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Abstract

Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes,
causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron
metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy.
Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal
morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron
starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a
causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First,
we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from
degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron
starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for
degeneration of motor neurons in mice.
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Introduction

The central nervous system (CNS) is one of the highest-energy

requiring areas of the body, consuming energy at a rate nearly

seven times faster per tissue weight compared to non-CNS areas

[1], and neurons are highly dependent on efficient mitochondrial

ATP production [2]. The respiratory chain complexes of

mitochondria depend on iron cofactors, as they include twelve

iron-sulfur [Fe-S] cluster prosthetic groups, and several hemes [3].

Therefore, large amounts of iron are needed to fully constitute

respiratory chain complexes in the CNS. However, excess iron can

cause devastating toxic effects to cells through the Fenton reaction

[4], and cellular iron homeostasis is accordingly highly regulated.

In mammalian cells, two cytosolic proteins known as Iron

Regulatory Proteins (IRPs) regulate intracellular iron homeostasis

by binding to mRNA stem-loop sequences known as Iron

Regulatory Elements (IREs) in target transcripts. These two IRPs,

IRP1 and IRP2, bind to IREs and regulate expression of proteins

involved in iron homeostasis including the iron importer,

transferrin receptor 1 (TfR1), the iron storage protein ferritin,

which is a heteropolymer composed of FtH and FtL monomers, an

iron exporter, ferroportin, and other transcripts [5,6].

Previously, we have reported that mice lacking Irp2 (Irp1+/+;

Irp2-/-) show neurodegenerative symptoms including hind-limb

weakness, tremor, subtle kyphosis, and abnormal gait [7,8].

Moreover, we also generated mice lacking one copy of Irp1 and

both copies of Irp2 (Irp1+/-;Irp2-/-) and reported that there is an Irp

gene dosage effect on severity of neurodegeneration, wherein onset

of disease and severity of symptoms occurs earlier in Irp1+/-;Irp2-/-

mice [9]. Both Irp1+/+;Irp2-/- and Irp1+/-;Irp2-/- mice show

misregulation in proteins involved in iron metabolism, with

neuronal loss in different brain areas including cerebellum and

substantia nigra [7,9,10]. Interestingly, these mice also show

microcytic anemia, which was attributed to low expression of

TfR1 and concomitant low iron uptake in the erythroid precursor

cells [11,12].

Despite the multiple clinical and pathological problems

previously observed in Irp2-null mice, we had not previously

analyzed the integrity of upper and lower motor neurons and

assessed their potential contributions to the loss of locomotion

observed in the Irp2-null mice. In this study, we analyzed brain

and spinal cord cells that are involved in the motor function in

both Irp1+/+;Irp2-/- and Irp1+/-;Irp2-/- mice, and we found that

lower motor neurons appear to be the cells that are most adversely

affected in Irp2-null mice. Here, we performed multiple studies

including immunostaining and spinal cord lysate analyses which

suggested that loss of Irps may cause functional iron starvation in

these cells and may thereby impair mitochondrial activity. Finally,

we attempted to mitigate disease using two approaches, including

chemical recruitment of IRP1 activity, or genetic reduction of

ferritin H synthesis, and we observed that both interventions

significantly decreased neuronal degeneration in Irp2-null mice.
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Results

Lack of Iron regulatory proteins caused axonal
degeneration in spinal cord

As reported previously, Irp2-null mice showed abnormal

neurological symptoms as they aged [7]. These symptoms include

pronounced hind-limb weakness, poor weight bearing, tremor,

and high muscle tone. To assess the integrity of neurons in the

spinal cord from Irp2-null mice, we analyzed semi-thin plastic

sections of lumbar spinal cord cross-sections (L4 level) from older

adult (between 11 and 13 months of age) mice. We found massive

accumulations of myelin dense bodies (MDB, also called myelin

ovoids) in the ventral and lateral white matter of the Irp1+/-;Irp2-/-

mice as well as in the Irp1+/+;Irp2-/- mice (Figure 1A, red circled

areas, Figure 1Bb–c, arrows). MDBs are one of the hallmarks for

neurodegeneration because they accumulate when axonal degen-

eration occurs and the myelin sheath collapses into the area

formally occupied by the axon [13]. Figure 1B shows a higher

magnification of the ventral white matter (asterisk area in

Figure 1A). The number of MDBs significantly increased in the

Irp1+/-;Irp2-/- mice compared not only to the wildtype, but also in

comparison to the Irp1+/+;Irp2-/- mice (Figure 1C), which

demonstrated a dose-dependent effect of Irp-null mutations.

Moreover, the number of MDBs increased as mice aged. Mice

of each genotype were analyzed at ages of 4, 7.5 and 12 months,

and progressive degeneration of axons was quantified (Figure 1C-

D, inter-age comparison is in Table S1). These data indicate that

lack of Irp2 causes axonal degeneration in mice, and severity of

axonal degeneration increases in Irp1+/-;Irp2-/- mice.

Degeneration of lower motor neurons
The axons of lower motor neurons, which are involved in control

of movements, cross through the ventral white matter to exit the

spinal cord. Localization of the MDBs in the ventral and lateral

spinal cord led us to hypothesize that some of the degenerating

axons represented motor neuronal axons. To evaluate whether

motor neuronal axons were affected, we analyzed ventral nerve

roots located next to the dorsal root ganglion (DRG, Figure 2Aa),

where these motor neuronal axons are known to exit the spinal cord.

