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Abstract: To facilitate patient healing in injuries and bone fractures, metallic implants have been
in use for a long time. As metallic biomaterials have offered desirable mechanical strength higher
than the stiffness of human bone, they have maintained their place. However, in many case studies,
it has been observed that these metallic biomaterials undergo a series of corrosion reactions in
human body fluid. The products of these reactions are released metallic ions, which are toxic in
high dosages. On the other hand, as these metallic implants have different material structures and
compositions than that of human bone, the process of healing takes a longer time and bone/implant
interface forms slower. To resolve this issue, researchers have proposed depositing coatings, such as
hydroxyapatite (HA), polycaprolactone (PCL), metallic oxides (e.g., TiO2, Al2O3), etc., on implant
substrates in order to enhance bone/implant interaction while covering the substrate from corrosion.
Due to many useful HA characteristics, the outcome of various studies has proved that after coating
with HA, the implants enjoy enhanced corrosion resistance and less metallic ion release while the
bone ingrowth has been increased. As a result, a significant reduction in patient healing time with
less loss of mechanical strength of implants has been achieved. Some of the most reliable coating
processes for biomaterials, to date, capable of depositing HA on implant substrate are known as
sol-gel, high-velocity oxy-fuel-based deposition, plasma spraying, and electrochemical coatings.
In this article, all these coating methods are categorized and investigated, and a comparative study of
these techniques is presented.
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1. Introduction

Metallic biomaterials have been mostly used for body implants thanks to their various properties,
such as mechanical strength, corrosion resistance, and biocompatibility. Although there are several
metallic elements and alloys, a few of them (such as Titanium (Ti), Ti-based alloys, Platinum (Pt),
and austenitic stainless steel (316L)) are implemented for orthopedic and biomedical applications [1–3].
However, due to the nature of metal-corrosive media interaction, degradation takes place after the
implementation of these materials inside the human body. Some of the products of the corrosion
reactions are harmful to the living organs adjacent to the implants. Nickel (Ni) ions released from
corrosion of nickel–titanium (NiTi) alloy implants are one of the examples of these byproducts [4,5].
One of the most important aspects of the suitability of a material for bio-applications is to have higher
corrosion resistance and, consequently, lower toxicity due to released metallic ions [6]. Any difference
between the chemical composition of the bone structure and the metallic implants causes bone/implant
bonding issues and subsequent problems for a patient [7,8]. To solve the corrosion and bone/implant
bonding issues, many researchers have suggested surface treatment by bioactive hydroxyapatite
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(HA) ceramic coating. This coating consists of Ca/P components (Ca10(PO4)6OH2), enhances the
bone/implant bonding properties, and increases the corrosion resistance of the substrate [9,10].
Corrosion measurements are mostly done in prepared simulated body fluids (SBF) and one of the most
common types of SBF is Hank’s solution which is mostly consisted of NaCl [11]. HA coatings have a
close composition match with that of the bones as the components are the major inorganic portion of
the bone composition. Thanks to this match, these coatings allow fast and selective bone ingrowth and
enhanced osseointegration [12,13].

Corrosion resistance, biocompatibility, wear resistance, stiffness match with bone, and enhanced
bone ingrowth are the most effective features of bone implant materials [14–16]. Corrosion resistance
and biocompatibility are the most crucial indicators of suitability of metallic implants while exposed
to harsh environments. Human body environment and physiological fluids are corrosive saline
mediums which cause noticeable corrosion of implants if they are not protected by oxide layers or
protective covers. In some of the metallic materials which have specific elements such as nickel (Ni),
the byproducts of the corrosion reactions happening inside the human body can be severely toxic
and lethal to their adjacent living tissues. Concurrently, the corrosion process degrades the implant
materials and reduces their mechanical stability which eventually causes a premature failure (before
complete healing of the patient). Even if none of the above effects harm the patient, a secondary surgery
is needed in order to remove the implant out of the patient body after complete recovery [17,18].

Other than corrosion resistance, biocompatibility is the most important functional feature of
implant materials. Biocompatibility is defined as the reaction of living organs to the implant material
around them. If the tissues present positive feedback and live in contact with the implants, the material
is biocompatible, and cells can grow and sustain on or close to the implant surface. However, if there
are toxic ions released from the implant material, cell growth will be prevented. This characteristic
relies on the substrate microstructure and chemical composition as well as the quality of the surface
of the material such as surface roughness, which depends on the manufacturing processes such as
machining [19–23].

