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A B S T R A C T   

Respiratory virus infections are among the most prevalent diseases in humans and contribute to morbidity and 
mortality in all age groups. Moreover, since they can evolve fast and cross the species barrier, some of these 
viruses, such as influenza A and coronaviruses, have sometimes caused epidemics or pandemics and were 
associated with more serious clinical diseases and even mortality. The recently identified Coronavirus Disease 
2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a Public Health 
Emergency of International concern and has been associated with rapidly progressive pneumonia. To ensure 
protection against emerging respiratory tract infections, the development of new strategies based on modulating 
the immune responses is essential. The use of probiotic components has substantially increased due to their 
effects on immune responses, in particular on those that occur in the upper/lower respiratory tract. Superin-
duction of inflammatory reaction, known as a cytokine storm, has been correlated directly with viral pneumonia 
and serious complications of respiratory infections. In this review, probiotics, as potential immunomodulatory 
agents, have been proposed to improve the host’s response to respiratory viral infections. In addition, the effects 
of probiotics on different aspects of immune responses and their antiviral properties in both pre-clinical and 
clinical contexts have been described in detail.   

1. Introduction to probiotics general attitudes and functions 

Since the first observation of probiotic bacteria by Elie Metchnikoff, 
there have been several studies on the immunological effects of pro-
biotics on the host immune system. According to WHO and FAO, pro-
biotics are defined as “live microorganisms which, when administered in 
proper amounts, confer a health benefit on the host” [1]. Among several 
genera of bacteria (and yeasts) that identified and defined as probiotics, 
health benefits of Lactobacillus and Bifidobacterium on the host have been 
proved and are generally consumed as a part of fermented foods like 
those in dietary supplements [2]. There are some reports about pro-
biotics potential in promoting health benefits by regulating allergic re-
actions [3–5], protecting the hosts against bacterial and viral infection 
[1,6–9], and even reducing the tumor growth in some cancer models 
[10–12]. The probiotics-conferred health benefits are attributable to 
their effects on the immune system. Recognition and stimulation of 
immune system in the gut lumen is followed through three distinct 
pathways: (1) engulfment of probiotics by macrophages (Mfs) or den-
dritic cells (DCs) present immediately below M cells (Specialized 

epithelial cells); (2) DCs-directed sampling and processing of probiotics 
in the gut lumen; and (3) direct stimulation of intestinal epithelial cells 
(IECs) by probiotics to secrete an array of cytokines, modulating the 
immune functions of DCs, T cells, and B cells in the gut-associated 
lymphoid tissue (GALT) [13,14]. Briefly, the regulatory effects of pro-
biotics on host immune responses are followed through activation of the 
function of dendritic cells, macrophages, and T and B lymphocytes [15, 
16]. In addition, probiotics have proved to modulate and regulate innate 
and adaptive immune responses partly through the activation of toll-like 
receptors (TLRs) [17]. 

As the role of the intestinal epithelium is to form a physiological 
barrier against pathogenic microbes, and detrimental substances avail-
able in the intestinal lumen, this monolayer is responsible for dis-
tinguishing between pathogens and commensal bacteria as well as 
regulation of intestinal immune responses. It has been shown that pro-
biotics can regulate immunomodulatory responses of intestinal epithe-
lial cells [18] (Fig. 1). 

One family of pattern recognition receptors (PRRs) in the innate 
immune system are toll-like receptors, which play a pivotal role in the 
linking of innate and adaptive immunity. TLRs can specifically recognize 
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pathogen-associated molecular patterns (PAMPs) and convey pathogen- 
related molecular signals into cells by transmembrane (TM) protein. 
Afterward, TLR-mediated multistep signaling cascades are initiated, 
leading to the activation of transcriptional pathways, such as NF-κB, 
against the invader pathogens [19]. This signal transmission activates 
both immune system arms aimed at the pathogenic microorganism 
through a cascade reaction, which is severely dependent on signaling 
pathway directed by toll-like receptor 7 (TLR7) and myeloid differen-
tiation protein 88 (MyD88) [20]. Interestingly, it has been determined 
that TLR7 expression considerably reduces after influenza infection. In 
this context, Wu et al. revealed that after consumption of probiotics by 
neomycin-treated mice, the balance of intestinal flora restored and 
thereby TLR7 pathway up-regulated [21]. This evidence presents 
promise for the regulatory role of probiotics in host innate and adaptive 
immune responses as underlying mechanisms for protection from viral 
infection. 