We found that there were increased numbers of swollen axons

(Figure 2Aa, arrowhead) and also accumulations of MDBs

(Figure 2A, arrows) in Irp2-null mice compared to wildtype.

Moreover, the numbers of myelinated fibers in the ventral nerve

roots were significantly decreased in Irp2-null mice (Figure 2Ab, Da,

7863.1 myelinated fibers per 5000 mm2 for wildtype, 7064.4 and

5367.9 for Irp2-null mice). Then we analyzed the width of motor

neuronal axon bundles in the ventral white matter. The diameter of

the motor neuronal axon bundles was significantly decreased in

Irp2-null mice (Figure 2B, Db, between dotted lines). Furthermore,

when we analyzed the morphology of the motor neuronal cell

bodies in the ventral horn by cresyl violet staining, Irp2-null mice

showed several hallmarks of retrograde cell body degeneration,

including distorted shape, rounding of cell bodies and loss of

multipolarity, loss of Nissl body staining (chromatolysis, arrowhead),

and eccentrically positioned nuclei (Figure 2Ca, arrows, [14]).

There was also marked reduction in the number of large diameter

cells observed when the ventral horn was stained with cresyl violet

(Figure 2Cb). Finally, we quantified the number of motor neuronal

cell bodies that stained with cresyl violet, and there was a significant

decrease in the number of motor neuronal cell bodies in the Irp2-

null mice compared to the wildtype (Figure 2Dc, 16.661.08 in

wildtype, 13.161.23 in Irp1+/+;Irp2-/- and 10.660.64 in Ir-

p1+/-;Irp2-/- per ventral horn section). We also analyzed the

morphology of the dorsal nerve root where sensory axons are

present, but there was no apparent pathology in the sensory axons

(Figure S2A). These data demonstrate that motor neurons in the

Irp2-null mice show significant degeneration, particularly if

complete loss of Irp2 is combined with heterozygous loss of Irp1,

which corresponds well to the phenotype of these mice.

Upper motor neuronal atrophy
Upper motor neurons connect between the motor cortex and

spinal cord, and damage of upper motor neurons might contribute

to the high muscle tone that we observed in Irp2-null mice.

Accordingly, we analyzed morphology of cells in the primary

motor cortex area by H&E staining and found fewer large

diameter neurons (arrows) in Irp2-null mice (Figure 3A, B). In

addition, H&E staining showed that there were more cells with

chromatolysis (Figure 3A, inset), which is considered to be a

marker for cell stress. Therefore, these data suggest that Irp2-null

mice have not only lower motor neuronal degeneration, but also

upper motor neuronal abnormalities.

Stress markers are increased in the Irp2-null mice
As shown in Figures 1 and 2, evidence for degeneration of lower

motor neurons was observed in both axons and neuronal cell bodies

in Irp2-null mice. We further evaluated motor neurons by

examining expression of stress markers in both areas. First we

stained sections using SMI32 (anti-non-phosphorylated neurofila-

ment), which normally stains neuronal cell bodies but not healthy

axons. As predicted, we could not detect immunoreactivity in axons

of the wildtype, whereas a strong signal was detected in the lumbar

ventral white matter of Irp2-null mice (Figure 4A). Also, there was a

significant increase of anti-ubiquitin immunoreactivity in the motor

neuronal cell bodies (Figure S3) of Irp2-null mice, suggesting that

these neurons are under stress. Additionally, we found clusters of

macrophages and/or microglia (positive for F4/80) by confocal

microscopy in the Irp1+/-;Irp2-/- mice white matter, suggesting that

immune cells were attracted into this area (Figure 4B, arrows). Thus,

these data indicate that there is stress in the axons and motor

neuronal cell bodies of the lumbar spinal cord of Irp2-null mice.

Dysregulation of iron homeostasis proteins causes
functional iron starvation

IRPs are key regulators of intracellular iron homeostasis. Under

low iron conditions, these proteins bind to IREs to regulate

expression of several transcripts that encode iron homeostasis

proteins. When IRE-binding activity is diminished by genetic loss

of Irps, expression of an iron importer, transferrin receptor 1

(TfR1), decreases and expression of the iron storage protein,

ferritin, increases, and these changes can cause functional iron

deficiency. Although the IRE/IRP regulatory system is ubiquitous

in all cells, we found that the most significant misregulations of

TfR1 and ferritin in the spinal cord were in the motor neurons.

Anti-TfR1 staining showed significantly decreased TfR1 immu-

noreactivity (Figure 5Ab) in the motor neuronal cell bodies

(Figure 5Aa, arrows) and endothelial cells of the blood-brain-

barrier (BBB, Figure 5Aa, arrowheads, [1]) although all other cell

types were also affected. Increased expression of ferritin was

prominent in both white matter (Figure 5Ba), and in the motor

neuronal cell bodies in the grey matter of spinal cord (Figure 5Bb,

arrows). Some glial cells that likely represent inflammatory cells

also showed increased expression of ferritin (Figure 5Bb, arrow-

heads). Changes in TfR1 and ferritin expression were also

confirmed by Western blot analyses (Figure 5C). Finally we

measured total tissue iron concentrations using ICP-MS and found

that all three segments of spinal cord in Irp2-null mice had
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Figure 1. Axonal degeneration in the spinal cord of Irp2-null mice. A; Toluidine blue staining of Epon-embedded spinal cord cross-sections at
12 months. Red-circled areas indicate where myelin dense body (MDBs) were found. The yellow star represents the area enlarged in Figure 1B. Scale
bar = 200 mm. B; Ventral white matter (L4) from wildtype (a), Irp1+/+;Irp2-/- (b), Irp1+/-;Irp2-/- (c) mice at 12 months. Arrows indicate MDBs. Scale
bars = 50 mm, 20 mm (inset). C; Quantification of MDBs per spinal cord sections at 4, 7.5, 12 months. The bar chart show average6SEM, n = 4-5,
**; p,0.001, analyzed by two-way ANOVA. A summary of the pairwise comparisons is presented in Table S1. D; Progressive accumulation of MDBs in
ventral white matter of spinal cords at 4, 7.5 months. Scale bars = 10 mm.
doi:10.1371/journal.pone.0025404.g001
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significantly lower amounts of iron than controls (Figure 5D)

