
Chapter 13
Primate Infectious Disease Ecology:
Insights and Future Directions at the
Human-Macaque Interface

Krishna N. Balasubramaniam, Cédric Sueur, Michael A. Huffman,
and Andrew J. J. MacIntosh

13.1 Introduction

The expansion of human populations has increased interactions and conflict between
humans and nonhuman primates (hereafter primates) throughout their range.
Assessing the causal factors and thereby mitigating such conflict pose a major
challenge for anthropologists, primatologists, and conservation biologists. This is
because human-primate interactions are spatiotemporally variable in form and
frequency (reviewed in Dickman 2012; Paterson and Wallis 2005). For instance,
some of these interactions include (1) human-induced changes to primate habitat that
lead to the fragmentation and decline of primate populations [e.g., Zanzibar red
colobus monkeys (Procolobus kirkii): Siex 2005], (2) increased crop-raiding by
primates leading to transactional costs on humans [e.g., Buton macaques (Macaca
ochreata): Priston et al. 2012], (3) human-primate competition for space and
resources [e.g., chimpanzees (Pan troglodytes): Hockings et al. 2012], (4) injuries
to both humans and primates on account of direct aggression [e.g., rhesus macaques
(Macaca mulatta): Southwick and Siddiqi 1994, 1998, 2011], and (5) primate-
induced damage to human property and landscapes that generate transactional or
opportunity costs to humans (Barua et al. 2013).

In comparison to such readily discernible negative effects, one outcome of
conflict that is subtler and hence often goes undetected or unchecked is the
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acquisition and transmission of infectious diseases (Barua et al. 2013; Wolfe et al.
2007). Our shared evolutionary histories, along with physiological and behavioral
similarities, make many primate species natural reservoirs of human parasites
(Fiennes 1967; Nunn and Altizer 2006; Tutin 2000). Likewise, the acquisition of
parasites from humans has led to disease outbreaks among free-living primates
(Kaur and Singh 2009; Kaur et al. 2008, 2011; Nunn and Altizer 2006). From an
ecological standpoint, free-living primates may acquire parasites from humans in
many ways. For example, increasing epidemiological assessments continue to estab-
lish the sharing of parasites between humans and populations of socioecologically
flexible primates like baboons and macaques which have become increasingly
reliant on human-provisioned food or garbage in areas of overlap (Engel and
Jones-Engel 2011; Engel et al. 2008; Jones-Engel et al. 2005). Humans may also
indirectly influence primate exposure to parasites by altering the environment, which
may potentially subdivide primate populations and change their behavioral and
foraging strategies (Chapman et al. 2005, 2006a; Huffman and Chapman 2009).
Third, wild primates may also sometimes be exposed to “spillovers” of parasites
from international travelers during ecotourism and biological field research (Carne
et al. 2017; Engel et al. 2008; Jones-Engel et al. 2005; Marechal et al. 2011;
Muehlenbein and Ancrenaz 2010). Such a wide range of potential disease acquisi-
tion and transmission routes make human-primate interfaces hot spots for emerging
infectious diseases (EIDs) (Nunn et al. 2008; Wolfe et al. 2007). This is especially
significant in the light of the growing call for a global, transdisciplinary strategy to
deal with zoonoses in both humans and animals (the One Health, hereafter OH,
concept: Destoumieux-Garzon et al. 2018; Zinsstag et al. 2011, 2015). Finally,
human activities like agricultural and urban land development, tourism, and provi-
sioning, aside from directly influencing exposure as stated above, may also influence
variation in the susceptibility of primates to parasites once exposed, for example, by
altering levels of stress and immune function (Chapman et al. 2006b; Marechal et al.
2011, 2016; Muehlenbein and Ancrenaz 2010).

In this chapter, we focus on how human-macaque interfaces, being hot spots for
the transmission of a diverse array of parasites, present opportunities for human-
primate infectious disease ecology research. We first briefly outline the significance
and primary objectives behind research on primate infectious disease ecology,
highlighting the greater focus to date on research implementing such approaches
to study wild primates in comparison to research at human-primate interfaces. We
next reveal how macaques, and more broadly the variable nature of human-macaque
interfaces, present opportunities to study human-primate disease transmission from a
socioecological perspective (Engel and Jones-Engel 2011; Jones-Engel et al. 2005;
Nahallage and Huffman 2013). We then provide a detailed account of previous
studies we extracted from the online Global Mammal Parasite Database (Nunn and
Altizer 2005; Stephens et al. 2017) that have detected parasites at human-macaque
interfaces. Finally, we demonstrate how the implementation of novel conceptual
frameworks like the Coupled Natural and Human Systems (An and Lopez-Carr
2012; Destoumieux-Garzon et al. 2018; Liu et al. 2007) and One Health concepts
(Destoumieux-Garzon et al. 2018; Zinsstag et al. 2011, 2015), as well as the
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implementation of cutting-edge methodological approaches like Social Network
Analyses (e.g., Drewe and Perkins 2015; Pasquaretta et al. 2014; Rushmore et al.
2017; VanderWaal and Ezenwa 2016) and community-level bipartite or multimodal
Networks (e.g., Dormann et al. 2017; Gomez et al. 2013; Latapy et al. 2008), can
address some of the critical gaps in these studies to offer key future directions for
epidemiological research at these interfaces.

13.2 Primate Infectious Disease Ecology

An infectious disease is a disorder that is caused by an infectious agent, or in
ecological terms a “parasite,” that causes pathology in its host (MacIntosh 2016).
In the ecological realm, a “parasite” is considered any organism that lives within
(or on) another “host” organism, at some cost to the latter (MacIntosh 2016). For the
remainder of the chapter, we deal with enteric parasites or “endoparasites” (hereafter
just “parasites”), which live within the body of the host organism. These typically
fall under seven major types of organisms. Five of these, specifically bacteria,
viruses, rickettsia, prions, and fungi, are conventionally pathogenic microorganisms.
The last two, protozoa and helminths, include both pathogenic and non-pathogenic
species. All parasites typically disrupt the normal, homeostatic functioning of the
body, both directly as a result of their own activity and indirectly by stimulating the
host’s immune system to produce a defensive response. They may do so by their
sheer presence, by competing with host cells and symbiotic microbes, and, in
extreme cases, by releasing toxins that increase the severity of diseases. Depending
on their ecologies or life histories, parasites may enter hosts via their exposure to
contaminated environmental sources such as food, water, and soil (e.g., enteric
bacterial pathogens: Kilonzo et al. 2011; Sinton et al. 2007). They may also spread
rapidly through host populations via mechanisms such as (1) direct host-to-host
contact (e.g., respiratory viruses), (2) the sharing of common, contaminated envi-
ronmental space or resources (e.g., enteric bacteria such as Salmonella sp., Shigella
sp.), (3) exchange of body fluids (e.g. blood-borne pathogens like HIV and HPV), or
via (4) vector-borne transmission [e.g., mosquitoes spreading malarial parasites
(Plasmodium sp.)] (summarized in Engel and Jones-Engel 2011; Nunn and Altizer
2006).