2. Pathology of influenza virus; the most common respiratory 
virus infection 

Influenza virus belonging to the orthomyxoviruses family is among 
viruses that cause respiratory tract infections (RTIs). Several human 
viruses can cause RTI, and due to hospitalizations, medical costs, sick 
leave, and school or daycare absences, viral respiratory diseases can 
pose a considerable social and economic burden [22]. Human rhinovirus 
(HRV), enterovirus [23], influenza virus (IFV), respiratory syncytial 
virus (RSV), and adenovirus are common etiological agents of acute 
respiratory disease [24]. 

Influenza A virus (IAV) initiates pulmonary inflammation and 

intensifies chronic lung diseases in response to the infiltration of in-
flammatory cells and augmentation of airway hyperresponsiveness [25]. 
The main target and host for IAV is the bronchial epithelial cell, which 
plays a key role in influenza pathogenesis [26]. Infection occurs 
following 4–6 h of influenza virus replication for the first cycle, and then 
initial high titers of virus are shed during this period. IFV infection can 
result in several symptoms like fever, cough, headache, and pneumonia, 
which may become immunologically incompetent [27]. While the in-
duction of inflammatory cytokines by influenza infection is attributed to 
its systemic feature, it is unlikely that the virus to be propagated outside 
the respiratory tract during an uncomplicated infection [28]. 

One of the key components of the influenza virus in pathogenesis is 
HA domain, which is recognized by the host’s neutralizing antibodies. 
The emerged HA is directed to the cell membrane in an infected host 
cell, fastening to the cell membrane by means of a short transmembrane 
region at the C-terminal, and once this domain attached to terminal 
sialic acid residues on the cell, it facilitates entry and fusion of the virus. 
Due to the acidification of host cells by proton pumps, HA rearranges so 
that the highly conserved N-terminal of HA2 is exposed. This exposure 
leads to the fusion of viral membrane with cell membranes, and thus 
activation of the replication complex [29]. 

Despite all known clinical and pathogenesis descriptions of the 
influenza virus, the mechanism through which influenza virus disease 
being developed has not precisely understood. However, it is thought 
that local non-immune cells, which release early cytokines, are the cause 
of many of the clinical signs [30,31]. Some cytokines including IFN-α, 
TNF-α, and IL-1 (α and β) located at the site of infection are responsible 
for local inflammatory reactions as well as some systemic effects [32, 
33]. Afterward, IL-6 and many other chemotactic cytokines like the 

Abbreviation 

COVID-19 Coronavirus disease 2019 
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
WHO World Health Organization 
FAO Food and Agriculture Organization 
MFs Macrophages 
DCs Dendritic cells 
M cells Microfold cells 
IECs Intestinal epithelial cells 
GALT Gut-associated lymphoid tissue 
TLRs Toll-like receptors 
PRRs Pattern recognition receptors 
PAMPs Pathogen-associated molecular patterns 
TP Transmembrane protein 
MyD88 Myeloid differentiation protein 88 
RTIs Respiratory tract infections 
HRV Human rhinovirus 
IFV Influenza virus 
RSV Respiratory syncytial virus 
IAV Influenza A virus 
IFN- α Interferon α 
IFN-β interferon β 
TNF-α Tumor necrosis factor α 
IFN-γ Interferon gamma 
IL-1 Interleukin 1 
IL-6 Interleukin 6 
IL-4 Interleukin 4 
IL-8 Interleukin 8 
IL-10 Interleukin 10 
IL-12 Interleukin 12 
Th1 T helper type 1 
Th2 T helper type 2 

MIPs Macrophage inflammatory proteins 
MCPs Monocyte chemoattractant proteins 
BAL Bronchoalveolar lavage 
NK cell Natural killer cells 
EPSs Exopolysaccharides 
IgA Immunoglobulin A 
IgG Immunoglobulin G 
SIgA Secretory Immunoglobulin A 
PPs Peyer’s patches 
Tfh Follicular helper T 
ACOT acyl-CoA thioesterase 
CYR61 Cysteine-rich angiogenic inducer 61 
Egr1 Early Growth Response 1 
FOS Fos Proto-Oncogene 
Rsad2 Radical S-Adenosyl Methionine Domain Containing 2 
Klrk1 Killer Cell Lectin like Receptor K1 
ILC Innate lymphoid cells 
MLN Mediastina lymph node 
BALF Bronchoalveolar lavage fluid 
IP10 interferon-inducible protein 10 
PEDV Porcine epidemic diarrhea virus 
CFS cell-free supernatants 
CPE Cytopathic effect 
DCpep DC-targeting peptide 
COE Core neutralizing epitope 
OAS Oligoadenylate synthetase 
ISG15 Interferon-stimulated gene 1 
SRCAP SWI2/SNF2-related CREB-binding protein activator 