whereas there was no change in Zn levels. Therefore, we suggest

that loss of Irps led to decreased iron uptake and increased iron

sequestration in cells, which led to functional iron starvation in the

spinal cords of Irp2-null mice. Moreover, the magnitude of

misregulation appeared to be most significant in the motor

neurons, which likely damaged these vulnerable cells.

Mitochondrial dysfunction and atrophy caused by
disrupted iron homeostasis

Iron is crucial for energy generation in mitochondria because

respiratory chain complexes require [Fe-S] clusters and heme

cofactors for function. Thus, functional iron starvation in Irp2-null

mice might be expected to cause problems in mitochondrial

respiratory chain activities. First, we assessed activity of respiratory

chain Complex I, which contains eight [Fe-S] clusters. The activity

of Complex I was significantly decreased in Irp2-null mice

(Figure 6A, 74.464.19 and 54.7618.03% compared to wildtype),

whereas there were no changes in the amount of a key Complex I

subunit protein, GRIM-19 (Figure 6A, [15]) as measured by a

Complex I quantification kit. Moreover, activity of respiratory

complex II, succinate dehydrogenase, which contains several [Fe-

S] clusters in subunit B, was markedly decreased (SDH,

Figure 6Ba), whereas there was no change in the activity of

Complex IV, which does not contain [Fe-S] (Figure 6Bb). This

effect of cellular iron starvation on [Fe-S] containing proteins was

also confirmed by Western blot analyses, where we found marked

reductions of the [Fe-S]-containing proteins SDH-B and ferroche-

latase (FECH), and also mild reductions in SDH-A, which forms a

complex with SDH-B, in the Irp2-null mice (Figure 6C). Decreased

ferrochelatase has been observed previously in erythropoietic cells

of Irp2-null mice [16], where decreased iron levels caused

decreased stability of the protein. Consistent with these observa-

tions, total Irp-null mutations were recently reported to diminish

respiratory chain complex activities in mouse livers [17].

In addition to abnormal mitochondrial respiratory chain

activities, significant mitochondrial pathology was also observed

in EM studies of Irp2-null mice. Abnormal mitochondria from

Irp2-null mice were swollen, and had disrupted and vacuolized

cristae (Figure 6D, arrows). Also, some axons showed evidence of

mild demyelination (Figure 6Dc) and clustering of neurofilaments

Figure 3. Status of primary motor cortex neurons in Irp2-null mice. A; H&E staining of the primary motor cortex (PMC). Arrows indicate large
neurons in this area. Scale bar = 10 mm (both) B; Quantification of cell bodies that are larger than 10 mm in diameter / 20,000 mm2. n = 3. *; p,0.05,
**; p,0.001, analyzed by one-way ANOVA.
doi:10.1371/journal.pone.0025404.g003

Figure 2. Atrophy and loss of lower motor neurons in the Irp2-null mice. Aa; Toluidine blue staining of Epon-embedded sections of ventral
nerve root. Arrows show MDBs and arrowhead shows occasional swelling of axon. DRG; dorsal root ganglia. Scale bar = 25 mm. Ab; Cross section
pictures of ventral nerve root. Arrows show MDBs. Scale bar = 10 mm. B; Motor neuronal axon exit area of the ventral white matter (dotted line). Scale
bar = 30 mm. Ca; Cresyl violet staining showed distorted motor neuronal cell bodies (arrows) and motor neurons with chromatolysis (arrowhead) in
the Irp2-null mice ventral horn. Scale bar = 25 mm. Cb; Lower magnification of ventral horn stained with cresyl violet. Arrows indicate motor neurons.
Scale bar = 50 mm. Da; Quantification of number of myelinated fibers in the venral nerve root per 5000 mm2. n = 3,. Db; Quantification of motor
neuronal axon bundles diameters per spinal cord. n = 5,. Dc; Quantification of motor neurons in the ventral horn stained with cresyl violet. n = 4, All
data in D show average value6SEM per genotype, *; p,0.05, **; p,0.001, analyzed by one-way ANOVA.
doi:10.1371/journal.pone.0025404.g002
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(Figure 6Dc, arrowhead), which are markers for neurodegenera-

tion [18,19]. Therefore, we concluded that functional iron

starvation in Irp2-null mice neurons might be one of the causes

of decreased mitochondrial function and atrophy.