All being said, the coating processes and especially the ones offering deposition of HA, metallic
oxides, and polymers are reliable solutions. In the following discussion, the most applicable techniques
are introduced in detail, i.e., sol-gel, high-velocity oxy-fuel plasma coating (HVOF), plasma spraying,
and electrochemical coatings. Although the mentioned processes are widely used in the deposition
of protective layers and surface treatment, there are other processes which are more advanced and
are mostly used for specific applications. Instances of these processes are laser beam melting (LBM)
electron beam melting (EBM), and ion beam melting (IBM) processes that utilize the emitted energy
of the electron, ion, and laser beams to melt materials and deposit the melt on a substrate surface.
In addition, these processes are known as high-energy coating techniques which are less used for
common applications [24–29]. The coating quality in these methods is affected by the melt pool
characteristics, which depend on the process parameters [30]. Moreover, different modeling and
simulation techniques can be implemented to achieve a deeper understanding of the deposition
processes. These methods can utilize continuum mechanics principles, numerical solutions, and use of
software to release the highest possible accuracy in their predictions [31–34].

In summary, this study intends to introduce the most efficient means of surface protection and
coating for biomedical materials, especially the ones used as bone implants, and evaluate their potential
as a reliable way to deposit the desired materials on the surface of implants with the least possible
side-effects. The following sections are talking about the coating techniques and the deposited layers
with the most significant advantage they provide.

2. Bioactive Material Deposition Techniques

One of the most common surface modification processes is the deposition of a set of selected
materials, called coating. However, since the range of these materials is wide, different methods have
been introduced. These processes are selected based on the substrate material, applications of the
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coated material, and the coating layer thickness [35,36]. There are numerous coating methods offering
different capabilities each, however, only a few of these techniques are sufficiently reliable to be applied
for bio-application purposes [37,38]. These techniques simultaneously provide corrosion resistance
and biocompatibility enhancement for the substrate. Among many materials for these means, using
HA shows a high increase in biocompatibility and bone/implant interface formation. The following
discussion presents reliable methods (i.e., sol-gel technique, High-Velocity Suspension Flame-Spraying
(HVSFS), plasma spray coating, and electrochemical deposition) of HA deposition [39,40].

2.1. Sol-gel

Sol-gel has been at the center of attention in recent years thanks to its simplicity, flexibility, and
low cost of the process. This process provides a reliable enhancement of coating adhesion on the
substrate of metallic biomaterials [35,41]. Sol-gel consists of two distinct parts known as sol and gel.
For the sol part, calcium-phosphorus-based (CaP) precursors are solved in ethanol and distilled water
to produce phosphorus pentoxide (P2O5)/triethyl phosphate (C6H15O4P) and increase hydrolysis
of the sol part, respectively [42–44]. Ethanol plays a key role in solving Ca part of the precursors,
as well [45]. In the next step, the two distinct parts are mixed carefully, and after undergoing an
evaporation process, the liquid medium goes away. This process repeats for many times until the
desired viscosity of the sol-gel medium is achieved. Besides the viscosity, the chemical concentration of
the ingredients is crucial in achieving a high HA formation on substrates [46,47]. The sol-gel technique
is a dipping process that undergoes three different steps: Dipping, withdrawing, and air drying.
The first two steps are mostly done in a controlled constant speed to prevent entrapping air bubbles
and a non-uniform layer thickness of the coating medium, respectively. To obtain such a quality of
uniformity, many researchers utilize controlled speed motors or servo motors. However, there has not
been a significant difference between parts coated manually and automatically since the process is a
dipping method and covers the whole geometry of the substrate regardless of its complexity [48–50].
On the other hand, this process can perform composite and multi-layer coatings by changing sol-gel
medium (i.e., composition and viscosity) and iteration of dipping, withdrawing, and drying steps,
respectively. With this method, it has been reported that HA coating of 0.05–15 mm thickness has
been achieved [35,51]. Based on drying and the method of applying a sol-gel coating (dipping and
rotation) to the substrate, different structure of coating (rods and spheres) can be achieved [35]. Figure 1
represents a summary of the steps of the sol-gel coating process.
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Another advantage of sol-gel coatings can be the ability to undergo annealing in a furnace to
further stabilize the deposited layers with less deep thermal cracks, which cause discontinuity and
less protection [52]. Compared to the thermal coating processes, there is no significant change in the
composition of the deposited layer of coating. Kuntin et al. [53], reported that deposited HA layer
on the substrate by plasma spraying decomposes to calcium oxide (CaO), tetra-calcium phosphate,
and tricalcium phosphate. The high temperatures of these types of coating processes (above 5000 ◦C)
may burn or delaminate the deposited layers, as well. However, annealing temperatures used for
curing and stabilization of sol-gel deposited layers are in the range of 375 to 500 ◦C that is notably
lower than those of thermal coatings [54]. Liu et al. [55], reported a significant adhesion enhancement
of HA layers after annealing in an atmospheric protected furnace in the mentioned temperature range.
In other scientific reports, it has been mentioned that post-processes such as heat treatment facilitates
densification and apatite formation of the deposited HA materials on the substrates and increases
adhesion between the substrate and the deposited materials. However, the heat treatment temperatures
must be below the melting point of the weakest material in order not to force any collapse in the
mechanical and biological properties [7,56,57]. Other considerations have been applied to improve
the quality of sol-gel deposited HA layers. For instance, a new polymeric material known as poly
ε-caprolactone (PCL) has been introduced [58]. Hanas et al. [59], reported the formation of a porous
microstructure of the coating layer and increased osseointegration of coated substrates by addition of
PCL to HA. Alemon et al. [60], claimed that a porous coating layer of 184 µm thickness was formed
on a Ti6Al4V substrate that provided enhanced adhesion between coating and substrate with fewer
micro-cracks on the surface of the coating layer. In a similar study by Catauro et al. [61], they reported
an increased wear and corrosion resistance of the coated substrates resulting in less metallic ion release
as corrosion byproducts. Figure 2 shows a composite sol-gel coating microstructure. In this figure, the
sol-gel coated samples were post-processed in 600 and 1000 ◦C and then were exposed to SBF media
for 21 days. The difference in morphology of the coating surface can be clearly seen for different heat
treatment temperatures and medium compositions.
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exposure to simulated body fluids (SBF) with different compositions [62].

