch-Edelmann et al., 2017). Interestingly, CERT-knockout
caused an increase of sphingolipid uptake by C. psittaci (Koch-
Edelmann et al., 2017). This is in stark contrast to C. trachomatis
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infection that shows a drastic decrease in bacterial sphingolipid
acquisition under CERT depletion. These findings possibly
suggest a CERT-independent sphingolipid uptake pathway in
C. psittaci infections. How sphingolipids are transported to
C. psittaci in CERT-knockout cells is currently not known. The
involvement of one or more novel factor/s of either bacterial
and/or cellular origin that compensate for loss of CERT is
likely. Besides that, these results underline that acquisition of
sphingomyelin needs to be controlled by Chlamydia spp. and
suggest that CERT might have additional roles in chlamydial
development beyond sphingolipid transport, which need to be
investigated in the future.

SUMMARY AND OUTLOOK

Twenty four years after the initial observation that C. trachomatis
can acquire sphingomyelin from the Golgi apparatus of the
infected host cells a clearer picture is emerging on the molecular
pathways used by different Chlamydia species to obtain
sphingolipids. Chlamydia species use distinct, non-redundant
pathways to obtain sphingolipids. These include vesicular and
non-vesicular transport pathways. The characterization of CERT
as a conserved factor in ceramide delivery to different Chlamydia
species and the recruitment of the human SMS2 to the
C. trachomatis inclusion suggests that at least C. trachomatis
creates a novel sphingomyelin-producing compartment inside
the infected host cells. Additionally, in C. trachomatis infections
sphingomyelin is transported by distinct vesicles. For that
purpose, C. trachomatis exploits cellular GTPases, including

RAB and ARF proteins, and kinases to facilitate bacterial
sphingomyelin acquisition from fragmented Golgi mini-stacks
and MVBs. How vesicular and non-vesicular transport of
sphingolipids is controlled by different Chlamydia species, how
they process CERT-delivered ceramide, and how ceramide and
sphingomyelin regulate chlamydial infections are just a few
open questions. The development of novel tools including the
genetic manipulation of Chlamydia species and the biochemical
isolation of chlamydial inclusions now allows addressing
these questions.
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