Therapeutic approaches; Tempol treatment
As we reported previously, oral Tempol treatment attenuated

neuromuscular compromise of the Irp1+/+;Irp2-/- mice [8]. Tempol

is a stable nitroxide that readily crosses the blood brain barrier and it

can act as an antioxidant, or as an iron-sulfur cluster destabilizing

reagent [8,20]. Here we further analyzed whether Tempol could

prevent axonal degeneration in the spinal cord. We observed that

the number of MDBs was significantly decreased in the Tempol-

treated Irp1+/+;Irp2-/- mice (Figure 7A, B). This treatment also

protected these mice from loss of neuromuscular skills as assessed by

hang-tests ([8], Movie S1 or Figure S4). Interestingly, there was no

significant beneficial effect of Tempol on Irp1+/-;Irp2-/- mice

(Figure 7B), consistent with previous findings that Tempol could

not prevent motor function decline in mice that had only one copy

of Irp1 [8]. In a previous paper, we have shown that Tempol

destabilizes a synthetic [4Fe-4S] cluster in vitro, suggesting a

mechanism for how Tempol activates IRP1 into the IRE-binding

form. To confirm the effect of Tempol on activating IRP1, a gel-

shift assay was performed using wildtype mouse fibroblasts. In this

experiment, it was clear that Tempol converts IRP1 into the IRE-

binding form without changing the total amount of IRP1

(Figure 7C). Likely as a consequence of this activation of IRE-

binding activity, Tempol treatment increased expression of TfR1 in

the motor neurons of Irp1+/+;Irp2-/- mice (Figure 7D), a change that

might partially relieve these cells from functional iron starvation.

Moreover, decreased mitochondrial Complex I activity in the Irp1+/+;

Irp2-/- mice in the Tempol treated mice (Figure 7E) returned to near

the levels of wildtypes. Therefore, these data suggest that motor

neuronal degeneration might be caused by functional iron starvation,

and that Tempol exerted its therapeutic effect in part by increasing

expression of TfR1.

Genetic modification to prevent motor neuron
degeneration

As shown in Figure 5, loss of IRP activity not only decreased

expression of TfR1 and limited iron uptake of cells, but also

permitted increased expression of ferritin, which may have further

contributed to functional iron starvation by sequestering iron

within ferritin. Based on the abnormally high ferritin expression,

we hypothesized that decreased expression of ferritin might be

beneficial to these mice. To assess the role of ferritin, Irp1+/-;Irp2-/-

mice were crossed with Fth+/- mice (Figure S1, [21]) to decrease

expression of ferritin (Figure 8A), and MDBs in the ventral white

matter were quantified. Perhaps due to the different genetic

background of the Fth+/+ mice, Irp1+/-;Irp2-/-;Fth+/+ did not have

as many MDBs as our Irp1+/-;Irp2-/- mice (Figure 8B,C, compared

to Figure 1C); however Irp1+/-;Irp2-/-;Fth+/- mice showed approx-

imately 50% sparing of axonal degeneration (57616.9 vs.

27.765.24, Figure 8C) compared to their background-matched

controls, demonstrating that decreased ferritin expression was

beneficial in these mice. This sparing of axonal degeneration was

prominent not only in the spinal cord but also in the ventral nerve

root fibers, where MDBs were significantly decreased in the

Irp1+/-;Irp2-/-; Fth+/- mice (Figure 8D, E). As mentioned above, we

could not detect any significant axonopathies in the dorsal nerve

roots (Figure 8E). Taken together, these data demonstrate that

functional iron starvation due to abnormal iron homeostasis may

be a major cause of motor neuronal degeneration in Irp2-null

mice.

Discussion

In this study, we report that disruption of iron homeostasis

caused by Irp2-null mutations causes degeneration of motor

neurons. One of the possible causes of this degeneration might be

that functional iron starvation impairs the activity of mitochon-

drial respiratory chain complexes and disrupts mitochondrial

integrity in these neurons. Moreover, two therapeutic approaches,

including either oral Tempol treatment or genetic reduction of

ferritin expression, delayed neurodegeneration, suggesting possible

approaches to treatment if a human neurodegenerative disease

attributable to loss of IRP2 is identified in the future.

Loss of Irps caused motor neuronal degeneration with
mitochondrial atrophy

As we reported previously, Irp2-null mice showed neurodegen-

erative symptoms including tremor, hind-limb weakness, problems

in weight bearing, and kyphosis [7,9]. In these papers, we also

Figure 4. Increased expression of stress markers in the Irp2-null mice. A; Immunoreactivity for SMI32 (non-phosphoneurofilament antibody)
was increased in Irp2-null mice. Scale bar = 30 mm. B; Infiltration of macrophages and/or microglia (F4/80 positive, arrows) was detected by confocal
microscopy. Scale bar = 10 mm.
doi:10.1371/journal.pone.0025404.g004
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reported abnormalities in the brain of Irp2-null mice including

axonopathy and neuronal loss, but we did not analyze pathology

in the spinal cord. Here we report that there is significant lower

motor neuronal degeneration in the lumbar spinal cord of Irp2-

null mice consistent with the marked gait abnormalities and hind-

limb weakness (Figures 1, 2). This degeneration was more severe in

the Irp1+/-; Irp2-/- mice than in the Irp1+/+; Irp2-/- mice,

demonstrating a dose-dependent effect of Irp-null mutations.

Moreover, analysis of motor cortex also suggested that there

might be atrophy of upper motor neurons (Figure 3) that might

contribute to the high-muscle tone that we observed in these mice,

although we did not detect abnormalities in the dorsal corticospi-

nal tract of the spinal cord (data not shown). However, we found

accumulations of MDBs in the ventral funiculus where a minor

portion of the corticospinal tract is proposed to run through the

ventral white matter [22]. Moreover, the lateral localization of

MDBs also suggested that neurons in the reticulospinal tract were

adversely affected in the Irp2-null mice [22]. There was also minor

demyelination of some axons and there were distorted mitochon-

dria (Figure 6D), but we did not observe pathology in astrocytes or

in oligodendrocytes (Figure S2B, C). Thus, it appears that motor

neurons are the cells in the central nervous system that are most

adversely affected by the disruption of iron homeostasis caused by

loss of Irp2. Currently, it is not clear why motor neurons are more

vulnerable than other neurons and glial cells to loss of Irp2.

