
entropy

Article

Constrained Adjusted Maximum a Posteriori Estimation
of Bayesian Network Parameters

Ruohai Di 1, Peng Wang 1, Chuchao He 1 and Zhigao Guo 2,*

����������
�������

Citation: Di, R.; Wang, P.; He, C.;

Guo, Z. Constrained Adjusted

Maximum a Posteriori Estimation of

Bayesian Network Parameters.

Entropy 2021, 23, 1283. https://

doi.org/10.3390/e23101283

Received: 11 August 2021

Accepted: 27 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics and Information Engineering, Xi’an Technological University, Xi’an 710021, China;
diruohai@xatu.edu.cn (R.D.); wang_peng@xatu.edu.cn (P.W.); hechuchao@xatu.edu.cn (C.H.)

2 School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK

* Correspondence: zhigao.guo@qmul.ac.uk; Tel.: +44-075-0247-6882

Abstract: Maximum a posteriori estimation (MAP) with Dirichlet prior has been shown to be effective
in improving the parameter learning of Bayesian networks when the available data are insufficient.
Given no extra domain knowledge, uniform prior is often considered for regularization. However,
when the underlying parameter distribution is non-uniform or skewed, uniform prior does not
work well, and a more informative prior is required. In reality, unless the domain experts are
extremely unfamiliar with the network, they would be able to provide some reliable knowledge
on the studied network. With that knowledge, we can automatically refine informative priors and
select reasonable equivalent sample size (ESS). In this paper, considering the parameter constraints
that are transformed from the domain knowledge, we propose a Constrained adjusted Maximum a
Posteriori (CaMAP) estimation method, which is featured by two novel techniques. First, to draw
an informative prior distribution (or prior shape), we present a novel sampling method that can
construct the prior distribution from the constraints. Then, to find the optimal ESS (or prior strength),
we derive constraints on the ESS from the parameter constraints and select the optimal ESS by cross-
validation. Numerical experiments show that the proposed method is superior to other learning
algorithms.

Keywords: graphical models; domain knowledge; prior distribution; equivalent sample size; param-
eter constraints

1. Introduction

A Bayesian network (BN) is a type of graphical model that combines probability and
causality theory. A BN becomes a causal model that enables reasoning about intervention
under a desired causal assumption [1–3]. BNs have been shown to be powerful tools for
addressing statistical prediction and classification problems, and they have been widely
applied in many fields, such as geological hazard prediction [4], reliability analysis [5,6],
medical diagnosis [7,8], gene analysis [9], fault diagnosis [10], and language recognition [11].
A BN B = (G, Θ) includes two components: a graph structure G and a set of parameters
Θ. The structure G is a Directed Acyclic Graph (DAG) that consists of nodes (also called
vertices) representing random variables, (X1, . . . , Xn), where n is the number of variables,
and directed edges (also called arcs) correspond to the conditional dependence relationships
among the variables. Notice that there should be no directed cycles in the graph. When
sufficient data are available, the parameters of BN can be precisely and efficiently learnt by
statistical approaches such as Maximum Likelihood (ML) estimation. When the sample
data set is small, ML estimation often overfits the data and fails to approximate the
underlying parameter distribution. To address this problem, Maximum a Posteriori (MAP)
estimation has been introduced and shown to be effective in improving parameter learning.
Because of the useful properties, i.e., (I) hyper-parameters of the BN model can be taken as
equivalent sample observations and (II) experts find it convenient to define the uniformity
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of the distribution, the Dirichlet distribution is often preferred for the discrete BN model
and therefore added into the estimating process. For the sake of clarity, we define the
MAP parameter estimation of node i as

(
Nijk + αijk

)
/
(

Nij + αij
)
. Nijk is the number of

observations in the data set where node i has the kth state and its set of parents has the jth
state of its configurations. Nij is the sum of Nijk over all k. αijk and αij are the equivalent
numbers of Nijk and Nij in prior beliefs. For all k, αijk is also the hyper-parameter values of
the Dirichlet prior distribution of the BN parameter θijk, and αij is also the prior strength or
equivalent sample size (ESS).