Infectious disease ecology is a subfield that deals with the evolutionary and
environmental factors that influence the exposure, acquisition, and transmission
dynamics of parasites within and (more recently) between human and animal
populations (Grenfell and Dobson 1995; Hudson et al. 2002). As we have now
entered the Anthropocene epoch, human influence on the environment has generated
an increased awareness of the importance of both public health and the conservation
of natural ecosystems. So it is not surprising that over the last two decades in
particular we have seen an incredible surge in research related to infectious disease
ecology and evolution (reviewed in Huffman and Chapman 2009; Kappeler et al.
2015; MacIntosh and Frias 2016; Nunn 2012; Nunn and Altizer 2006), with
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interdisciplinary approaches drawing on theory and methods from several biological
sciences including anthropology, evolutionary genetics, behavioral ecology, epide-
miology, network theory, and statistics.

Nonhuman primates have served as especially useful model host systems in these
endeavors (summarized in Huffman and Chapman 2009; Nunn 2012; Nunn and
Altizer 2006). In addition to sharing evolutionary histories and, increasingly, eco-
logical space with humans, primates also exhibit diverse forms of social systems,
characterized by heterogeneity in group composition and size, dispersal patterns,
foraging strategies, mating systems, and social structures (Hinde 1976; Kappeler and
Van Schaik 2002; Sterck 1998; Thierry 2007a). For these reasons, they are physi-
ological, ecological, and behavioral model host systems for infectious disease
research (MacIntosh 2016). There is now consensus among scientists that the
evolutionary, ecological, and social diversity of free-living primates is impacted by
(or indeed impact) the risk of acquisition and transmission of parasites (Sueur et al.
2018).

Broadly, empirical research on primate infectious disease ecology to date has had
five major foci. First, in studies related to (1) parasite-host co-evolution, evolution-
ary anthropologists have attempted to establish links between the phylogenetic
relationships of parasites and their primate hosts (MacIntosh and Frias 2016; Nunn
2011; Nunn and Altizer 2006; Petrášová et al. 2011; Vallo et al. 2012). Second,
studies on (2) primate parasite socioecology, in addition to the relative role(s) of
resource abundance, predation pressure, and infanticidal risk, have also begun to
examine the role of parasites in shaping the evolution of primate group sizes and
social network structure (Chapman et al. 2009; Nunn et al. 2011; meta-analyses by
Griffin and Nunn 2012; Nunn et al. 2015; Patterson and Ruckstuhl 2013; Rifkin et al.
2012). Conversely, the idea that group-living and social structure may also impact
the diversity and prevalence of parasites in hosts (Drewe and Perkins 2015;
VanderWaal and Ezenwa 2016) has led to such socioecological approaches to also
focus on the identification of potential “super spreaders” or “social bottlenecks” of
infection (Balasubramaniam et al. 2016, 2018; Duboscq et al. 2016; Griffin and
Nunn 2012; MacIntosh et al. 2012; Romano et al. 2016). Other studies have used
agent-based models to predict the prevalence and transmission of parasites through
artificial primate groups and networks (Griffin and Nunn 2012; Nunn et al. 2015).
Yet social life does not always equate to disease transmission or threats to homeo-
stasis. Indeed, studies on both captive and wild primates that assess the links
between (3) infection risk and sociality, stress, and immune function have tested
the opposite paradigm, i.e., that possessing strong, diverse social connections, rather
than increasing the risk of pathogenic acquisition, may function to socially buffer
some primates against infection (Balasubramaniam et al. 2016; Duboscq et al. 2016;
Sapolsky et al. 2000; Young et al. 2014). More research has focused on the impact of
(4) parasites in primate conservation and management—while some deal with the
implications of introduced species on the prevalence and diversity of parasites in
indigenous primates (Petrášová et al. 2010, 2011), other research has attempted to
quantify differences in parasite richness or diversity in primates living in varying
degrees of human influence or in relation to their threatened status(es) (Bublitz et al.
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2015; Chapman et al. 2006a; Gillespie et al. 2005; Goldberg et al. 2007; Kowalewski
et al. 2011). Finally, emerging lines of research have focused on (5) primate counter-
strategies, including avoidance behaviors to minimize exposure to parasites
(Amoroso et al. 2017; Poirotte et al. 2017, 2019; Sarabian and MacIntosh 2015;
Sarabian et al. 2017), and self-medication that removes or minimizes the impact of
an infection on the host (Huffman 2016).

To date, much of the empirical work related to primate infectious disease ecology
has focused on wild or red-listed primate populations (reviewed in Frias and
MacIntosh 2018). Aside from habitat loss and fragmentation (Hussain et al. 2013),
red-listed populations also face the risk of extinction on account of infectious
diseases transmitted from humans or livestock (reviewed in Frias and MacIntosh
2018). In comparison, less research has focused on the relationship between host
socioecology and transmission of parasites between humans and free-living primates
at overlapping interfaces (Kaur and Singh 2009). This is despite the wide recognition
that humans and primates strongly influence each other’s biology, behavior, and
health (Fuentes 2012; Fuentes and Hockings 2010) and that such human-primate
interfaces are also potential sources of EIDs (Jones-Engel et al. 2005; Nunn et al.
2008; Wolfe et al. 2007).

13.3 Human-Macaque Interfaces

The genusMacaca is the most diverse, geographically widespread, and ecologically
successful group of primates (Cords 2013; Thierry 2007a, b). They constitute
23 extant species, which range from North Africa in the West (Barbary macaques:
M. sylvanus), across the Indian subcontinent [e.g., rhesus macaques (M. mulatta),
bonnet macaques (M. radiata)], China [e.g., rhesus macaques (M. mulatta), Tibetan
macaques (M. thibetana)], and Southeast Asia [e.g., long-tailed macaques
(M. fascicularis), Sulawesi macaque species (e.g., M. nigra, M. tonkeana)], and up
to Japan in the Far East [Japanese macaques (M. fuscata)] (Thierry 2007a, b). Across
this range, their ecological flexibility is evidenced by the fact that macaque species,
and indeed populations of the same species, inhabit a wide variety of habitats, from
tropical rainforests to snowcapped mountains and from dry scrub forests to urban-
ized human settlements (Cords 2013; Gumert et al. 2011; Thierry 2007a, b).

In nature, all macaque species show broadly similar social organization [but see
Sinha et al. (2005) for an exception]—they live in multi-male multi-female social
groups in which females are philopatric and males disperse from their natal groups
(Cords 2013; Thierry 2013). At the same time, they show a remarkable degree of
inter- and intraspecific variation in the structure of social relationships, ranging from
despotic, nepotistic societies with steep dominance hierarchies and modular, cen-
tralized, and kin-biased social networks (e.g., rhesus macaques, Japanese macaques)
to tolerant or egalitarian societies characterized by shallower dominance relation-
ships and dense, decentralized, and well-connected social networks (e.g., Sulawesi
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crested macaques: Balasubramaniam et al. 2012; Thierry et al. 2008; Sueur et al.
2011a).