However, based on compromised respiratory complex activities in

Irp2-null mice (Figure 6), it is possible that motor neurons depend

more on IRP2 to maintain normal iron homeostasis and support

mitochondrial function than other cells. Moreover, because motor

neurons are the longest cells in the body, they are very dependent

on mitochondrial activity to provide energy for ion pumps located

along axons and concentrated at the nodes of Ranvier [23].

Potential candidate gene for motor neuron diseases
To our knowledge, IRP2 mutations have not yet been found in

human patients with motor problems. Among motor neuron

diseases, one example of disease that affects both upper and lower

motor neurons is Amyotrophic Lateral Sclerosis (ALS). Recently,

relationships between other iron homeostasis proteins and ALS

have been reported in both mouse and human diseases

Figure 5. Abnormal expression of TfR1 and ferritin in motor neurons and glia of Irp2-null mice and diminished iron concentrations
in spinal cord. Aa; Anti-TfR1 staining was decreased in Irp2-null mice motor neurons (arrows) and the endothelial cells of blood-brain barrier
(arrowheads). Scale bar = 20 mm. Ab; Lower magnification picture of spinal cord ventral horn stained with anti-TfR1 antibody. Scale bar = 100 mm. B;
Ferritin expression was prominent in both white (a) and grey matter (b) of the spinal cord. Motor neurons exhibited high ferritin expression (arrows)
as did in glial cells (arrowheads). Scale bars = 100, 30 mm (respectively). C; Western blot analysis of TfR1 and Ferritin light chain from total spinal cord
lysate. Beta-actin was used as a loading control. n = 5. D; Total tissue metal concentrations from different areas of spinal cord by ICP-MS reveal
diminished Fe concentrations in the Irp2-null mice *; p,0.05, compared to wildtype, as analyzed by one-way ANOVA.
doi:10.1371/journal.pone.0025404.g005

Degeneration of Motor Neurons in IRP2 Null Mice
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[24,25,26,27]. Therefore, it is interesting for us that null mutation

in a key regulatory factor for iron homeostasis causes a phenotype

comparable to human ALS and to mouse SOD1 transgenic

models. Our results show not only motor neuronal degeneration in

the spinal cord, but also degeneration in the ventral root nerves

(Figure 2), where motor neuronal axons run, as was reported in the

SOD1 mice [28]. Moreover, EM analysis showed significant

vacuolization of mitochondria in axons of the Irp2 null mice,

similar to the SOD1 mice [29]. It is also interesting that the large

increase in serum ferritin levels observed in Irp2-null mice [30] was

also observed in sporadic ALS patients [31]. However, even

though SOD1 mice and Irp2-null mice show somewhat similar

phenotypes, iron metabolism may be misregulated in different

ways, depending on the animal model. In some instances,

Figure 6. Mitochondrial dysfunction and atrophy in the Irp2-null mice. A; Complex I activity was decreased in Irp2-null mice whereas there
were no changes in the amount of GRIM-19, a subunit of Complex I that was quantified. n = 6. Ba; SDH activity (Complex II) was markedly decreased in
Irp2-null mice. Bb; There was no change in Complex IV activity which contains heme as a cofactor. *; p,0.05, **; p,0.001, analyzed by one-way
ANOVA. C; The mitochondrial proteins SDH-A, SDH-B and ferrochelatase were significantly decreased in Irp2-null mice, whereas citrate synthase,
which does not contain a [Fe-S] cluster, did not change and was used as a mitochondrial loading control. n = 5 **; p,0.001 compared to wildtype,
analyzed by one-way ANOVA, D; TEM showed mitochondrial vacuolization (arrows) in axons in the ventral white matter of Irp2-null mice and
abnormal bundling of neurofilaments within axons was also noted (arrowhead). Scale bar = 0.5 mm.
doi:10.1371/journal.pone.0025404.g006

Degeneration of Motor Neurons in IRP2 Null Mice

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25404



Degeneration of Motor Neurons in IRP2 Null Mice

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e25404



misregulation can lead to cellular iron overload, as was reported

for the spinal cords of SOD1 mice [32] and treatment of the mice

with an iron chelator was beneficial in these mice [32,33].

However, our work here shows that Irp2-null mice seem to suffer

from functional iron starvation, as evidenced by ICP-MS

measurements of spinal cord lysates, caused by low TfR1

expression and high ferritin expression in motor neuron cell

bodies. In conclusion, we suggest that IRP2 might be a potential

candidate gene for human diseases in which motor neuron

problems predominate, based on our data that Irp2-null mice

showed many pathologic traits that were reported in human

patients, including axonal degeneration, accumulation of myelin

dense bodies, lower and upper motor neuronal degeneration, and

accumulation of ubiquitin positive aggregates in motor neurons.