Given no extra domain knowledge, a uniform prior or flat prior is often chosen
among all the candidate Dirichlet priors. Based on the uniform prior, MAP scores, such as
Bayesian Dirichlet uniform (BDu) [12], Bayesian Dirichlet equivalent uniform (BDeu) [13]
and Bayesian Dirichlet sparse (BDs) [14] have been developed and investigated [15–19].
When the underlying parameter distribution is uniform, (I) if the distribution obtained by
purely data-driven estimation Nijk/Nij for the parameter θijk is also uniform, the selection
of ESS has minor effects on MAP estimation and (II) if the distribution obtained by purely
data-driven estimation Nijk/Nij for the parameter θijk is non-uniform, the ESS becomes
crucial and the MAP estimation only approximates the underlying distribution by a large
ESS value. However, when the underlying parameter distribution is non-uniform, the
uniform prior becomes non-informative and, no matter what size the ESS value is, the MAP
estimation based on the uniform prior fails to approximate the underlying distribution.
Therefore, a well-defined or informative prior is significant.

In practice, unless the domain experts are totally unfamiliar with the studied problem,
they would be able to provide some prior information about the underlying parameters [20,21],
e.g., parameter A is very likely to be larger than 0.6, or parameter A is larger than B. In
this paper, we assume that the expert opinion or domain knowledge is trustworthy, i.e.,
the domain knowledge would not be incorporated into the parameter estimation unless
the domain experts are confident about their opinions. In fact, this is the assumption that
many existing parameter estimation algorithms rely on [22–26]. From the reliable domain
knowledge, we can refine informative priors. Then, with an informative prior, we can
further select a reasonable ESS. In view of the above considerations, we conclude that, to
obtain accurate MAP estimation, informative prior distribution is required to represent the
given domain knowledge and thereby select the reasonable ESS to balance the impact of
data and prior. Based on such an idea, in this paper, we present a Constrained adjusted
Maximum a Posteriori (CaMAP) estimation approach to learn the parameter of a discrete
BN model.

This paper is organized as follows. Section 2 briefly introduces related concepts
and the studied problem. Section 3 focuses on the illustration of a novel prior elicitation
algorithm and a novel optimal ESS selection algorithm. Section 4 presents the experimental
results of the proposed method. Finally, we summarize the main findings of the paper and
briefly explore the directions for future research in Section 5.

2. The Background
2.1. Bayesian Network

A BN is a probabilistic graphical model representing a set of variables and their con-
ditional dependencies via a DAG. Learning a BN includes two parts: structure learning
and parameter learning. Structure learning consists of finding the optimal DAG G that
identifies the dependencies between variables from the observational data. Parameter
learning entails estimating the optimal parameters θ that quantitatively specify the con-
ditional dependencies between variables. Given the structure, the parameter estimation
of a network can be factorized into the independent parameter estimations of individual
variables, which means:

`(D|θ) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Nijklogθijk (1)
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where `(D|θ) is the likelihood function of parameters θ given observational data D, and
the ML estimation of parameter θijk is

θijk =
Nijk

Nij
(2)

where Nij = ∑ri
k=1 Nijk.

When the observed data are sufficient, the ML estimation often fits the underlying
distributions well. However, when the data are insufficient, additional information such as
domain knowledge is required to prevent over-fitting.

2.2. Parameter Constraints

Domain knowledge can be transformed into qualitative parameter constraints. In
practice, there are three common parameter constraints [22,27], which are all convex (i.e.,
the constraints form a convex constrained parameter feasible set that is easy to compute its
geometric center, see Section 3.1). The constraints are:

(1) Range constraint: This constraint defines the upper and lower bounds of a parame-
ter, and it is commonly considered in practice.

θlower
ijk ≤ θijk ≤ θ

upper
ijk (3)

(2) Intra-distribution constraint: This constraint describes the comparative relationship
between two parameters that refer to the same parent configuration state but different child
node states.

θijk ≤ θijk′ , ∀k 6= k′ (4)

(3) Cross-distribution constraint: This constraint has also been called “order con-
straint” [23] or “monotonic influence constraint” [24]. It defines the comparative relation-
ship between two parameters that share the same child node state but different parent
configuration node states.

θijk ≤ θij′k, ∀j 6= j′ (5)

The third type of constraints might be hard to understand. As an example, smoking (S = 1)
and polluted air (PA = 1) are two causes of lung cancer (LC = 1) and medical experts agree
that smoking is more likely to cause lung cancer. Then, the medical knowledge could be
expressed as a cross-distribution constraint, P(C = 1|S = 1, PA = 0) > P(C = 1|S = 0, PA = 1).

2.3. Problem Formulation

With observational data and domain knowledge, the parameter learning problem of a
discrete BN can be formally defined as:

Input:

n: Number of nodes in the network.
G: Structure with unknown parameters.
D: Set of complete observations for variables.
Ω: Set of parameter constraints transformed from reliable domain knowledge, Ω =
{Ω1, Ω2, . . . , Ωn}, where Ωi denotes all the constraints on node i.