2.2. High-Velocity Suspension Flame-Spray (HVSFS) Coating

HVSFS is a modified type of high-velocity oxy-fuel (HVOF) coating process that utilizes
suspensions with the desired composition to deposit a coating layer on substrates [63,64]. Figure 3
represents a schematic view of an experimental HVSFS setup. In this method, an inlet pushes the coating
materials to the stream of hot flames and accelerates them toward the target substrate. The advantage
of using this process is a significantly increased coating speed and a larger area of coverage [65,66].
The principles of this process are straightforward, and the equipment are not expensive compared to
other advanced coating technologies such as EBM and IBM processes. Ghosh et al. [67], reported that
the materials through the hot stream can be mixed and new composite materials can be produced prior
to deposition on substrates. This feature increases the flexibility of HVSPS coating process. On the
other hand, there is no need for the deposited HA particles to perform a heat treatment as the particles
have been already passed through a flame stream [68]. It has been reported by Forg et al. [69], that with
increasing the velocity of the flame stream, the porosity of the coating layer increases while the velocity
and porosity can be controlled in real-time. Based on research by Bernstein et al. [70], finer powders can
be utilized in specifically designed fluid media in order as carriers. In this case, a finer coating structure
with less unintentional porosity forms on substrates. Taking advantage of HVSPS characteristics in
determining coating thickness, the gap between thin-film fabrication (chemical and physical vapor
methods) and thick layers created by thermal spraying can be covered [71,72].
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Although this process offers interesting advantages, the nature of HVSFS is a thermal coating
method, and residual stresses will remain in the deposited structure. Norouzi et al. [74], suggested that
with a decreased thickness of the deposited coating layer the chance of thermal cracking and coating
failure decreases. They reported that the coating/substrate bonding is under the direct influence of the
working parameters of HVSFS, i.e., flame stream velocity, oxygen/fuel ratio, and the distance between
the nozzle and the target substrate. Gadow et al. [75], deposited bio-ceramic materials and reposted
that with a change in the suspension composition, carrier liquids, and particle sizes, HA deposition
takes place in a higher quality. They suggested that use of diethylene glycol (DEG) as an alternative to
water-based media, significantly enhances coating adhesion to the substrate and offers a less porous
microstructure. Chen et al. [76], reported that introducing metal oxide particles to the coating stream
enhances the thermal stability of the substrate because the first layer of the deposited materials acts
as a thermal barrier and protects the substrate against thermal exchange to the successive coating
layers. In another study by Gadow et al. [73], they implemented metal oxide materials suspended in
isopropanol to coat pure Ti substrate in order to form a protective layer. They reported an increase in the
coating surface quality and a significantly finer microstructure than the one obtained by conventional
thermal coating processes. However, they found slightly lower microhardness values of the top surface
of the coating layer compared to those of the conventional thermal techniques. Table 1 presents their
findings in brief.

Table 1. Summary of characteristics of different materials used for coating of pure Ti with HVSFS
process [73].