protein 
PFU A plaque-forming unit 
mPIV1 Murine parainfluenza virus 
CRP C-reactive protein 
CXCL8 C-X-C motif chemokine ligand 8  
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neutrophil attracting interleukin-8 (IL-8), macrophage inflammatory 
proteins (MIPs), and monocyte chemoattractant proteins (MCPs) are 
rapidly produced [34]. Fever, excessive sleepiness, and anorexia are 
attributed to the activation of IFN-α, TNF-α, IL-1, and IL-6 after influenza 
infection. Neutrophil and macrophage functions are stimulated by 
TNF-α and IL-1 and both cytokines potently up-regulate leukocyte 
adhesion molecules on the vascular endothelium, therefore, mediating 
the first indispensable step for sequestration of neutrophils and (or) 
macrophages into the respiratory tract. A study by Van Reeth demon-
strated that there is a correlation between BAL fluid levels of some cy-
tokines (IFN-α, TNF-α, and IL-1) and virus titers, neutrophil infiltration, 
and influenza disease [35]. Additionally, Lee et al. showed that IFN-α, 
TNF-α, IL-1, and IL-6 all participate in non-specific and specific antiviral 
immune responses [36]. 

3. Immunomodulatory role of probiotics on influenza virus in 
the context of pre-clinical studies 

Since the manifestation of probiotics impacts on several diseases 
from non-viral to viral ones [12,37–41], several studies have surveyed 
the probiotic roles in immune responses of influenza-infected animal 
models. It has been fully demonstrated that upon infection with influ-
enza, many cytokines such as IL-12 (one of the mediators of Th1 
immune-response), interferon (IFN)-γ (representative of Th1 cytokine), 
IL-4 and IL-10 (Th2 cytokines), IL-1α, IL-1β, IL-6, and tumor necrosis 
factor (TNF)-α (pro-inflammatory cytokines), and IFN-α and IFN-β are 
produced in the respiratory tract [36,42–44]. Studies on ameliorating 
influenza infection as well as alleviating influenza symptoms have been 
trying to redress the imbalance attributed to runaway cytokines pro-
duction (namely cytokine storm) after IFV infection. 

Kawahara et al. demonstrated that probiotic Bifidobacterium longum 
MM-2 can significantly reduce influenza-elicited pro-inflammatory cy-
tokines such as IL-6 and TNF-α. Moreover, a slightly elevated IFN-α level 

in the BALF indicated the impact of this probiotic on the enhancement of 
NK cell activity. These results along with the reduction of pulmonary 
mRNA levels of NK cell activators including pro-inflammatory cytokine 
IL-1β and chemokines MIP-2 and MCP-1 suggest the modulating effect of 
this probiotic on influenza infection [2,45]. 

In another study, continuous oral administration of Lactobacillus 
plantarum 06CC2 led to an elevation in the production of IFN-α and Th1 
cytokines (IL-12 and IFN-γ) and reduction in the production of TNF-α 
and IL-6 cytokines in BALF. This probiotic could also control the number 
of total infiltrated cells such as macrophages and neutrophils in the 
BALF of infected mice [46]. Similarly, Nagai et al. revealed that 4 days 
after oral administration of the yogurt fermented with L. bulgaricus 
OLL1073R-1 or its exopolysaccharides (EPSs), influenza virus infection 
ameliorated, which attributed to the development of NK cell activity of 
splenocytes [47]. Assessment of kimchi-derived Lactobacillus plantarum 
and Leuconostoc mesenteroides has confirmed their effectiveness 
against lethal influenza viruses H1N1 and H7N9, by decreasing the sizes 
of viral plaques, both in vitro and in vivo [48]. 