More pertinently, macaques also vary in the extent to which they show adaptive
or maladaptive responses to human disturbance and anthropogenic landscapes, i.e.,
along a spectrum of overlap at human-macaque interfaces (Priston and McLennan
2013; Radhakrishna and Sinha 2011; Radhakrishna et al. 2013). At the upper end of
this spectrum lie rhesus and long-tailed macaques (Fig. 13.1a, b). Large populations
of these “weed” species, categorized as “Least Concern” by IUCN since 2010
(IUCN 2019), gravitate toward and even preferentially exploit human settlements
(Jaman and Huffman 2013; Southwick and Siddiqi 1994, 2011; Southwick et al.
1983). Long-tailed macaques are even listed among the IUCN Invasive Species
Specialist Group’s (ISSG) top 100 invasive species in the world (Lowe et al. 2000).
Thus, they inhabit a variety of human-macaque interfaces: from buffer zones of
ecotourism in national parks, to agricultural fields bordering rural villages, to
urbanized cities like Delhi, Dhaka, and Kuala Lumpur (Fig. 13.1a, b). Other species
like bonnet macaques and toque macaques (M. sinica) are not far behind, with both
wild and semi-urban populations that inhabit the smaller town-, temple-, and uni-
versity campus-interfaces of Southern India and Sri Lanka, respectively (Huffman
et al. 2013a; Nahallage and Huffman 2013; Nahallage et al. 2008; Radhakrishna

Fig. 13.1 Macaques at human-macaque interfaces, specifically (a) rhesus macaques in Himachal
Pradesh, Northern India; (b) long-tailed macaques in Kuala Lumpur, Malaysia; (c) toque macaques
in Colombo, Sri Lanka; (d) bonnet macaques in Kerala, Southern India. Photo credits: (a), (b) and
(d): K. N. Balasubramaniam; (c): M. A. Huffman
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et al. 2013; Ram et al. 2003; Sinha et al. 2005) (Fig. 13.1c, d). Yet some of these
species, like toque macaques, remain listed as “vulnerable” or “endangered” on
account of the negative effects of ecotourism and habitat loss throughout their
range (IUCN 2019). Finally, some less ecologically flexible species like lion-tailed
macaques (M. silenus), Tibetan macaques (M. thibetana), and Sulawesi crested
macaques (M. nigra) are still exposed to the negative impact of human activity in
the form of habitat loss affecting their socioecology (Kumara et al. 2014; Singh et al.
2001), ecotourism-related stressors and mortality rates (Berman et al. 2007;
Marechal et al. 2011), and hunting for bush-meat impacting mortality rates (Kyes
et al. 2012; Palacios et al. 2012; Riley 2007; Riley and Fuentes 2011). Indeed, many
of these species are classified as being “endangered” or “critically endangered” as a
result (IUCN 2019).

The rise of ethnoprimatology as a subfield of biological anthropology has
occurred simultaneously with the rise of primate infectious disease ecology. Specif-
ically, ethnoprimatology is related to understanding how humans and primates
impact each other’s niche construction, behavioral biology, and health-related out-
comes (Dore et al. 2017; Fuentes 2012; Fuentes and Hockings 2010). Unsurpris-
ingly, human-macaque interfaces in North Africa, India, Sri Lanka, and Southeast
Asia have been the primary foci of most ethnoprimatological research, with some
more recent studies in Africa also having been conducted on baboons (Fehlmann
et al. 2016; Kaplan et al. 2011; Hoffman and O’Riain 2012), chimpanzees (Hockings
et al. 2012), and lemurs (Loudon et al. 2017). To date, this work has revealed that the
nature, frequency, and severity of interactions and conflict at human-macaque
interfaces vary broadly by context (Radhakrishna and Sinha 2011; Radhakrishna
et al. 2013). For instance, across the Indian subcontinent, China, and Southeast Asia,
conflict is heavily influenced by whether macaques also play more positive roles
with resident and/or visiting human communities, e.g., monkeys as religious sym-
bols, pets, trade commodities, or tourist attractions (Jones-Engel et al. 2004;
Nahallage and Huffman 2013; Radhakrishna et al. 2013). At the same time, some
intrinsic characteristics of macaques, including the age-sex class‚ personalities of
individuals, and/or species-typical adaptive responses, have also been shown to
influence interface interactions (Beisner et al. 2014; Fuentes 2006; Marechal et al.
2011; Sha et al. 2009). Such variation in human- and macaque-specific features
across interfaces generates a broad variety of direct and indirect interactions, such as
(1) human provisioning of macaques, (2) macaques using anthropogenic landscape
features (e.g., buildings, fences, water tanks), (3) mutual contact- and non-contact
aggression, (4) the exchange of body fluids like blood and saliva, (5) the fragmen-
tation of macaque populations on account of the loss of natural habitat, (6) the
hunting and consumption of macaques by humans as bush-meat, and (7) the use of
macaques as pets, trade commodities, or tourist attractions (Fuentes et al. 2011;
Gumert et al. 2011; Hussain et al. 2013; Jones-Engel et al. 2004; Radhakrishna et al.
2013; Riley and Fuentes 2011; Riley 2003). Naturally, the dynamic nature of such
environments provides myriad mechanisms for the acquisition and transmission of
parasites (Engel and Jones-Engel 2011; Nunn 2012).
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13.4 Parasites at Human-Macaque Interfaces

To extract and review previous studies that report parasites among free-living
macaque populations at human-macaque interfaces, we relied on the Global Mam-
mal Parasite Database (or GMPD, Version 2.0: Stephens et al. 2017). The GMPD is
a compilation of studies that report disease-causing organisms—bacteria, viruses,
protozoa, helminths, and fungi—isolated from wild or free-living populations of
some of the major mammalian taxa, specifically ungulates, carnivores, and primates
(Nunn and Altizer 2005; Stephens et al. 2017). The database now contains 24,000
records, from over 2700 literature sources including journal articles, books and book
chapters, and reports at conference proceedings. Records may be filtered on the basis
of different parasite or host-specific characteristics, such as taxonomic categories,
geographic location, and mode of transmission.

A search of the GMPD database filtered by host genus (macaques) and type of
parasite (bacteria, viruses, helminths, and protozoa) revealed 570 records from
across 80 different studies. Figure 13.2 indicates the distribution of these records
by study period. Aside from the general geographic location, the GMPD does not
offer more specific filtering options that aid in the classification of studies in
accordance with socioecological conditions under which they were conducted. So,
we manually screened for “human-macaque interface” studies as those among the
above studies that reported one or more of the following: (1) the direct transmission
of these agents between humans and macaques in either direction (e.g., contact

Fig. 13.2 Records of parasites reported among free-living macaque populations from studies in the
Global Mammal Parasite Database (GMPD)
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aggression or provisioning, pet macaques released into free-living populations),
(2) the possible or potential transmission of such agents, or (3) the indirect impact
of humans or anthropogenic factors (e.g., habitat fragmentation, livestock, macaque
foraging on provisioned food) being identified to have influenced the acquisition of
these parasites among macaques. Since this chapter primarily deals with the
socioecological impact of human-macaque interfaces on disease risk, we also did
not include studies on the phylogenetic co-evolutionary roots of parasites and their
primate hosts.