Task: Find the optimal parameters that approximate the underlying parameter distri-
bution, θ̂ = {θ̂1, . . . , θ̂n}, θ̂i = {θ̂i1, . . . , θ̂iqi}, θ̂ij = {θ̂ij1, . . . , θ̂ijri}. Here, qi is the number
of configuration state values of the parents of the variable Xi and ri is the number of state
values of the variable Xi.

2.4. Sample Complexity of BN Parameter Learning

Basically, the ML estimation method learns accurate parameters when the acquired
data are sufficient. However, when the data are insufficient, ML estimation is often
inaccurate. Thus, definition of sample complexity for BN parameter learning helps to
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determine whether ML meets the accuracy requirement. With regard to this problem,
Dasgupta [28] defined the lower bound of the sample size for BN parameters learning with
known structures. Given that a network has n binary variables, and no node has more than
k parents, then the sample complexity with confidence 1− δ is lower bounded by

288× n2 × 2k

ε2 × ln2 (1 +
3n
ε
)× ln (

1 + 3n/ε

εδ
) (6)

where ε is the error rate and is often computed as ε = nσ, for a small constant σ.

3. The Method

Among all the parameter learning algorithms, MAP estimation is a learning algorithm
that conveniently combines the prior knowledge and observed data. For node i, the
posteriori estimation of parameters θij can be written as

P(θij|D) =
P(D

∣∣θij)P
(
θij

)
P(D)

∝ P(D|θij)P
(
θij

)
(7)

where P
(
θij

)
denotes the prior distribution and P(D

∣∣θij) equals to l(D
∣∣θij) . Thus, the

MAP estimation of θ̂ij can be further defined as:

θ̂ij = argmax
θij

P(θij|D) = argmax
θij

P(D|θij)P
(
θij

)
(8)

Since the parameters θij studied in this paper follows the multinomial distribu-
tion and the conjugate prior for the multinomial distribution is Dirichlet distribution,
the prior distribution of θij =

(
θij1, . . . , θijri

)
is set to be the Dirichlet distribution, i.e.,

θij ∼ Dir
(
αij1, . . . , αijri

)
, where

(
αij1, . . . , αijri

)
are the priors equivalent to the observations(

Nij1, . . . , Nijri

)
. As a result, the approximate MAP estimation (see Appendix A) for θijk

has the form

θ̂ijk =
Nijk + αijk

Nij + αij
(9)

where αij = ∑ri
k=1 αijk is the equivalent (or hypothetical) sample size.

Generally, domain experts would find it difficult to provide a specific prior Dirichlet
distribution but feel more comfortable to make qualitative statements on unknown pa-
rameters. From such qualitative parameter statements or parameter constraints, the prior
distribution Dir

(
αij1, . . . , αijri

)
can be further defined as

Dir
(
αij1, . . . , αijri

)
= Dir(αij ∗ θ

prior
ij ) (10)

where θ
prior
ij = (θ

prior
ij1 , θ

prior
ij2 , . . . , θ

prior
ijri

) is the prior hyper-parameter vector of the prior
distribution that represents the domain knowledge and can be sampled from the parameter
constraints. Finally, the MAP estimation for θijk can be expressed as

θ̂ijk =
Nijk + αijθ

prior
ijk

Nij + αij
(11)

As the parameter constraints are incorporated into the MAP estimation, we define the
above estimation as Constrained adjusted Maximum a Posteriori (CaMAP) estimation. In
the following sections, we will introduce the elicitation of the prior parameter θ

prior
ij and

the selection of the optimal ESS αij.
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3.1. Prior Elicitation

Before defining the optimal ESS αij, the prior parameter θ
prior
ij is required, which could

be elicited from the parameter constraints in a sampling manner. In this paper, we design
a sampling method that applies to all types of convex constraints. Specifically, in the
sampling method,

(1) First, we search for the optimal parameters of the following model:

minimize C (12)

subject to Ω(θi) (13)

where C is a random constant and Ω(θi) represents all the parameter constraints on node i.
The constrained model is simple and could be efficiently solved. Note that even though
the objective function is a constant, the solutions of the constrained model could vary
each time. In fact, any parameters satisfying the given parameter constraints are solutions
of the constrained model. Therefore, through iteratively solving the constrained model,
we collect the parameters that cover the feasible parameter region constrained by the
parameter constraints.