In addition, it has been shown that lactococcal strains or their EPS 
induced weight regain and also reduced viral titer in the lung of mice 
infected with influenza virus H1N1 [49]. Starosila et al. investigated the 
antiviral ability of Bacillus subtilis and showed that after a single dose 
administration of the probiotic bacteria, the survival rate of mice chal-
lenged with the IFV increased [50]. Song et al. assessed the impact of 
oral intake of Lactobacillus rhamnosus M21 on lethally IFV-infected mice. 
An increase in the level of IFN-γ and IL-12 and a decline in IL-4 level 
suggested that this probiotic can modulate some disease outcomes 
attributed to changes in cytokine profiles such as that happens in the 
lung after influenza infection [51]. 

In our very recent study, we showed that Bifidobacterium bifidum can 
increase the level of both Th1 (IFN–Y and IL-12) and Th2 (IL-4) cyto-
kines. An increase in the level of total IgG antibodies in pooled sera of 
treated mice and IgG1 and IgG2a isotypes demonstrated the efficacy of 

Fig. 1. Schematic presentation of possible mechanisms of probiotic immunomodulation effects in the intestine. Probiotics trigger immunomodulation 
through direct and indirect interaction with intestinal epithelial cells. Dendritic cells extend their dendrites between intestinal epithelial cells (IECs) and might 
directly sample and process probiotics in the gut lumen, leading to activation of innate and adaptive immune responses. Dendritic cells, present immediately below M 
cells, engulf probiotics, resulting in the maturation of DCs and may derive B cells into plasma cells. Additionally, after the interaction of probiotics with macrophages 
and dendritic cells presented in lamina propria, these cells are activated and induce NK cell activation, which leads to IFN-γ elevation to defend against viruses. Upon 
the interaction of probiotics’ PAMPs with different types of toll-like receptors (TLRs), nuclear factor-κB (NF-κB)-mediated antiviral gene expression is stimulated. 
Eventually, active immune cells migrate to sites of infection through lymphatic and circulatory systems to defend against respiratory viruses. 
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the probiotic in eliciting humoral immune responses and Th1/Th2 re-
sponses, respectively. Moreover, it revealed that the level of inflam-
matory cytokines like IL-6, which increases upon influenza infection, 
decreased in the probiotic group, suggesting the ameliorating potential 
of this probiotic in influenza-infected mice [52]. Based on the results of 
body weight changes, survival rates, and viral titre among treatment 
groups of 3 different influenza viruses, Park et al. showed that lactoba-
cillus plantarum has anti-influenza effects that are not virus type- or 
strain-dependent, revealing that regular intake of that probiotic can help 
to alleviate the influenza symptoms [53]. 

Concerning the effect of long-term probiotic administration, Kiso 
et al. orally injected Lactobacillus pentosus b240 to mice for 5 weeks and 
evaluated its inhibitory properties against influenza challenge. Assess-
ment of 34 different cytokines/chemokines in the lungs of infected an-
imals revealed that excluding IL-5, administration of that probiotic did 
not affect the immune system regarding cytokines/chemokines secre-
tion. However, A(H1N1) pdm infected mice survived, probably due to 
protecting effects of the probiotic by down-regulation of Acots (Acot1, 
Acot2, and Acot5), Cyr61, Egr1, and Fos, as well as upregulation of 
Stfa1, and antiviral Rsad2 genes in the lungs of uninfected mice [54]. 

In agreement with all aforementioned results, Harata et al. revealed 
that oral administration of probiotics Lactobacillus GG and L. gasseri 
TMC035 in mice infected with a lethal dose of influenza A(H1N1) pdm 
prompted the secretion of IL-12, IL-6, IFN-γ, and IgA from isolated PP 
cells in vitro. However, unlike Lactobacillus GG, the oral administration 
of L. gasseri had no impact on the production of IFN-γ, IL-6, as well as 
total IgA in vivo, proving the vital role of probiotic interaction with the 
component cells of GALT in the protection against influenza [55]. 

The investigation of the effects of L. casei strain Shirota on aged mice 
showed that this probiotic can enhance not only the level of IFN-γ and 
TNF-α, but also pulmonary and spleen NK cells activity, and thereby 
ameliorates IFV infection [56]. In another study, oral administration of 
Bifidobacterium longum BB536 could significantly reduce the loss of 
body weight, inhibit viral proliferation in the lungs, and improve the 
symptoms of influenza-infected mice, which may be related to the 
decreased level of IL-6 [57,58]. Belkacem et al. observed that while 
administration of probiotic L. paracasei induced significantly higher 
levels of pro-inflammatory cytokines in probiotic-fed influenza mice 
models, this trend was reversed seven days upon influenza challenge 
except for IL-33. The number of all tissue-resident or circulatory myeloid 
cells and B cells after the probiotic consumption and before viral 
infection increased; and the probiotic administration generated more 
IFN-γ-producing ILC1 (mainly NK cells) and Th2 cells during the late 
phase of influenza infection. Additionally, L. paracasei peptidoglycans 
administration before influenza infection increased dendritic cells, but 
did not affect other cell types, and significantly reduced viral loads [59]. 