IRPs and potential relationship to human diseases
ALS is a complex disease with multiple possible genetic causes

[34]. When Sreedharan et al. reported TDP43 mutations in ALS

patients, they also found an additional locus with LOD score

(logarithm (base 10) of odds) that was higher than 1.0 at 15q23-

q26 [32]. Interestingly, this locus is very close to IRP2 (15q25),

although the authors could not find contiguous markers nor could

they identify a haplotype in this locus. Moreover, van Es et al.

recently reported that chromosome 9p21.2 is a possible linkage

locus for the sporadic form of ALS [35], and human IRP1 is

located at chromosome 9p21.1. Lastly, target gene searches for

another movement disorder called Hereditary spastic paraplegia

(HSP) resulted in identification of a disease gene at the 4p16-p15

locus (SPG 38, [36]), which is near a new E3 ubiquitin ligase called

F-box and leucine-rich repeat protein 5 (FBXL5, 4p15.32).

FBXL5 is a novel E3 ubiquitin ligase responsible for degradation

of both IRPs [30,37]. Therefore, if mutations in SPG38 changed

stability of FBXL5, it might misregulate expression of both IRPs in

cells. Taken together, these genetic data suggest that both IRPs

and FBXL5 are located near loci thought to contain human motor

neuron disease genes.

Rescue approaches
Previously, Tempol treatment has been shown to have

beneficial effects on different mouse models [16,38]. We also

have shown that Irp1+/+; Irp2-/- mice treated with Tempol showed

improvement in neuromuscular function and reduced iron burden

in mouse cerebellum [8]. Here, we showed in further analysis that

ventral white matter axons were partially spared from degener-

ation in the spinal cord of Tempol-treated Irp2-null animals

(Figure 7A, B). As reported previously, Tempol treatment was

ineffective for the Irp1+/-; Irp2-/- mice, suggesting that the salutary

effect of Tempol might be due to activation of IRP1 ([8],

Figure 7C), which led to increased expression of TfR1 (Figure 7D)

and decreased expression of ferritin. Taken together, these data

indicate that Tempol may be a good therapeutic reagent for

animals with Irp2-null mutations.

As reported previously [7], Irp2-null mice show significant

increase in iron storage protein ferritin expression. This upregula-

tion was also noticed in the lumbar spinal cord, particularly in

motor neurons (Figure 5). We also reported that oral treatments of

Tempol decreased ferritin expression [8]. It has been reported that

maintenance of proper levels of ferritin is important for reducing

oxidative stress and enhancing neuronal survival [39,40]. There-

fore, we hypothesized that reduction of ferritin expression by

eliminating one ferritin H allele might be beneficial for

degenerating neurons. We demonstrated that Irp1+/-; Irp2-/- mice

crossed with Fth+/- showed less neurodegeneration (Figure 8).

Although there is no significant difference in total tissue iron

between Irp1+/+; Irp2-/- and Irp1+/-; Irp2-/- mice (Figure 5D), we

demonstrated that pathologic changes worsen in Irp1+/-; Irp2-/-

mice. These data suggest that one of the reasons that motor

neurons die in the Irp2-null mice is that the size of their ‘functional’

iron pool (compared to ‘total’) is reduced due to diminished TfR1

expression and increased ferritin expression. Reduced expression

of TfR1 decreases iron uptake into cells, and increased expression

of ferritin leads to increased sequestration of iron within ferritin

heteropolymers. This functional iron deprivation likely impairs

mitochondrial viability and function, and causes motor neuronal

dysfunction and loss in these mice.

Materials and Methods

Animals and genotyping
Mice lacking Irp(s) were generated by targeting AcoI (Irp1) and

Ireb2 (Irp2) genes [7,9,41]. Genotypes of mice were determined by

Southern blotting using gene-specific probes (Figure S1B). These

mice have mixed genetic backgrounds consisting of C57BL/6 and

B129S4/SVJ. Mice were anesthetized between 11-13 months of

age and all the experimental protocols used in this study followed

NICHD ACUC (Eunice Kennedy Shriver National Institute of Child

Health and Human Development Animal Care and Use

Committee) guideline and approved by the same committee

(protocol number 09-038). For the Tempol experiments, mice

were fed with either control or Tempol containing diet (10 mg/g,

[8]) from the time of weaning until the time of sacrifice. Mice

lacking one copy of ferritin H chain (Fth+/-, [21]) were provided by

Dr. Carole Beaumont (INSERM U773, France). For the

genotyping of Fth+/- mice, tissue was collected by ear clipping

and incubated in an X-gal containing buffer for 2 hours at 37uC.

When the beta-galactosidase gene was expressed under control of

the Fth promoter, blue color was generated (Figure S1C) in Fth+/-

mice. Fth+/- mice were crossed to Irp-null mice to generate

Irp1+/-;Irp2-/-;Fth+/- mice (Detailed mating strategy is described in

Figure S1A). Fth mice have C57BL/6 and 129SV mixed

background. Background and age-matched control mice were

used for comparison (2–11 days difference in age between

genotypes). For each experiment, ‘n’ indicates number of animals

used per genotype.

Histology
Mice were deeply anesthetized and perfused with 2.5%

glutaraldehyde (EM grade, Electron Microscopic Sciences) in

0.1 M sodium cacodylate buffer, pH 7.4. Dissected tissue samples

were post-fixed and treated with 1.3% osmium tetroxide solution

Figure 7. Dietary Tempol supplementation partially prevented axonal degeneration. A; Toluidine blue staining of Epon-embedded
sections showed decreased MDBs (arrows) in the ventral white matter of Tempol treated mice. Scale bar = 50 mm. B; Quantification of MDBs per spinal
cord section. n = 4, **; p,0.001, analyzed by two-way ANOVA. C; Gel-shift assay (top panel) show activation of IRP1 by Tempol treatment (100 mM) in
wildtype mouse embryonic fibroblasts. The iron chelator, DFO, was used to show both IRP1 and IRP2 bands. Tempol treatment did not change total
IRP1 (middle panel) by Western blot. Anti-tubulin antibody was used as a loading control. Da; Immunoreactivity for TfR1 was increased in the Tempol
treated in the motor neurons of Irp1+/+;Irp2-/- mice (arrows). Db; Western blotting for TfR1 also showed increased expression of TfR1. E; Dietary Tempol
treatment increased mitochondrial Complex I activity in Irp1+/+; Irp2-/- mice. n = 5, *; p,0.05, analyzed by two-way ANOVA.
doi:10.1371/journal.pone.0025404.g007