(2) Then, the first step is repeated (In this paper, we set the repetition times at 100 and
the sampling code is available at: https://uk.mathworks.com/matlabcentral/fileexchange/
34208-uniform-distribution-over-a-convex-polytope (accessed on 26 September 2021)) to
collect sufficient sampled parameters that cover the constrained parameter space. To make
sure that the sampled parameters are uniformly distributed over the constrained parameter
space, for each sampling step, we add an extra constraint

‖θt+1
i − θt

i‖2 ≥ τ (14)

where τ is a small value (e.g., 0.1), θt
i represents the sampled parameters at step t, and θt+1

i
represents the sampled parameters at step t + 1.

(3) Finally, we average over all the sampled parameters and set the mean values as
the prior θ

prior
i = {θprior

ij }, j = {1, . . . qi}, where θ
prior
ij = (θ

prior
ij1 , . . . , θ

prior
ijri

).

3.2. ESS Value Selection

Although the sampled prior θ
prior
i guarantees satisfying all the parameter constraints,

the overall estimation (Equation (10)) may violate the constraints if ESS αij is not rea-
sonably defined. For example, for binary variables, {LC = Lung Cancer, S = Smoking,
PA = Pollution Air}, smoking and pollution air are shown to cause lung cancer. Parameter
θ142 represents the probability that the value of variable LC is true given that the values
of variables S and PA are both true. In this example, θ142 is the probability of having lung
cancer (LC = 1) given that the patients consistently smoke (S = 1) and work in polluted
air (PA = 1). The medical experts assert that θ142 lies in the interval, [0.6, 1.0], which is also
the parameter constraint. Now, the elicited prior θ

prior
142 is 0.80, which satisfies the parameter

constraint, and the purely data-driven estimation (also ML estimation) is N142/N14 = 1/7.
Then, with a small ESS, such as 5, the estimation (Equation (11)) is computed as follows:

θ̂142 =
1 + 5 ∗ 0.80

7 + 5
= 0.42 (15)

Obviously, the above estimation does not satisfy the constraint, θ142 ∈ [0.6, 1.0]. In fact,
to make sure that the estimation does not violate the constraint, the optimal ESS should not
be less than 16, which could be inferred from the parameter constraints. Therefore, given
the elicited prior and observation counting, to guarantee that the overall CaMAP estimation
satisfies all the parameter constraints, the optimal ESS should satisfy certain constraints.

From each type of constraint imposed on the parameters, ESS constraints could be
derived as follows:

https://uk.mathworks.com/matlabcentral/fileexchange/34208-uniform-distribution-over-a-convex-polytope
https://uk.mathworks.com/matlabcentral/fileexchange/34208-uniform-distribution-over-a-convex-polytope


Entropy 2021, 23, 1283 6 of 16

(1) To satisfy the range constraint, the CaMAP estimation in Equation (11) should satisfy

θlower
ijk ≤

Nijk + αijθ
prior
ijk

Nij + αij
≤ θ

upper
ijk (16)

which implies

αij ≥
Nijθ

lower
ijk − Nijk

θ
prior
ijk − θlower

ijk

(17)

αij ≥
Nijθ

upper
ijk − Nijk

θ
prior
ijk − θ

upper
ijk

. (18)

(2) To satisfy the intra-distribution constraint, the CaMAP estimation should satisfy

Nijk1 + αijθ
prior
ijk1

Nij + αij
≤

Nijk2 + αijθ
prior
ijk2

Nij + αij
(19)

which implies

αij ≥
Nijk2 − Nijk1

θ
prior
ijk1
− θ

prior
ijk2

(20)

(3) To satisfy the cross-distribution constraint, the CaMAP estimation should satisfy

Nij1k + αij1 θ
prior
ij1k

Nij1 + αij1
≤

Nij2k + αij2 θ
prior
ij2k

Nij2 + αij2
(21)

where αij1 and αij2 represent the ESS values of the distributions under the cross-distribution
constraint. Thus, we have

αij1 αij2(θ
prior
ij1k − θ

prior
ij2k ) + αij1(Nij2 θ

prior
ij1k − Nij2k) + αij2(Nij1k − Nij1 θ

prior
ij2k ) (22)

In this paper, we set αij1 = αij2 and thus we have

α2
ij1(θ

prior
ij1k − θ

prior
ij2k ) + αij1(Nij1k − Nij2k + Nij2 θ

prior
ij1k − Nij1 θ

prior
ij2k ) + Nij2 Nij1k − Nij1 Nij2k ≤ 0 (23)

From the above inequality, constraints on the ESS values αij1 and αij2 could be derived.
Furthermore, in this paper, for each node, we define two classes of ESSs: “global” and

“local” ESS. “Global” ESS refers to the equivalent sample size imposed on all parameter
distributions of the given node, such as node i, while “local” ESS refers to the equivalent
sample size working on parameter distribution that refers to a specific parent configuration
state. For example, in Figure 1, for node i, αi is the “global” ESS, while (αi1, . . . , αiqi ) are the
“local” ESSs.