Besides the effectiveness of oral administration of probiotics, intra-
nasal administration of Lactobacillus pentosus S-PT84 to mice proved to 
induce the production of IL-12 and IFN-γ in mediastinal lymph node 
(MLN) cells, and IL-12 and IFN-α in BALF, thereby improved the survival 
rates of mice, reduced the IFV titer in BALF, and subsequently sup-
pressed influenza infection in mice [60]. Employing the novel sublingual 
route, Lee et al. showed that, in contrary to pro-inflammatory cytokines, 
the level of IL-12 in the lung homogenates of mice treated with Lacto-
bacillus rhamnosus significantly increased. In addition, besides the in-
crease in NK cell activities and anti-influenza virus IgA, the expression of 
CD25 by both CD8+ and CD4+ lymphocytes highly increased in the 
lungs of mice. These results recommend that compared to the traditional 
methods, sublingual delivery is a more effective way for the adminis-
tration of probiotics against seasonal and pandemic influenza [61]. 

Regarding other animal models, Poorbaghi et al. showed that 
microencapsulated Lactobacillus acidophilus probiotic and its symbiotic 
form with inulin decreased faecal shedding of H9N2 avian influenza 
virus (AIV) in both non-vaccinated and vaccinated broiler chicks [62]. In 
another study, Enterococcus faecalis-1 has been proved to improve the 
body weight and feed conversion ratio of treated broilers, and also 

significantly elevated the total IgY serum level, resulting in efficient 
modulation of the cecal microbiota and decrease in the mortality per-
centage of broilers [63]. An investigation on the possible effect of 
interaction between lactobacilli and chicken macrophages on eliciting 
antiviral responses against the AIV showed that certain probiotic species 
such as L. acidophilus and L. salivarius, when administered as live bac-
teria either alone or in combination, can induce an antiviral response in 
chicken macrophages [64]. In another study, Seo et al. reported that live 
Leuconostoc mesenteroides YML003 significantly restored the body 
weight and increased the IFN-γ levels in splenic cells of low-pathogenic 
AIV H9N2-infected chickens [65]. Examining the effectiveness of 
Enterococcus faecium NCIMB 10415 and Zinc Oxide in modulating the 
immune system of piglets in confronting with swine influenza virus 
(SIV) revealed that the body weights of piglets fed with the probiotic and 
vaccinated with trivalent influenza vaccine significantly increased, and 
noticeably higher H3N2-specific antibodies were detected among them 
[66]. Based on these considerations, probiotics administration is effec-
tive in the secretion of high concentration of cytokines from immune 
cells, located in the airway, leading to the migration of immune cells to 
the lung space and thereby amelioration of influenza infection (Fig. 2). 

4. The probiotic effects on coronavirus infections 

The current outbreak of coronavirus disease (COVID-19) reported 
from Wuhan, China, has again gained global attention to taking a new 
measure that could work out as fast as possible against such an outbreak 
of viruses. Interestingly, accumulated data obtained from clinical in-
vestigations on 41 patients who suffered from severe COVID-19 in a 
hospital in Wuhan demonstrated the presence of signs for cytokine 
storm, especially among patients in severe stages of the disease. 
Particularly, the levels of cytokines and chemokines involved in both 
Th1 (such as IL-1B, IFN-γ) and Th2 (IL-4 and IL-10) immune responses 
were promoted in studied patients. Moreover, the levels of IP-10, MCP- 
1, MIP-1a, and TNF-α were in direct correlation with the severity of 
patients’ symptoms [67]. On the other hand, it has been determined that 
the cytokine storm may lead to a rise in platelets and longer hospitali-
zation of COVID-19 patients [68]. Other studies also have revealed other 
aspects of virally-driven manipulation of immune responses by human 
coronaviruses [69–71]. Therefore, addressing the cytokine storm may be 
the key for the treatment of patients infected with SARS-CoV-2. While 
some reagents such as steroids can be considered as hyperinflammation 
suppressors, their side-effects impede to count on them as a trustworthy 
medicine for COVID-19 [72]. Alternatively, addressing the urgent need 
for standing against the increasing rate of morbidity and mortality 
related to the current pandemic requires employing previously approved 
therapies harnessing safety profiles. Probiotics as a safe, available 
treatment with the ability to modulate immune responses and manipu-
late cytokines production have been considered to be studied against 
different strains of coronavirus in some studies soon [73,74]. Moreover, 
a clinical survey has reported an intestine microbiota imbalance, in 
particular a decline in the level of probiotics such as Lactobacillus and 
Bifidobacterium, among some COVID-19 patients, which may result in 
secondary infection in response to bacterial translocation [75]. 