Degeneration of Motor Neurons in IRP2 Null Mice

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e25404



with 0.1 N potassium ferrocyanide. Samples were embedded in

Epoxy Resin (EMS). Semithin (0.7 mm) sections were obtained

using an ultramicrotome (Leica Microsystems) and stained with

Epoxy Tissue Stain solution (EMS) for structural analysis. Some of

the Irp-null mice spinal cord and longitudinal-cut root nerve

sections were processed by the Laboratory for Neurotoxicity

Studies at Virginia Tech (Blacksburg, VA, [7]). Spinal cord and

root nerve sections were examined using bright field microscopy

(Nikon Instruments). The number of myelin dense bodies was

counted in the ventral and lateral white matter (n = 425 per

genotype).For the motor cortex analysis, 35 mm sections were

stained with Hematoxylin and Eosin by Dr. Robert Switzer at

Neuroscience, Ltd. (Knoxville, TN, [9]). Neuronal cell bodies that

were larger than 10 mm in diameter were quantified in the

primary motor cortex. For the cresyl violet staining, 14 mm frozen

sections from mouse spinal cord and brain were incubated with

Figure 8. Decreased expression of ferritin H chain is beneficial for axonal survival. A; Anti-ferritin staining showed decreased expression of
total ferritin in the spinal cord of Irp1+/-;Irp2-/-;Fth+/- mice. Scale bar = 50 mm. B; Toluidine blue staining of the ventral white matter showed decreased
number of MDBs in the Irp1+/-;Irp2-/-;Fth+/- mice. Scale bar = 30 mm. C; Quantification of MDBs per spinal cord section. The bar chart show
average6SEM, n = 3, *; p,0.05, student’s t-test. D; Toluidine blue staining of the cross section of ventral nerve root. Irp1+/-;Irp2-/-;Fth+/- mice showed
decreased number of MDBs (arrows). Scale bar = 20 mm. E; Quantification of MDBs per nerve root section. The bar chart show average6SEM, n = 3,
**; p,0.001, student’s t-test.
doi:10.1371/journal.pone.0025404.g008
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0.1% cresyl violet solution for 10 min. For demyelination analysis,

spinal cord sections were first dehydrated and immersed in 0.1%

Luxol Fast Blue solution overnight at 37uC followed by chilling at

4uC for 30 min on the next day. After washing, slides were

incubated in 0.05% lithium carbonate solution for 5 min,

dehydrated and then mounted.

Immunohistochemistry
Irp2-null and control mice were anesthetized as above and

perfused with PBS and 4% paraformaldehyde, and 14 mm cryostat

sections were then obtained. Immunolabeling of tissue sections was

performed as described previously [32]. Briefly, tissue sections

were incubated with PBS containing 2% normal goat serum and

1% ovalbumin to block nonspecific binding of antibodies. This

was followed by an overnight incubation with mouse anti-TfR1

(1:200, Invitrogen) or rabbit anti-ferritin antibody (1:1000; gift

from Dr. Esther Meyron-Holtz, Israel Institute of Technology,

Haifa, Israel) or a rabbit anti-ubiquitin (1:200; Dako). After

washing, primary antibodies were recognized using biotin-

conjugated secondary antibodies and signal was amplified using

Vectastain ABC kit (Vector Lab). Immunoreactivity was visualized

using 0.5 mg/ml 3,39- diaminobenzidine as a chromagen (Sigma).

Methyl green counterstain (20 mg/ml, Acro Chemicals) was used

to visualize nuclei.

Immunofluorescence
Spinal cord sections of mice were prepared as above and

incubated with rat F4/80 (1:100, Serotec), SMI32 (anti-non-

phosphorylated neurofilament, 1:500, Covance), anti-ferritin, or

anti-GFAP (1:100, Dako) overnight. After washing, sections were

incubated with Alexa Fluor-conjugated secondary antibodies

(1:400, Invitrogen). 49-6-diamidino-2-phenylindole (DAPI,

100 ng/ml, Vector Lab) was used to counterstain nuclei.

Western blotting
Western blots were performed using total spinal cord lysates. Anti-

TfR1 (1:1000, Zymed), rabbit anti-FtL, anti-SDH-A, anti-SDH-B

(1:2000, Mitosciences), anti-ferrochelatase (1:5000, [16]), anti-IRP1

(1:5000, [8]) were used to detect antigen. Anti-actin (1:400, Sigma),

anti-tubulin (1:5000, Sigma) and anti-citrate synthase (1:10,000,

Sigma) antibodies were used to confirm equal loading.

Measuring tissue metals
Animals were deeply anesthetized and blood was removed by

extensively perfusing PBS through the heart. Spinal cord samples

were dissected in three segments (cervical, thoracic, lumbar) and

snap frozen in liquid nitrogen. Total iron and zinc concentrations

were measured by inductively coupled plasma mass spectroscopy

(ICP-MS) as described previously [42] and normalized by wet

tissue weight (n = 3).