In general, with the elicited prior, observational data and parameter constraints, for
node i, the optimal ESSs could be determined by the following procedure:

(1) First, from the elicited prior and observational data, the optimal “global” ESS αi
could be determined by cross-validation [29]. In the cross-validation, each candidate ESS
(In this paper, the candidate ESS varies from 1 to 50) is evaluated based on the likelihood
of posteriori estimation in Equation (11).

(2) Then, based on the parameter constraints, we can derive the constraints on each
“local” ESS αij.

(3) Finally, for “local” ESS αij, (I) If there is no constraint imposed on αij, then we set
αij = αi. (II) If there are constraints imposed on αij and meanwhile the “global” ESS αi
satisfies the constraints, then, we set αij = αi; if not, αij is determined by further cross-
validation using data, prior and ESS constraints. Note that in the process of validation, the
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initial candidate ESS value of αij is set to be the lower bound value of the range defined by
its constraints.
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3.3. Numerical Illustration of CaMAP Method

To illustrate the principle of the proposed method, we demonstrate the parameter
learning of the BN shown in Figure 2, which is extracted from the brain tumor BN [23].
Nodes in the network have meanings as below. Specifically, the network indicates that the
presence of brain tumor and the increased level of serum calcium may cause coma.

• C→ Coma
• BT→ Brain Tumour
• IS→ Increased level of Serum calcium
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(1) First, we assume that a small data set of 20 patients is available. From the data, the
following counting are observed:

N(C = 0, BT = 0, IS = 0) = 0, N(C = 0, BT = 0, IS = 1) = 1
N(C = 0, BT = 1, IS = 0) = 3, N(C = 0, BT = 1, IS = 1) = 9
N(C = 1, BT = 0, IS = 0) = 3, N(C = 1, BT = 0, IS = 1) = 0
N(C = 1, BT = 1, IS = 0) = 4, N(C = 1, BT = 1, IS = 1) = 0.

Furthermore, we acquire the following medical knowledge from the medical experts:
a brain tumor as well as an increased level of serum calcium are likely to cause the patient
to fall into a coma in due course. From this medical knowledge, we generate the following
parameter constraints:

P(C = 1|BT = 0, IS = 1) ≥ P(C = 1|BT = 0, IS = 0)
P(C = 1|BT = 1, IS = 0) ≥ P(C = 1|BT = 0, IS = 0)
P(C = 1|BT = 1, IS = 1) ≥ P(C = 1|BT = 0, IS = 0)
P(C = 1|BT = 1, IS = 1) ≥ P(C = 1|BT = 0, IS = 1)
P(C = 1|BT = 1, IS = 1) ≥ P(C = 1|BT = 1, IS = 0).

(2) Then, based on the parameter constraints, we elicit the following priors using the
proposed prior elicitation algorithm (Section 3.1):

P′(C = 0|BT = 0, IS = 0) = 0.99, P′(C = 0|BT = 0, IS = 1) = 0.56
P′(C = 0|BT = 1, IS = 0) = 0.60, P′(C = 0|BT = 1, IS = 1) = 0.05
P′(C = 1|BT = 0, IS = 0) = 0.01, P′(C = 1|BT = 0, IS = 1) = 0.44
P′(C = 1|BT = 1, IS = 0) = 0.40, P′(C = 1|BT = 1, IS = 1) = 0.95

(3) Furthermore, from the parameter constraints, we derive the constraints on the
“local” ESSs:

α(BT = 0, IS = 0) ≥ 5.49, α(BT = 0, IS = 1) ≥ 5.92
α(BT = 1, IS = 0) ≥ 9.01, α(BT = 1, IS = 1) ≥ 9.01

(4) Next, for node C, the optimal “global” ESS is cross-validated to be 3. As the “global”
ESS does not satisfy any of the ESS constraints, the “local” ESSs would not be equal to the
“global” ESS and should be further validated. Based on the prior, data and ESS constraints,
the optimal “local” ESSs are cross-validated to be as follows:

α(BT = 0, IS = 0) = 50, α(BT = 0, IS = 1) = 6
α(BT = 1, IS = 0) = 50, α(BT = 1, IS = 1) = 50
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(5) Finally, with the elicited priors and optimal ESSs, the CaMAP estimation are
computed as follows:

P(C = 0|BT = 0, IS = 0) = 0+50×0.99
3+50 = 0.93

P(C = 0|BT = 0, IS = 1) = 1+6×0.56
1+6 = 0.62

P(C = 0|BT = 1, IS = 0) = 3+50×0.60
7+50 = 0.58

P(C = 0|BT = 1, IS = 1) = 9+50×0.05
9+50 = 0.19

P(C = 1|BT = 0, IS = 0) = 3+50×0.01
3+50 = 0.07

P(C = 1|BT = 0, IS = 1) = 0+6×0.44
1+6 = 0.38

P(C = 1|BT = 1, IS = 0) = 4+50×0.40
7+50 = 0.42

P(C = 1|BT = 1, IS = 1) = 0+50×0.95
9+50 = 0.81

4. The Experiments

We conducted experiments to investigate the performance of the proposed CaMAP
method in terms of learning accuracy, under different sample sizes and constraint sizes. In
the experiments, we used the networks from [16,17], shown in Figures 3–7. The true pa-
rameter distributions in these networks show different uniformities, varying from strongly
skewed to strongly uniform distributions. As the true parameters were set or known
in advance, the learnt parameters were evaluated by the Kullback–Leibler (KL) diver-
gence [30], which indicates the divergence between the learnt parameters or estimated
distribution and the true parameters or underlying distribution. The proposed method
was evaluated against the following learning algorithms: ME [31], ML [32], MAP [13],
CME [26,33], and CML [24,34] (The code of all the six tested algorithms can be found at
https://github.com/ZHIGAO-GUO/CaMAP (accessed on 26 September 2021)). The full
names of the tested algorithms are listed as follows:

• ME : maximum entropy
• ML : maximum likelihood
• MAP : maximum a posteriori
• CME : constrained maximum entropy
• CML : constrained maximum likelihood
• CaMAP : constrained adjusted maximum a posteriori
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Notice that, (I) in the MAP method, we used a uniform (or flat) prior, which means,
θ

prior
ijk in Equation (11) was set to be 1/ri and ESS value is 1, and (II) in the CaMAP method,

we set the maximum candidate ESS to be 50, which is a sufficient number for all networks.

4.1. Learning with Different Sample Sizes

First, we examined the learning performance of all algorithms under different sample
sizes. Our experiments were carried out under the following settings: (1) The sample
sizes were set to be 10, 20, 30, 40, and 50, respectively. (2) The parameter constraints were
randomly generated from the true parameters of the tested networks, with the maximum
number of constraints for each node at 3. Specifically, the parameter constraints are gener-
ated using the following rules: (1) Range constraints are generated as [θlower

ijk , θ
upper
ijk ], where

θlower
ijk is equal to be max(0, θ∗ijk − τ1) and θ

upper
ijk is equal to be min(1, θ∗ijk + τ2), where θ∗ijk rep-

resents the true parameter, and τ1 and τ2 are two random values around 0.2. (2) Inequality
constraints are generated as θij1k1 ≥ θij2k2 if

(
θij1k1 − θij2k2

)
≥ 0.2. Therefore, when j1 = j2

and k1 6= k2, the constraint becomes the intra-distribution constraint, while the constraint
becomes the cross-distribution constraint when j1 6= j2 and k1 = k2,.

We performed 100 repeated experiments. The average KL divergence values of
different algorithms on different networks under different sample sizes are summarized in
Table 1 with the best results highlighted in bold.

From the experimental results, we draw the following conclusions: (1) With increasing
data, the performance of all algorithms improved by different levels. (2) In almost all
cases, CaMAP outperformed the other learning algorithms. However, when the available
data are extremely insufficient, e.g., 10, the CaMAP was inferior to the MAP method. The
explanation might be that the insufficiency of data impacts the cross-validation of ESS
values. Therefore, the optimal ESS turns out to be extreme, either small or large, and fails
to balance data and prior (see the 2nd future study in Discussion and Conclusions section).