One report has shown that the recent outbreak of porcine epidemic 
diarrhea virus (PEDV) can be prevented through the use of either cell- 
free supernatants (CFS) or live lactic acid bacteria (LAB). It demon-
strated that probiotics, though the precise mechanism is not clear, could 
be effective against the pandemic strain of PEDV in a strain-specific 
manner using CPE reduction assays that further confirmed by qualita-
tive immunofluorescence [76]. In another investigation, Lactobacillus 
casei was used as a carrier for the DC-targeting peptide (DCpep) fused 
with the PEDV core neutralizing epitope (COE) antigen. This survey 
demonstrated that this genetically engineered Lactobacillus casei oral 
vaccine is able to induce systemic IgG and mucosal SIgA antibody re-
sponses in mice models [77]. There have been other articles using 
different types of probiotics for displaying the desired genes or antigens 
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against PEDV [77–80]. For instance, Liu et al. demonstrated that their 
modified Lactobacillus plantarum has the property to act like a strong 
antiviral agent against coronavirus infection in the intestinal porcine 
epithelial cell line [80]. 

5. Probiotic impacts on other viral respiratory infections 

Eguchi et al. demonstrated that Lactobacillus gasseri SBT2055 
(LG2055), when administered orally to mice before infection with a 
human RSV, could suppress the virus titre in lung tissue homogenates, 
RSV replication, and the intensity of the symptoms. Moreover, a 
decrease in the expression level of pro-inflammatory cytokines and an 
increase in the mRNA level of IFN-β, IFN-γ, OAS1a, and ISG15 in the 
mice lung upon probiotic administration, are satisfactory evidence for 
antiviral properties of this probiotic. Also, SWI2/SNF2-related CREB- 
binding protein activator protein (SRCAP) introduced as a candidate for 
the antiviral activity of LG2055 against RSV [81]. 

To investigate whether probiotics can control the inflammatory 
pathway and modulate the coagulation system upon respiratory viral 
infection, rhamnosus CRL1505 was orally administered in RSV or IFV 
mice models. The results elucidated that this probiotic could successfully 
modulate TLR3-triggered immune coagulation reaction in the lung upon 
viral infection and prevent exacerbated respiratory injuries. Notably, 
this study substantiated the vital role of probiotic-provoked secretion of 
IL-10 in taming the coagulation system after the viral attack [82]. 
Additionally, in a study conducted by Tomosada et al., nasal adminis-
tration of Lactobacillus rhamnosus CRL1505 (and CRL1506) has proved 
to modulate elevated respiratory levels of the pro-inflammatory medi-
ators caused by administration of the viral pathogen-associated molec-
ular pattern poly(I:C). Moreover, a nasal administration of the probiotic 
prior to 106 PFU of RSV challenge improved resistance against RSV 
infection [83]. 

Considering the effect of probiotics on the para-influenza virus, there 
is only one study evaluating the antiviral effects of oral administration of 
Lactococcus lactis subsp. Lactis JCM5805 in a mouse model of murine 

parainfluenza virus (mPIV1) infection. The probiotic administration 
resulted in a rise in the survival rate of treated mice without any weight 
loss and also a decline in the lung histopathology scores compared to the 
non-treated group, which was attributed to the incorporation of 
JCM5805 into CD11c+ immune cells in PP, and thereafter activation of 
PP pDCs and ultimately elevation of IFNs expression. It is of note that 
although no activated local pDCs were observed at lung, upregulation in 
IFNs-induced antiviral factors in the lung may be due to the delivery of 
IFNs from the intestine of JCM5805-fed mice into the lung [84]. Studies 
reporting the effects of probiotic bacterias on respiratory viruses have 
been demonstrated in Table (supplementary section). 