These criteria led to the extraction of 161 (out of 570) macaque records, the vast
majority of which were dated post 2000 (130 out of 161: Fig. 13.2). These records
were spread across nine cited studies conducted on six different species of macaques.
In Table 13.1, we summarize information from these studies, providing details on the
parasites isolated, host macaque species, geographic location, prevalence and the
number of individuals sampled (where the information is available), and the type of
acquisition reported or speculated. Unsurprisingly, viral agents dominate this list
with 88 of the 161 entries (or 55%) from 4 citations. During the last two decades,
several zoonotic viruses have been described and studied in nonhuman primates in
Africa and Asia from evolutionary and virulence perspectives (e.g., Ebola in great
apes, reviewed in Leendertz et al. 2017; respiratory viruses in macaques, reviewed
below). From a socioecological standpoint, studies on macaques have revealed
strong associations between the frequency of intense human-macaque contact
behaviors that involve the exchange of body fluids (e.g., aggressive bites and
scratches) and the prevalence of respiratory viruses. Early work showed that wild-
caught rhesus macaques in Northern India that had the highest degrees of exposure
to human contact were also the most likely to show blood serum antibodies against
human respiratory viruses (Shah and Southwick 1965). Later work in Nepal revealed
correlations between the frequency of intense contact interactions with humans like
aggressive bites and scratches and the seroprevalence of respiratory viruses such as
the simian foamy virus (SFV), simian type-D virus, Cercopithecine herpesvirus-1
(CHV-1), and simian virus-40 (SV-40) (Jones-Engel et al. 2006) among rhesus
macaques living in human settlements. In comparison, the Barbary macaques of
Gibraltar, which engage in less intense aggression and have lower rates of contact
bites in comparison to the Asian rhesus populations, showed a markedly lower
seroprevalence (or were even seronegative) of these same respiratory viruses
(Engel et al. 2008). More recently, humans traveling with performing “pet” rhesus
macaques were found to indirectly influence the genetic structure and translocation
of macaque SFV across rhesus populations in Bangladesh (Feeroz et al. 2013).
Finally, other work not included in the GMPD has recorded the prevalence of
macaque-borne viral pathogens like SFV and retroviruses among humans that
regularly come into contact with these populations (Jones-Engel et al. 2005).

Gastrointestinal protozoa (36 entries out of 161, or 22%) and helminths (26 entries
out of 161, or 16%) were the next most commonly reported parasites among the
human-macaque interface studies examined. In nature, these are among the most
commonly occurring parasites in wild primates (Huffman and Chapman 2009; Nunn
and Altizer 2006). Yet, a few ecological assessments of human-perturbed landscapes
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have revealed that anthropogenic factors may indirectly influence their acquisition
among macaques [but see Lane et al. (2011) who report a decrease in such acqui-
sition]. In Sri Lanka, for instance, the prevalence of both gastrointestinal protozoan
parasites like Cryptosporidium sp., Entamoeba sp., and Balantidium coli and nem-
atodes like Enterobius sp. and Strongyloides sp. was more common among toque
macaques in more human-disturbed than pristine environments (Ekanayake et al.
2006). Further, Huffman et al. (2013a) speculate that increased human impact may in
part be responsible for why the prevalence of helminth parasites was lower among
toque macaques sampled at lower altitudes. Increased contact with anthropogenic
landscapes and human-provisioned food was strongly linked to the prevalence of
Strongyloides fuelleborni in wild long-tailed macaques in Thailand (Wenz-Mücke
et al. 2013). Among populations of critically endangered lion-tailed macaques in
Southern India, the anthropogenic fragmentation of their natural habitat was posi-
tively correlated to the diversity of gastrointestinal helminths and protozoan para-
sites (Hussain et al. 2013).

We extracted 10 records (6% of 161 records) of the protozoan parasite Plasmo-
dium sp., the causative agent of malaria, all from a single study that surveyed wild
populations of long-tailed and pig-tailed macaques (Macaca nemestrina) in Borneo
(Lee et al. 2011). This study revealed especially high prevalence of three Plasmo-
dium species—P. knowlesi, P. cynomolgi, and P. inui—among the macaque
populations. They also revealed that P. knowlesi, previously hypothesized as having
been transmitted to humans via anopheline vectors from overlapping macaque
populations, was derived from an ancestral malarial parasite that existed before
humans came to Southeast Asia. Since then, high prevalence of P. knowlesi has
been detected among free-living macaques at vegetation mosaics and forest frag-
ments in other parts of Southeast Asia, including Indonesia, Cambodia, Laos, and
Vietnam (Huffman et al. 2013b; Zhang et al. 2016). Malaria is now widely recog-
nized as being a threat at human-primate interfaces (Singh et al. 2004). In addition to
thriving macaque populations acting as natural reservoirs for these parasites, the
fragmented mosaic landscapes of Southeast Asia are also highly conducive to the
proliferation of mosquito vector complexes like Anopheles dirus and
A. leucosphyrus, which may transmit malaria into otherwise infection-naive
macaque and human populations (Moyes et al. 2014).

The least reported type of parasite was bacterial, with only one record speculating
that anthropogenic factors may be responsible for the prevalence of Escherichia coli
in toque macaques (Huffman et al. 2013a). This was more broadly reflective of the
general lack of studies that have focused on the detection of bacterial pathogens in
free-living primates (Kaur and Singh 2009; Nunn and Altizer 2006). Bacterial
pathogens like Salmonella sp., Shigella sp., and E. coli O157:H7 routinely cause
acute diarrheal infection among humans and domestic livestock (Gorski et al. 2011;
Rwego et al. 2008; Sinton et al. 2007; Suleyman et al. 2016). They have been
previously isolated from wild primate populations in Africa that live in human-
perturbed, fragmented habitats (chimpanzees: McLennan et al. 2017; lemurs of
Madagascar: Bublitz et al. 2015). Since they strongly overlap and rely heavily on
anthropogenic resources, urban and semi-urban macaques may be natural reservoirs
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of these agents, with the potential to disseminate them into overlapping human and
critically endangered wildlife populations. A preliminary study at human-rhesus
macaque interfaces in Northern India revealed that anthropogenic factors, such as
rates of human-macaque aggression and provisioning, were positively correlated
with the prevalence of enteric bacteria like Salmonella sp. and E. coli O157:H7
(Beisner et al. 2016). This finding should lead to future assessments of the relative
prevalence of enteric bacteria among humans, livestock, and other overlapping
macaque populations.