4.2. Learning with Different Constraint Sizes

Next, we further explored the learning performance of different learning algorithms
under different constraint sizes. The experiments were conducted under the following
settings: (1) The data set size for all the tested networks was set to be 20, which is a small
number for all networks. (2) Parameter constraints were generated from the true parameters
of the networks and the maximum number of constraints for each node was set to be 3.
The parameters were learnt from a fixed data set but an increasing number of parameter
constraints that were randomly chosen from all generated constraints. The constraint
sparsity varied from 0% to 100%. For each setting, we performed 100 repeated experiments.
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The average KL divergence values of different algorithms on different networks under
different constraint sizes are summarized in Table 2.

Table 1. Parameter learning under different sample sizes.

ML CML ME CME MAP CaMAP

(a) Network—strongly skewed distribution
10 2.455 0.946 0.196 0.098 0.083 0.108
20 1.234 0.486 0.131 0.075 0.066 0.063
30 0.486 0.211 0.070 0.046 0.050 0.038
40 0.291 0.147 0.053 0.036 0.040 0.029
50 0.192 0.098 0.044 0.033 0.034 0.024

(b) Network—skewed distribution
10 2.277 0.884 0.182 0.090 0.077 0.104
20 1.170 0.481 0.122 0.068 0.062 0.064
30 0.589 0.257 0.085 0.055 0.055 0.042
40 0.302 0.139 0.060 0.042 0.046 0.030
50 0.154 0.066 0.044 0.034 0.037 0.025

(c) Network—uniform distribution
10 2.350 1.060 0.195 0.095 0.072 0.103
20 1.036 0.452 0.118 0.070 0.066 0.069
30 0.515 0.229 0.080 0.053 0.060 0.049
40 0.238 0.101 0.053 0.039 0.044 0.029
50 0.150 0.069 0.040 0.030 0.037 0.023

(d) Network—strongly uniform distribution
10 2.102 0.899 0.182 0.091 0.070 0.105
20 1.202 0.528 0.122 0.064 0.063 0.060
30 0.470 0.214 0.075 0.047 0.054 0.040
40 0.353 0.151 0.062 0.041 0.045 0.030
50 0.186 0.057 0.043 0.031 0.034 0.021

(e) Network—combined skewed and uniform distribution
10 2.460 1.015 0.201 0.097 0.074 0.102
20 1.103 0.433 0.121 0.069 0.066 0.058
30 0.631 0.228 0.089 0.055 0.053 0.042
40 0.290 0.126 0.061 0.043 0.047 0.028
50 0.206 0.097 0.051 0.038 0.039 0.025

From the experimental results, we draw the following conclusions: (1) For the algo-
rithms that did not use constraints, such as ML, ME, and MAP, changing the constraint size
did not impact their performance. However, for the algorithms that have been incorpo-
rated constraints, such as CML, CME, and CaMAP, an increase in constraints affected their
performances to a certain degree depending on the number of incorporated constraints.
(2) In most cases, CaMAP outperformed the other parameter learning algorithms, except
for MAP, when no parameter constraints were incorporated into the learning. In fact,
when no parameter constraints were available, CaMAP method was slightly inferior to
the MAP estimation with uniform prior. The explanation might be as follows: when the
parameter constraints are not available, constraints on ESS values could not be deduced.
Therefore, ESS values in CaMAP estimation are the same at those in MAP estimation. Then,
the difference between the CaMAP and MAP estimation lies in the prior, θ

prior
i . However,

unlike uniform prior in MAP estimation, prior in the CaMAP method is elicited using a
sampling method. For the sampling methods, it is hard to achieve completely uniform
sampling unless the sampling size is very large (see the 1st future study in the Discussion
and Conclusions section).
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Table 2. Parameter learning under different constraint sizes.

ML CML ME CME MAP CaMAP

(a) Network—strongly skewed distribution
0% 1.321 1.023 0.133 0.097 0.080 0.082

25% 1.321 0.691 0.133 0.092 0.080 0.057
50% 1.321 0.382 0.133 0.083 0.080 0.045
75% 1.321 0.168 0.133 0.069 0.080 0.022
100% 1.321 0.063 0.133 0.055 0.080 0.005

(b) Network—skewed distribution
0% 1.313 1.003 0.131 0.093 0.077 0.080

25% 1.313 0.554 0.131 0.090 0.077 0.052
50% 1.313 0.345 0.131 0.082 0.077 0.041
75% 1.313 0.098 0.131 0.072 0.077 0.017