6. Clinical evidence of probiotic immunomodulation 

In a pilot study, intake of Lactobacillus brevis KB290 has shown to 
curtail the incidence of influenza infection among schoolchildren with 
no adverse effects associated with consuming the probiotic-containing 
drinks [85]. Hu et al. demonstrated that H7N9 IFV infection led to a 
decrease in intestinal microbial diversity and species richness among 
patients. They observed that although administration of C. butyricum 
probiotic was unable to alleviate the antibiotic-related disturbances in 
the gut microbiome of H7N9-infected patients, an increase in microbiota 
diversity and evenness gradually appeared through continuous admin-
istration of probiotics after antibiotic cessation. Additionally, based on 
the evaluation of CRP levels or bacteremia and pneumonia in the pa-
tients treated with probiotics, the safety of probiotic administration was 
approved and no inflammatory effects were observed [86]. 

In another study conducted by Wang et al., the impact of Lactoba-
cillus rhamnosus GG administration on nursing home residents aged 65 
and older was assessed. It revealed that probiotic administration 
reduced the risk of influenza and other respiratory viral infections 
among the elderly received probiotics compared to those receiving a 
placebo. Although not statistically significant, the trial provided a 
framework to assess the effectiveness of probiotics in reducing respira-
tory infections among senescent individuals [87]. Similarly, it has been 

Fig. 2. Model of the interaction of active immune cells triggered by probiotics with respiratory viruses in the lung. Following virus infection, immune cells in 
the airway, such as dendritic cells and macrophages, secrete cytokines to defend against viruses. In a probiotic-received subject, the high concentration of cytokines 
leads to the migration of immune cells to the lung space through the gut–lung axis, resulting in rapid recruitment of activated T and B cells in the lung that eventually 
promote upregulation of virus-specific immunoglobulins and cytokines in probiotic-received subject; whereas, in the absence of activated immune cells, the res-
piratory virus can cause severe lung damage due to the lack of immediate immune responses. 
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shown that there is no connection between intaking the yogurt fer-
mented with probiotic Lactobacillus delbrueckii ssp. bulgaricus 
OLL1073R-1 and incidence rate of influenza in humans. However, the 
immunological study showed an increase in the level of IFN-γ in the 
probiotic-treated group [88]. 

While there are some available treatments for HRV, the most 
frequent cause of the common cold [89], most of them have failed to be 
efficient in clinical trials due to their drawbacks [90]. In this regard, 
probiotics have shown to prevent or treat common colds and upper 
respiratory infections [91]. Several studies have revealed that the 
rhinovirus-related common cold pathogenesis is associated to the innate 
inflammatory response to the virus [92]. Therefore, more attempts have 
done to incorporate probiotics to modulate immune responses, conse-
quently leading to balanced responses and optimal outcomes in 
combating viral infection [93]. In this regard, an investigation on the 
impact of Bifidobacterium animalis ssp. Lactis Bl-04 on healthy adults 
showed a modest modulation of innate immune host responses upon 
infection with HRV, particularly reduction of CXCL8 response in the 
nasal lavage, resulting in a decline in the rhinovirus replication 
approved by a decrease in virus shedding in the nasal secretions [92]. 

Tapiovaara et al. demonstrated that adults consumed juice enriched 
with live or heat-inactivated L. rhamnosus GG before intranasal inocu-
lation of HRV showed no significant differences in nasopharyngeal HRV 
loads compared to the placebo group [94]. Another survey has illus-
trated that consumption of probiotic is a good strategy to prevent viral 
RTIs in the first year of life in a cohort of preterm infants. The results 
showed that the probiotic-driven change in microbiota leads to the in-
duction of long-lasting effects, which can reduce the risk of viral RTIs 
[95]. In agreement with that study, it was demonstrated that live 
L. rhamnosus GG might be more effective in reducing the rhinovirus 
infection rate than the inactivated form of the same strain [96]. 

Respiratory syncytial virus from the Paramyxoviridae family is 
considered as the major cause of lower respiratory tract infection in 
infants and children around the world and is becoming an important 
pathogen of the elderly. Although most children have experienced a first 
RSV infection by two years of age, some cases suffering premature birth, 
bronchopulmonary dysplasia, immunodeficiency, and congenital heart 
disease are vulnerable to symptoms worsening and hospitalization as 
well. However, the probiotic administration has proved to be effective in 
developing protection against virally-induced inflammation [97]. Be-
sides, there is a study demonstrating that while probiotic consumption 
significantly reduced the number of days with respiratory symptoms 
during the intervention, no significant effect was neither observed on 
the occurrence of viruses in the nasopharynx nor on the symptoms 
during viral episodes among daycare children [98]. Clinical studies 
reporting regulation of immune responses by probiotic bacterias have 
been presented in Table 1. 