Our GMPD search yielded no studies on parasites in Tibetan macaques, which is
somewhat surprising. There is scope for future work to focus on parasite transmis-
sion at human-Tibetan macaque interfaces. At both Mt. Emei and Mt. Huangshan,
China, where they have been best studied (Zhao 1996; Li 1999), wild Tibetan
macaque groups are indeed exposed to anthropogenic factors, particularly tourism.
At Mt. Emei, a Buddhist community that is visited by tourists for its temples, there is
no regulation of tourist-macaque interactions. Tourists regularly hand-provision the
macaques, and there have been reports of tourists suffering fatal injuries from
macaque attacks (Zhao 2005). Such intense and frequent contact presents scope
for the transmission of parasites. On the other hand, a primate tourism program that
is currently in place at Mt. Huangshan restricts the scope for macaque-tourist
interactions. This program was laid down following a period between 1994 and
2004, when a group of Tibetan macaques at Mt. Huangshan was “managed” for
tourist activity by restricting their home range (Berman et al. 2007). Studies on this
group have revealed that intragroup aggression, attacks on infants, and infant
mortality rates were all much higher during periods when the group’s home range
was restricted for tourist viewing than in periods prior to such activity (Berman et al.
2007). Later work in the mid-2000s that was conducted following the period of
severe range restriction revealed that the macaques showed increased self-directed
behaviors (e.g., self-scratching, yawning, body shake) as well as stress-coping social
behaviors (e.g., allogrooming, body contact) when they were closer to tourists, in
comparison to when there were no tourists present (reviewed in Matheson et al.
2013). Such tourist activity, now more controlled, may have presented or may
continue to present a stressful environment to Tibetan macaques that may heighten
the acquisition and transmission of parasites.

13.5 The Future of Human-Macaque Disease Ecology

Our review of studies on human-macaque interfaces reveals the detection and
confirmation of a range of parasites. Yet many of these studies, based on either
symptomatic or mortality-based evidence of pathogenic infection in either humans
or macaques, have inferred that disease transmission has occurred without ever
having established that transmission did occur (VanderWaal and Ezenwa 2016;
VanderWaal et al. 2014). In other words, little or no work has assessed the precise
mechanisms and pathways of parasite transmission at human-macaque interfaces. In
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this section, we illustrate how implementing (A) the conceptual frameworks of
Coupled Natural and Human Systems and One Health, in combination with
(B) cutting-edge network analytical techniques, may significantly enhance our
current knowledge of infectious disease transmission at human-macaque interfaces.

(A) Unifying Conceptual Frameworks: Coupled Systems and One Health
Conflict at human-macaque interfaces may be spatiotemporally variable in form and
frequency and may affect parasite transmission in dynamic and sometimes
unpredictable ways. In this light, one of the biggest challenges facing research on
infectious disease ecology at these, and indeed all human-wildlife interfaces, is the
lack of a consensual theoretical or conceptual framework applicable across multiple
types of systems.

One framework that may prove useful in this regard stems from the broader
conceptualization that human interactions with nature and the environment may be
viewed as dynamic, coupled systems (Liu et al. 2007). Since its proposition, the
Coupled Natural and Human Systems (or CNHS) approach has presented a signif-
icant advancement in our understanding of human impact on abiotic and (more
recently) biotic factors. Traditionally, studies examining the interactions between
humans and natural phenomena have been largely reductionist in nature (summa-
rized in Liu et al. 2007). They have adopted principles from biology, anthropology,
geography, and environmental sciences, with an almost exclusive focus on how a
single component of the human system may influence a given property of a natural
system or vice versa. Further, they have tended to focus on short-term effects rather
than conduct long-term assessments of the feedback effects of such interactions on
both human and natural systems. Expanding significantly on these assessments, the
CNHS approach explicitly acknowledges that aspects of human systems and natural
systems are coupled or interlinked and must therefore be assessed as a collective
whole. Multiple, dynamic components of human and natural systems are expected to
influence the nature and types of interactions at interfaces, with such impact being
expected to reciprocally impact long-term indicators of the overall stability, sustain-
ability, and health of both human populations and natural components.

In its short history, studies implementing CNHS frameworks have primarily
focused on the impact of humans on inanimate, abiotic factors (e.g., landscape
ecology, climatic conditions: (Foley et al. 2005; Postel et al. 1996) and their long-
term effects (e.g., via environmental degradation, natural disasters: Dilley et al.
2005) on human population dynamics and ecology (Liu et al. 2007)). In comparison,
fewer studies have tackled the relationship between humans and animate natural
systems like wildlife populations (Dickman 2010, 2012). The well-documented
nature of interactions and conflict at human-macaque interfaces (reviewed above)
offer opportunities to address this gap. Or conversely, the CNHS framework maybe
useful to assess the mechanistic processes through which the variant nature of
human-macaque interfaces may favor or inhibit the transmission of parasites across
human and macaque systems.

As we allude to earlier, macaques may acquire parasites in many ways, including
direct physical contact with humans or during social interactions with infected
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conspecifics, changes in foraging strategies induced by anthropogenic landscapes, or
human-induced stressors increasing macaques’ susceptibility to infection.
Implementing the CNHS approach would entail examining the relative likelihood
(s) of these mechanisms and indeed whether specific (suites of) attributes of the
human system (e.g., community type, history of interactions with macaques, visitors
versus tourists) or the macaque system (e.g., age-sex class, group size, species-
typical social style) are linked with the degree to which one type of interface
interaction may be expected to prevail over another in influencing parasite acquisi-
tion. More tellingly, we reckon that the CNHS framework would finally take
research on human-macaque infectious disease research beyond mere descriptions
of parasites at interfaces. Expanding on these findings, a CNHS approach would
naturally lead to more long-term assessments of the impact of parasite diversity and
distribution on indicators of macaque and human population health (e.g., symptom-
atic evidence for disease outbreaks, stress-induced illness), reproductive success
(e.g., the number and fitness of offspring), and survival (e.g., population demo-
graphics and infant mortality rates).

Closely related to the CNHS framework is the One Health (OH) concept (derived
from the “One Medicine” concept: Schwabe 1984), or the idea that addressing the
challenges surrounding human health issues cannot be dissociated from environ-
mental health (or EcoHealth) or from veterinary medical practices associated with
treating wild and domestic animals (Destoumieux-Garzon et al. 2018; Zinsstag et al.
2011, 2015). The OH concept stems from the acknowledgment that the impact of
human population expansion on the environment generates negative health out-
comes, such as the occurrence of chronic, non-infectious diseases in humans,
human and animal exposure to environmental toxins and emerging pollutants like
plastics (Kannan et al. 2010; Waters et al. 2016), as well as the emergence of
infectious diseases at human-wildlife interfaces (Gomez et al. 2013; Hudson et al.
2002; Nunn et al. 2008; Wolfe et al. 2007). So, it constitutes a global strategy
highlighting the need for a holistic, transdisciplinary approach in dealing with the
health of humans, animals, and ecosystems (the One Health Initiative).