100% 1.313 0.065 0.131 0.054 0.077 0.005
(c) Network—uniform distribution

0% 1.184 0.925 0.127 0.094 0.073 0.075
25% 1.184 0.505 0.127 0.091 0.073 0.052
50% 1.184 0.241 0.127 0.083 0.073 0.037
75% 1.184 0.118 0.127 0.071 0.073 0.017

100% 1.184 0.058 0.127 0.055 0.073 0.007
(d) Network—strongly uniform distribution

0% 1.303 0.999 0.126 0.093 0.072 0.073
25% 1.303 0.724 0.126 0.089 0.072 0.052
50% 1.303 0.474 0.126 0.078 0.072 0.039
75% 1.303 0.196 0.126 0.067 0.072 0.023

100% 1.303 0.072 0.126 0.049 0.072 0.007
(e) Network—combined skewed and uniform distribution

0% 1.170 0.900 0.121 0.088 0.076 0.080
25% 1.170 0.512 0.121 0.084 0.076 0.050
50% 1.170 0.296 0.121 0.077 0.076 0.025
75% 1.170 0.153 0.121 0.068 0.076 0.014

100% 1.170 0.050 0.121 0.050 0.076 0.005

5. Discussion and Conclusions

For MAP estimation in BN parameter learning, informative prior distribution and
reasonable ESS values are two crucial factors that impact the learning performance. Em-
pirically, a uniform prior is preferred and ESS is further cross-validated according to the
uniform prior. However, when the underlying parameter distribution is non-uniform
or skewed, MAP estimation with a uniform prior does not fit the underling parameter
distribution well, and, in that case, an informative prior is required. In fact, reliable qual-
itative domain knowledge has been proved to be useful and can be used for eliciting
informative priors and selecting the reasonable ESS. In this paper, we proposed a CaMAP
estimation method. The proposed method automatically elicits the prior distribution from
the parameter constraints that are transformed from the domain knowledge. Besides, con-
straints on ESS values are derived from the parameter constraints. Then, the optimal ESS,
including “global” and “local” ESS, are further chosen from the ranges derived from the ESS
constraints by cross-validation. Our experiments demonstrated that the proposed method
outperformed most of the mainstream parameter learning algorithms. In future study:

(1) A more effective prior elicitation approach is desired. Compared to the sampling-
based methods, geometric constraint-solving methods would be more robust and could
elicit more informative priors.

(2) A more reasonable ESS selection method is preferred. For the cross-validation
method, when the available data are extremely insufficient or less informative, the optimal
ESS tends to maximize the likelihood of data and makes the CaMAP estimation fail to
approach the underling parameter distribution. In fact, data bootstrapping guided by the
parameter constraints may extend the data and make the data more informative and thus
improve the ESS selection.
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Appendix A

The approximate MAP estimation for θijk has the form

θ̂ijk =
Nijk + αijk

Nij + αij

Proof. The posterior estimation of parameter θij, where θij =
(
θij1, . . . , θijri

)
and ri is the

number of states of node i, is

P(θij|D) =
P(D

∣∣θij)P
(
θij

)
P(D)

∝ P(D|θij)P
(
θij

)
(24)

where P
(
θij

)
is the prior and P(D

∣∣θij) is the likelihood. Thus, the maximum a posteriori
estimation of θij is

θ̂ij = argmax
θij

P(θij|D) = argmax
θij

P(D|θij)P
(
θij

)
.

As it is more convenient to deal log, the MAP estimation of θij can be expressed as

θ̂ij = argmax
θij

log P
(
θij

∣∣D)
= argmax (log

θij

(
P
(

D
∣∣θij

))
+ log

(
P
(
θij

))
.

Since the parameters θij studied in this paper follows the multinomial distribution and
the conjugate prior for the multinomial distribution is Dirichlet distribution. The above
equation could be further written as

θ̂ij = argmax
θij

log P
(
θij

∣∣D)
= argmax (

θij

ri

∑
k=1

Nijklogθijk +
ri

∑
k=1

(αijk − 1)logθijk)

where Dir
(
αij1, αij2, . . . , αijri

)
is the prior distribution. Then, the maximum a posteriori

estimation of θijk is

θ̂ijk =
Nijk + αijk − 1
Nij + αij − ri

However, the above estimation only holds for αij > 1 and it is only one choice of
point estimation since the true θijk is unknown. Instead of exact MAP estimation, the
approximate estimation

θ̂ijk =
Nijk + αijk

Nij + αij
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holds for any choice of prior. Therefore, in this paper, we adopt the above approximate
estimation. �
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