7. Conclusion 

In this review, we presented the current advances in the adminis-
tration of probiotics to alleviate and cure respiratory virus infections. 
There is a key point that may correlate respiratory virus diseases to each 
other, the emergence of imbalanced immune responses as a result of 
virus-host interactions. Employment of probiotics for modulating the 
inflammatory immune responses upon virus infection has shown 
promising results. Although most studies have conducted on influenza 
virus, elucidation of probiotics’ mechanism of action is helpful to 
conclude the effectiveness of probiotics in other respiratory virus in-
fections. Nowadays, we are confronting with the biggest pandemic of the 
contemporary era, COVID-19, with highly rapid expansion and 
increasing rate of mortality, which at the moment has estimated to be 10 
times more than the seasonal H1N1 influenza virus infection. The newly 
emerged SARS-CoV-2, the agent of COVID-19, has shown to induce in-
flammatory responses, which is in direct correlation with the severity of 
symptoms and inpatient time. Based on this observation, and although 

there are not any available data substantiating the effectiveness of 
probiotics on SARS-CoV-2 infection, previously proven antiviral prop-
erties of probiotics against different respiratory viruses may suggest 
probiotics as a safe and available complementary medicine against 
COVID-19 disease. 
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Table 1 
Clinical studies reporting regulatory effect of probiotic bacteria on immune 
responses.  

Study design Subjects Probiotics used Main findings 

An open-label, 
parallel-group 
trial [85] 

2783 
schoolchildren 
(6–12 years of 
age) 

Lactobacillus brevis 
KB290 (KB290), 5 
days per week for 8 
weeks in the form of 
test drink 
containing 6 × 109 

CFU 

The risk of 
infection ↓ 

A retrospective 
study [86] 

15 patients Clostridium 
butyricum, three 
times per day at the 
dose of 108 CFU/ 
tablet prior to H7N9 
infection 

Microbiota 
diversity after 
antibiotic 
cessation ↑ 

A randomized, 
double-blind, 
placebo- 
controlled pilot 
trial [88] 

209 nursing home 
residents (65 
years of age and 
older) 

Lactobacillus 
rhamnosus GG, twice 
a day for 6 months 
in the form of 
capsule containing 
1010 CFU 

The risk of 
influenza 
infection ↓not 
statically 
significance 
(NS) 
The risk of 
other 
respiratory 
viral infections 
↓(NS) 

A randomized 
controlled, open 
labeled study 
[89] 

982 women (aged 
20 or older) 

Lactobacillus 
bulgaricus 
OLL1073R-1 and 
Streptococcus 
thermophiles, daily 
for 16 weeks in the 
form of yoghurt 
containing 109 CFU 

IFN-γ 
production in 
serum ↑  

A randomized, 
double-blind, 
placebo- 
controlled trial 
[92] 

190 adult 
volunteers 

Bifidobacterium 
animalis, daily for 33 
days in the form of a 
sachet containing a 
minimum of 2 ×
109 CFU 

Nasal lavage 
viral titers ↓ 
virus shedding 
in the nasal 
secretions ↓ 

A randomized, 
double-blind, 
placebo- 
controlled study 
[94] 

94 preterm 
infants(Aged 
between days 3 
and 60 of life) 

Lactobacillus 
rhamnosus GG, daily 
for 30 days in the 
form of capsule at 
the dose of 1 × 109/ 
2 × 109 

Incidence of 
RTIs ↓ 

The clinical and 
experimental 
randomized, 
double-blind, 
placebo- 
controlled, pilot 
study [96] 

59 healthy 
subjects (aged 
18–65 years) 

Lactobacillus 
rhamnosus GG, daily 
for 6 weeks in the 
form of juice 
containing 109 CFU 

Rhinovirus 
infection rate 
↓(NS) 

A randomized, 
double-blinded, 
and placebo- 
controlled 
parallel group 
intervention 
study [98] 

523 children 
attending day 
care (aged 2–6 
years) 

Lactobacillus 
rhamnosus GG, daily 
for 25 weeks in the 
form of milk at the 
dose of 108 CFU 

The number of 
days with 
respiratory 
symptoms ↓  
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