Since its proposition more than a decade ago, proponents of OH approaches have
(with varying degrees of success) proposed to deal with some of the barriers facing
infectious disease research (summarized in Destoumieux-Garzon et al. 2018). We
highlight three as being particularly relevant to human-macaque interfaces. The first
is a resolution of the extent to which the factors that influence human health
outcomes overlap with those that influence the health of natural ecosystems.
Human-macaque interfaces are useful to conduct such assessments. This is because
many (although not all) social and environmental factors that may potentially drive
parasite transmission from humans to macaques, such as direct physical contact,
contaminated food or water sources, and the exchange of body fluids, are also likely
to transmit agents from macaques to humans (Engel and Jones-Engel 2011; Engel
et al. 2008; Jones-Engel et al. 2005; Kaur and Singh 2009).

A second barrier is related to the promotion of interdisciplinary projects that
combine veterinary medical assessments to detect and diagnose infectious diseases,
with ecological and evolutionary approaches to understand the relationships between
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parasites and their hosts (MacIntosh and Frias 2016; Nesse et al. 2010; Nunn and
Altizer 2006). Among all the primates, macaques (particularly rhesus macaques and
long-tailed macaques) continue to be the most common genus used in captivity as
models for biomedical research (Hannibal et al. 2017; Phillips et al. 2014). Further,
as we review above, infectious disease research among free-living macaque
populations have had variant foci, ranging from the detection and diagnosis of
parasites (Engel and Jones-Engel 2011; Engel et al. 2008; Jones-Engel et al. 2004,
2005), through establishing co-evolutionary links between parasites and macaque
hosts (Huffman et al. 2013b), to assessing the social and environmental underpin-
nings of parasite prevalence and transmission (Duboscq et al. 2016; MacIntosh et al.
2010, 2012; Romano et al. 2016). The OH concept, along with our above-stated
argument that human-macaque interfaces are functionally interdependent, coupled
systems, would provide a means to bring such diverse foci under a single, unifying
framework (Destoumieux-Garzon et al. 2018).

Finally, a third direction involves placing a strong emphasis on complementing
strong medical and theoretical knowledge, with current advancements in methodo-
logical and data analytical approaches. Below we elaborate on how one set of
approaches—Network Analyses—may be especially significant for future research
on infectious disease ecology at human-macaque interfaces.

(B) Network-Based Analytical Approaches
In the last two or three decades, network-based analytical techniques have revolu-
tionized infectious disease epidemiology and ecology (Craft 2015; Craft and
Caillaud 2011; Drewe and Perkins 2015; Godfrey 2013; Keeling 2005; Moore and
Newman 2000; Newman 2002; VanderWaal and Ezenwa 2016). From a biological
perspective, networks are reconstructions of entities (nodes) that are connected to
each other based on one or more shared characteristics (edges) (Fig. 13.1a–c). For
instance, animal social and spatial networks capture relationships between individ-
uals in a social group linked together based on the frequency with which they interact
or the degree of spatial overlap, respectively (reviewed in Brent et al. 2011; Croft
et al. 2008; Farine andWhitehead 2015; Kasper and Voelkl 2009; Krause et al. 2007;
Lusseau and Newman, 2004; Newman 2004; Sueur et al. 2011b; Wey et al. 2008)
(Fig. 13.3a). Bipartite or multimodal networks add a level of complexity by
distinguishing two or more components or layers of organization within a system,
such that distinctions can be made between the edges that link nodes within the same
layer to nodes across layers (Dormann et al. 2017; Kane and Alavi 2008; Latapy
et al. 2008) (Fig. 13.3b, c). Third, links based on the degree of genotypic similarity of
gastrointestinal microbes isolated from potentially interacting hosts within the same
time frame may be used to reconstruct microbial sharing or transmission networks
(VanderWaal and Ezenwa 2016; VanderWaal et al. 2014). Finally, in the absence or
sparsity of real data, mathematical agent-based models and artificial networks have
proven exceptionally useful in modeling the transmission of parasites (Bente et al.
2009; Griffin and Nunn 2012; Nunn 2009; Romano et al. 2016). Such heterogeneity
in connectedness within and between the components of socioecological systems
may strongly influence the likelihood of parasite acquisition and transmission.
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Not surprisingly, network approaches, particularly social network analysis, have
already found a wide range of applications in infectious disease epidemiology (Craft
2015; Craft and Caillaud 2011; Drewe and Perkins 2015; Godfrey 2013; Keeling
2005; VanderWaal and Ezenwa 2016). We briefly review these applications and
related studies below. Recognizing the relative dearth in the implementation of
network approaches at human-macaque interfaces, we also highlight some context
(s) in which they may be implemented in human-macaque infectious disease eco-
logical research.

Social Networks and Parasite Acquisition In humans and other animals, hetero-
geneity in space use overlap or contact social behavior may strongly influence the
acquisition of parasites (reviewed in Drewe and Perkins 2015; Kappeler et al. 2015;
Silk et al. 2017). Such heterogeneity can be modeled using social network analysis
(Brent et al. 2011; Croft et al. 2008; Farine and Whitehead 2015; Krause et al. 2007;
Sueur et al. 2011b). The first applications of social network approaches in the
context of disease transmission were focused on humans, particularly in the spread
of sexually transmitted diseases (or STDs) (Klovdahl 1985) and later following the
detection of the severe acute respiratory syndrome (SARS) outbreak in 2003
(Meyers 2007). Since then, social networks across a wide range of taxa have been
used to identify central or well-connected individuals, which may be potential “super
spreaders” of parasites [e.g., lizards (Egernia stokesii): Godfrey et al. 2009; spider
monkeys (Ateles geoffroyi): Rimbach et al. 2015; meerkats (Suricata suricatta):
Drewe 2010; Japanese macaques: MacIntosh et al. 2012; reviewed in Drewe and
Perkins 2015; VanderWaal and Ezenwa 2016]. In wild Japanese macaques, for
instance, high-ranking individuals with more direct and indirect connections, or
eigenvector centrality (Newman 2006) in their social grooming networks, were
also shown to have greater species richness and infection intensities of nematode
parasites (MacIntosh et al. 2012). Yet having strong and diverse social connections,
rather than increasing parasite acquisition owing to contact-mediated transmission,
may actually decrease the likelihood of such acquisition by mitigating stressors or
enhancing immune function (e.g., Balasubramaniam et al. 2016; Cohen et al. 2015;

Fig. 13.3 Hypothetical social (a), bipartite (b), and multimodal (c) networks of the same individ-
uals. Green nodes might represent macaques and pink ones might be humans. Green links are
interactions between macaques, pink links are interactions between humans, and gray links are
interactions between macaques and humans (interspecies)
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Hennessy et al. 2009). Consistent with this “social buffering hypothesis,” work on
captive rhesus macaques revealed that individuals with the strongest and most
diverse social grooming and huddling connections were also the least prone to the
acquisition of environmental bacterial pathogens (Balasubramaniam et al. 2016).
Finally, aside from inter-individual differences in contact patterns, the higher order
structure of social networks may also influence parasite transmission in contrasting
ways. For instance, increased community modularity or substructuring in social
networks, on account of individuals interacting more with subsets of preferred
partners (Fushing et al. 2013; Newman 2006; Whitehead and Dufault 1999), may
enhance parasite transmission within subgroups while presenting “social bottle-
necks” to the group-wide spread of parasites (Griffin and Nunn 2012; Huang and
Li 2007; Nunn et al. 2011, 2015; Romano et al. 2018; Salathe and Jones 2010). On
the other hand, dense, well-connected networks, with a higher efficiency (the inverse
of the number of shortest paths in the network), may facilitate rather than hinder the
rapid transmission of parasites (Drewe and Perkins 2015; Griffin and Nunn 2012;
Pasquaretta et al. 2014).