Mitochondrial respiratory complex assays
Activities and/or quantities of Complexes I and IV from the

mitochondrial respiratory chain were assessed using specific

Dipstick assay kits (MitoSciences) following the manufacturer’s

protocol. Briefly, snap-frozen tissue samples were homogenized and

protein was extracted. After protein assay, 2 ug of total protein was

used for the activity assay of Complex I (12 ug for the Complex IV).

20 ug of total protein was used to detect the level of GRIM-19 in

Complex I (Complex I quantity assay kit, Mitosciences). Average

readings of band densities were obtained using ImageJ (http://rsb.

info.nih.gov/ij/) and data was plotted against wildtype value as

100%. n = 6 per genotype, two separate measurements per animal.

Succinate dehydrogenase (SDH) activity was measured according to

a previously published method [19] with modifications. Briefly,

50 ug of total spinal cord protein was mixed with a reaction buffer

containing 50 mM Tris (pH 8.0), 0.5 mM ethylenediaminetetra-

acetic acid, 12 g/L Cremaphor EL (Sigma), 2 mM iodonitrote-

trazolium chloride, 20 mM sodium succinate, 2 mM potassium

cyanide, and 1 mM sodium azide. The reaction was followed at

492 nm for 10 min using a spectrophotometer (Thermo) at room

temperature. Blank reactions without succinate were included to

assess background activity. Assay specificity was verified by pre-

incubation of some samples with the SDH inhibitor 3-nitropro-

pionic acid (10 mM) for 30 minutes, which resulted in negligible

residual enzymatic activity (data not shown). Data are presented as

first-order kinetic rates normalized to the average of the wildtype

sample values, as percent of control. Statistical analysis was

performed on the raw, non-normalized data. n = 6 per genotype.

Electron microscopy
Ultrastructural analysis of mitochondria in axons was per-

formed in the ventral white matter following previously reported

protocols [34]. Briefly, Epon-embedded spinal cord blocks were

generated as described above and plastic sections were generated

using an ultramicrotome (Leica). Sections were stained using lead

citrate and analyzed by a Transmission Electron Microscope

(Tecnai T20, FEI Company).

Gel-shift assay
To test the effect of Tempol on IRP activation, wildtype mouse

embryonic fibroblasts were treated with control media, control

media plus Tempol (100 mM), and iron chelator DFO (100 mM)

for 15 hours. Cells were collected and total protein was extracted

using an NP-40 (0.2%) containing buffer. Gel-shift assays were

performed using a 32P-labeled IRE probe following a protocol

published previously [3].

Mouse hang-test
The hang-test for assessment of motor function was performed in

a blinded manner as published previously [8]. Briefly, each mouse

was put on a wire mesh, which was then gently inverted. A video

camera was used to record how long the mouse was able to hang on

to the wire by clutching with the upper and lower extremities.

Statistical analysis
Statistical significance was determined using a one-way or two-

way ANOVA, as appropriate, and Tukey’s post-hoc test was

applied (SigmaPlot 12, Systat Software Inc). Two-tailed student’s

t-tests were applied for the pairwise comparisons in Figures 8C

and 8E. (*; p,0.05, **; p,0.001).

Supporting Information

Figure S1 Generation of Irp1+/-;Irp2-/-;Fth+/- mice. A; A

schematic diagram showing four generations of mating strategy to

generate Irp1+/-;Irp2-/-;Fth+/- and control mice (red box). Asterisks

indicate embryonically lethal genotypes. P; parents, F1-3; progeny

generation 1–3. B; Genotyping analysis by Southern blot showed

specific bands for Irp1 and Irp2 (10.1 and 15.1 kb, respectively).

Upon targeted deletion, each probe detected a shorter band (4.1

and 3.5 kb, respectively). C; Beta-galactosidase reporter assay

distinguished Fth+/- (blue color, bottom) from wildtype (top).

(PDF)

Figure S2 No significant pathological changes were
observed in dorsal root nerve fibers and glia of Irp2-
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null mice. A; Toluidine blue staining of Epon-embedded sections

from mouse dorsal root nerve do not show significant degeneration

in this area. B; Luxol Fast Blue staining of mouse ventral white

matter does not show significant demyelination. C; anti-GFAP

staining was performed to examine reactive astrocytes in ventral

white matter. Immunoreactivity was not significantly increased in

Irp2-null mice. Scale bars = 5 mm, 50 mm, 100 mm.

(PDF)

Figure S3 Motor neurons (arrows) in ventral horn of
Irp2-null mice showed increased ubiquitin expression.
(PDF)

Figure S4 Screen capture from Movie S1 showing
beneficial effect of Tempol on mice neuromuscular
behavior.
(PDF)

Movie S1 Beneficial effect of Tempol in Irp1+/+;Irp2-/-

mice. Mice treated with Tempol diet (right) since weaning showed

spared motor skill compared to the control diet mice (left). *If the

supplemental movie does not play, please see the screen captures in

Figure S4 or go to http://science.nichd.nih.gov/confluence/down-

load/attachments/44106370/13+control+and+Tempol+combined+
small.mov?version = 1&modificationDate = 1285279775000.

(MOV)

Table S1 Summary of two-way ANOVA pairwise multi-
ple comparisons (Tukey’s Test), computed to evaluate
the effect of age and genotype on the number of Myelin
Dense Bodies (MDBs) in ventral spinal cord sections
(average values are summarized in Figure 1C). Two

factors (age, genotype) were used for comparison and p,0.05 was

used for statistical significance.

(PDF)
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