Such dynamic relationships between social networks and parasite acquisition
suggest that broader socioecological contexts may determine the circumstances
under which social life may be beneficial versus detrimental to infectious disease
risk. The variant nature of the human-macaque interface may present such contexts
and thereby influence parasite acquisition by altering the structure and connected-
ness of macaque social networks. For instance, higher frequencies of interactions
with humans and/or changes to macaque movement or foraging behavior in land-
scapes altered by anthropogenic disturbance, by constraining the time available for
macaques to engage in social interactions (Dunbar 1992; Kaburu et al. 2019; Marty
et al. 2019), may lead to more modular, substructured social networks which may
present bottlenecks to parasite transmission. On the other hand, such interactions or
anthropogenic changes may present environmental stressors to the macaques (e.g.,
Barbary macaques: Carne et al. 2017; Marechal et al. 2011, 2016), in which
individuals possessing strong and diverse social networks may benefit by being
socially buffered against infection. In summary, future research may focus on
establishing the precise mechanism(s) of super spreading, social bottlenecking, or
stress-induced acquisition of parasites, through which social or contact network
connectedness may influence parasite transmission dynamics at human-macaque
interfaces.

Bipartite and Multimodal Networks Social networks have proven exceptionally
useful to model the acquisition and transmission of parasites. Yet by themselves,
they are somewhat limited in not capturing heterogeneity at higher organizational
scales, for instance, across interactions between different components of a social or
ecological system. This may be the reason why most epidemiological studies
implementing network approaches to model heterogeneity in contact patterns have
focused on either human systems or more recently wildlife systems (reviewed
above), but almost never at the human-wildlife interface. Bipartite and multimodal
networks, which establish connections between different interlinked components of
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a system, may prove especially useful in this regard (Dormann et al. 2017; Kane and
Alavi 2008; Latapy et al. 2008; Finn et al. 2019). Recently, bipartite networks are
beginning to feature in ecological and evolutionary research (reviewed in Bascompte
and Jordano 2014; Cagnolo et al. 2011; Dormann et al. 2017), as illustrated by their
being used to model marine food webs (Rezende et al. 2009), mutualistic interac-
tions between flowers and seed-dispersing animal pollinators (Spiesman and Gratton
2016; Stang et al. 2009; Vazquez et al. 2009), and, more pertinently, host-parasitoid
relationships (Laliberte and Tylianakis 2010; Poulin et al. 2013). For networks that
combine links both within and across system components, some researchers have
coined the term “multimodal networks,” aka “multilayer” or “multislice networks”
(Kane and Alavi 2008; Finn et al. 2019).

Their potential to model the connections of complex systems make bipartite and
multimodal networks highly relevant tools for infectious disease research at human-
wildlife interfaces. Yet to our knowledge, they have not been extensively used in this
context. In the context of primates and EIDs, Gomez et al. (2013) used a combina-
tion of bipartite network construction and social network analytical tools to identify
primate species that are likely to harbor EIDs. They constructed a bipartite network
that linked each primate species with each parasite isolated from them. From this,
they projected a unipartite “social” network in which primate species as nodes were
linked to each other by edges weighted by the number of parasites they shared. They
then revealed that species that were highly central in this “primate-parasite” network
were also the most likely to function as “super spreaders” of EIDs to humans or at
least most likely to share those EIDs with humans, suggesting potential conservation
implications as well. However, only one macaque species—the toque macaque—
was among the top 10 most central primates in this network. So, the extent to which
macaques pose threats as transmitters of EIDs remains unclear [and more generally
reflective of a knowledge gap in infectious disease research in East and Southeast
Asia (Hopkins and Nunn 2007)], though this is undoubtedly likely to vary across
contexts.

As reviewed in the previous section, humans and macaques engage in a variety of
interactions at interfaces, some forms of which have already been linked to the
acquisition and transmission of parasites (summarized in Table 13.1). To assess the
mechanistic bases of such transmission, we recommend that future studies,
implementing a CNHS approach, focus on constructing bipartite and multimodal
networks based on intra- and interspecies interactions and spatial overlap at human-
macaque interfaces. For such networks, the choice of system components may also
be informed by the characteristics of the parasite studied (Craft 2015). For instance,
the transmission of RNA respiratory and retroviruses between humans and
macaques may require intense contact events such as bites and scratches and the
exchange of body fluids like blood and saliva. Yet their fast mutation rates and short
generation times may make them difficult to detect. So, multimodal networks of mild
and severe contact aggressive interactions among and between humans and
macaques over shorter durations of time may be useful for these purposes. On the
other hand, the transmission of gastrointestinal helminths, protozoa, and enteric
bacteria may require just subtle interactions such as human provisioning of
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macaques, acquisition from soil and anthropogenic surfaces, and macaque social
grooming and contact huddling interactions, any or all of which would involve fecal-
oral transmission (Balasubramaniam et al. 2016; Beisner et al. 2014, 2016; MacIn-
tosh et al. 2012). Given that enteric bacteria may also survive longer in anthropo-
genic environments such as human-contaminated food, water sources and substrates
(Sinton et al. 2007), moist soil (Kilonzo et al. 2011), and livestock (Craft 2015;
Rwego et al. 2007; VanderWaal et al. 2014), unraveling their transmission routes
may involve the construction of “multipartite” networks connecting contact patterns
and spatial overlap between these biotic and abiotic factors. An even higher level of
complexity may be required to detect the transmission routes of vector-borne
malarial parasites like Plasmodium knowlesi (Abkallo et al. 2014; Huffman et al.
2013b; Lee et al. 2011). These may depend heavily on geospatial variation in the
distribution and overlap of humans, reservoir macaques, and other host wildlife
populations, anopheline vectors, and a host of environmental factors that may be
conducive to the completion of both vector and pathogen life histories (Lee et al.
2011; Moyes et al. 2014).

Microbial Transmission Networks More recently, the phylogenetic relationships of
symbiotic gut microbes isolated from animal hosts have been used to construct
microbial transmission networks (VanderWaal and Ezenwa 2016). Such networks
offer special advantages to detecting the potential transmission pathways of parasites
that spread through the fecal-oral route (Sears et al. 1950, 1956; Tenaillon et al.
2010). Symbiotic microbes like gastrointestinal E. coli are present in almost every
individual, have shared evolutionary histories with intestinal pathogens, and are
typically acquired via fecal-oral routes (Caugant et al. 1981; Sears et al. 1950, 1956).
So, if two individuals have genotypically similar or identical strains of E. coli, they
are likely to have either shared the strain via fecal-oral transmission, which may
occur either through direct social contact or through using a common environmental
source (Chiyo et al. 2014; Springer et al. 2016; VanderWaal et al. 2013, 2014).
Further, they rarely (if ever) alter the behavior of the host (VanderWaal et al. 2014),
which allows researchers to potentially detect subtle transmission events that may
signal the potential for a more devastating outbreak. Limited research to date has
revealed strong links between the degree of dyadic similarity in E. coli and the
frequency of animal space use overlap and/or social contact patterns
(Balasubramaniam et al. 2018; Chiyo et al. 2014; Springer et al. 2016; VanderWaal
et al. 2013, 2014). Recently, a study on captive rhesus macaques established that
macaques in the same social network communities were more likely to share strains
of E. coli among themselves than they were to macaques from other communities
(Balasubramaniam et al. 2018). Previous assessments at human-primate interfaces
have revealed that the population genetic structure of gut E. coli from great ape
populations living in human-perturbed habitats was more similar to E. coli from
humans and livestock than they were to bacteria. Such findings encourage future
efforts to construct microbial transmission networks between humans and
overlapping macaque populations, which may serve as models to gauge the potential
transmission pathways of parasites with greater precision. However, the lack of
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discernible mortality or sickness behaviors associated with acquiring
non-pathogenic microbes makes them models, rather than accurate forecasters, for
parasite transmission.

Agent-Based Modeling When data on biological systems are either unavailable or
incomplete, mathematical models offer ways of dealing with such inadequacies. In
simple terms, a model may be thought of as a simplified version of a study system
used to better understand it (Epstein and Axtell 1996; Minsky 1965). Thus, the
complexity of a model has to be lower than that of the study system; otherwise its
usefulness is lost. The main advantage of a computational model is that it can be
tested infinitely by recreating or simulating a situation in the same way many
(thousands of) times by adding, removing, or varying parameters and measuring
emergent characteristics. These results are then usually compared with findings from
empirical data to confirm or reject the tested hypotheses and accept (at least tempo-
rarily) the one for which the simulations best explain the data (Epstein and Axtell
1996; Minsky 1965). Furthermore, outcomes from these models may reveal complex
or unexpected effects which may be different from, or even go undetected, based on
a priori predictions. This might in turn provide a stronger basis to make other
predictions, including those related to the relative role(s) of different predictive
factors, in future assessments of biological systems (Epstein and Axtell 1996;
Minsky 1965).

Unsurprisingly, the bottom-up approaches of simulated models have made them
exceptionally useful tools to understand the acquisition and transmission of para-
sites. The first mathematical models of parasite transmission did not implement
social network approaches: virtual individuals moved and interacted randomly in
their environments (Wilensky and Stroup 1999). From individual characteristics
(e.g., age, sex, hierarchical rank) and basic interaction rules (social contact, spatial
proximity, conflicts, etc.), these tried to assess how the more global phenomena of
parasite prevalence and outbreak potential emerge in a system (Romano et al. 2016;
Rushmore et al. 2014). In these models, only the R0, the initial number of infected
agents and their interaction rates, mattered. R0 is the basic reproduction number used
to quantify the transmission potential of a parasite, defined as the number of
secondary infections caused by a single infected individual introduced into a popu-
lation made up entirely of susceptible individuals. However, following the acknowl-
edgment that individuals do not move or interact randomly, social networks have
been integrated into these models during the last decade or so (Griffin and Nunn
2012; Huang and Li 2007; McCabe and Nunn 2018; Nunn 2009).

Expanding beyond homogenous populations that contain only susceptible indi-
viduals that interact randomly, recent studies have integrated network approaches
with a classic set of individual-based models used in epidemiology that classify
individuals or “agents” into moving between susceptible infected and resistant
(or SIR) classes or compartments (Bansal et al. 2007; Brauer 2008; Grimm and
Railsback 2005; Kohler and Gumerman 2000). Such integrated network-based SIR
models now form the basis of many epidemiological assessments in primate systems
(Griffin and Nunn 2012; Kohler and Gumerman 2000; McCabe and Nunn, 2018;
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Rushmore et al. 2014). For instance, the likelihood of parasite transmission from A
to B may be a function of (1) whether A is already infected, (2) the likelihood of a
link between A and B in their social network, and (3) the per-contact transmission
probability “Beta.” Simulations are run until set criteria are reached, e.g., either the
extinction or saturation of infection throughout the group, at which time the average
outbreak size or Rinfinity is calculated (Diekmann et al. 1998; Keeling 1999). The
implemented social network might be theoretical (Sueur et al. 2012), based on
empirical data (Romano et al. 2016; Rushmore et al. 2014), or both (Griffin and
Nunn 2012) depending on the aims of the study.

In a comparative evolutionary analysis that used both natural primate datasets and
simulated networks, Griffin and Nunn (2012) used an SIR model to reveal how
increased community modularity in the social network, despite a larger group size,
negatively impacts parasite success. In a more applied example of the implementa-
tion of agent-based models, Rushmore et al. (2014) modeled the social network of a
wild population of chimpanzees in order to target specific individuals to vaccinate.
Based on their social centrality, they revealed that it was sufficient to target fewer,
more central individuals for the same result regarding controlling the spread of
infection. In this study, social network position was a model parameter, but it
might also be the study object if the model includes feedback loops between the
social network and parasite acquisition. Corner et al. (2003), for instance, not only
showed that social networks of Australian possums (Trichosurus vulpecula) have an
effect on the transmission rate of tuberculosis (TB) but also that the spread of TB had
a feedback effect on the social network: infected possums showed higher proximity
degree and betweenness centrality than non-infected possums. To our knowledge,
agent-based models have not been applied to assess parasite transmission at human-
macaque interfaces. In order to do so, we recommend that future research implement
the SIR approach, but focus on using multimodal network models in the place of
social networks which may account for an added level of complexity to model the
heterogeneity between human-macaque and macaque-macaque interactions.

13.6 Conclusions

Our goals in writing this chapter were threefold. First, we wanted to convey how,
despite a recent surge in primate infectious disease ecological research during the
last two decades, relatively few efforts have focused on the impact of humans and
anthropogenic factors on disease risk in wild primates. Second, we hope to have
illustrated how our current knowledge of human-macaque interactions in particular
present “starting points” from which long-term, in-depth assessments of the ecology
of parasite acquisition and transmission at human-primate interfaces may be
conducted. We believe that such efforts would need to integrate ethnoprimatology
and infectious disease ecology in order to be successful. Finally, we hope to have
convinced readers of how research on infectious disease ecology at human-macaque
interfaces are also in need of the implementation of both novel conceptual
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frameworks (e.g., One Health, Coupled Systems) and cutting-edge analytical
approaches (e.g., Network Analyses, mathematical modeling). Such approaches
not only bolster the scope of epidemiological research but are also imperative for
the conservation and management of both threatened and potentially problematic
free-living primate (and indeed other wildlife) populations.
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