Spray Material Microhardness (HV) Porosity (%) Roughness (Ra, µm) Phase Composition

Al2O3 620–880 5 0.58 Mainly γ
TiO2 1000 0–0.05 0.65 Mainly anatase

Cr2O3 (in propane) 1400–1800 4–5 0.47 Hexagonal
Cr2O3 (in ethane) 1100–2000 7–10 0.48 Hexagonal

3YSZ 715–816 <1 1.75 Tetragonal

Figure 4 represents an HVSFS-treated Ti substrate. HVSFS process can be optimized based on
different working parameters. As with any other experimental method, these parameters can affect the
performance of the process. It has been claimed that an increase in the rate of oxygen flow, increases the
rate of coating/substrate adhesion [75]. The same trend has been observed regarding the simultaneous
increase of oxygen and fuels rate [77]. With an increase in these two parameters, the temperature of
the flame stream rises melting the involved particles inside the flame stream. Due to the acceleration
of these particles, they may penetrate to the top layers of the substrate. At the same time, after partial
melting, they become softer. Combining these two characteristics, they form a strong bonding to the
substrate. However, excessive increase of the fuel and oxygen rate may increase the flame temperature
to a point that decomposes the deposited materials and alter their functionality. The other affecting
parameter is the distance of the nozzle head to the substrate. It has been reported that a shorter
distance results in an increased bonding of the deposited materials to the substrate. However, with an
inappropriate decrease in the distance, the formed turbulence may cause less deposition of materials
due to splashing [78,79].
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2.3. Plasma Spray Coating

One of the most investigated methods of material deposition is a plasma spray coating. Thanks to
its ability to deposit metallic alloys, oxides, and ceramics, this process offers a wide range of applications
in biomaterial and body implants coatings [81,82]. This process is similar to HVOF and HVSFS coating
techniques. Figure 5 represents a schematic overview of a working plasma spray setup and the position
of the targeted substrate to perform an effective HA coating experiment. A flow of solid particles is
merged into a hot and accelerated plasma stream. Due to the high temperature of this process, there is
a possibility of forming composite coating materials. The accelerated particles get hot and soft through
the plasma stream and cover the surface upon impact to the substrate. The mechanism of coating is
either by penetrating to the substrate or by deforming the particles due to the impact of energy. In the
latter case, the flattened particles accumulate after a series of spraying and cover the surface of the
substrate [83]. In addition, this process is capable of holding different atmospheric protections, i.e.,
air, inert gas, or vacuum. Narayanan et al. [84], reported that although the plasma jet reaches the
high temperatures of 10,000 K or higher, a drastic temperature drop occurs after the plasma jet exits
the nozzle tip. This process enjoys a high range of applications from biomedical implant coatings
to fabricating thermal barrier coats. It has been reported that the plasma-treated surfaces present a
high adhesion of coating/substrate [85]. Oehr et al. [86] coated a Ti plate with plasma spraying and
deposited HA particles on the substrate. They observed an enhanced coating adhesion with improved
osseointegration properties. Fatigue performance of titanium alloys is important regarding various
applications [87], therefore, many studies were carried out to enhance the fatigue properties of these
components. Yoshinari et al. [88] investigated the effect of HA coating thickness on the fatigue of
Ti6Al4V alloy. They reported coating thicknesses of 25–100 µm do not show any negative effect, while
an increase in thickness to 150 µm reduces the fatigue properties of the mechanical part. According
to their results, increasing the thickness of the coating increases the difference between the material
behavior of the substrate and the coating layer. Moreover, they discussed the excessive thermal shock,
which is applied to the substrate during a thicker coating formation, causes micro-crack formation in
both the coating layer and the substrate, reducing the fatigue life of the whole component.
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Similar to HVOF, a modification can be made to plasma spray coating to change the feedstock
state. Gross et al. [90] introduced a suspension intake to the plasma jet and reached to thin-film coatings
of 5–50 µm thickness. The process of utilizing suspension in the plasma spray coating is known as
suspension plasma spray (SPS). The thickness of SPS-treated layer is significantly lower than the
ones made by conventional plasma spray coating [91]. Different working parameters can affect the
deposition quality. These parameters are particle size and feed rate of the feedstock, and atmosphere and
acceleration of the plasma jet. Based on different combinations of the mentioned parameters, different
deposition thicknesses ranging from sub-micron to 300 µm can be achieved [92,93]. For instance,
Reitman et al. [94], discussed a decrease in coating/substrate adhesion in higher plasma jet temperatures
due to higher amorphous HA content of the coating layer. Besides optimizing the working parameters,
post-processing is a solution to improve the coating quality. By annealing the coated samples at 700 ◦C
for 1 h, Lynn et al. [95] increased the coating purity and observed a crystalline structure of HA. Basu
et al. [96] investigated the effect of elevated annealing temperature (up to 1100 ◦C) of HA-coated Ti
substrate and claimed that annealing at higher temperatures, results in the formation of more Ca and
Ti oxides in the coating. Zheng et al. [97] utilized the addition of Ti particles to HA particles in plasma
spray coating and reported a significant enhancement of coating/substrate adhesion with increasing Ti
content of the feedstock. Figure 6 represents a composite HA-Zirconia coating layer on a stainless-steel
substrate. As can be seen, the heat treatment process seals a number of micro-pores, but there is no
significant change in the appearance of micro-cracks. Singh et al. [98] modified the composition of
the feedstock and proposed a new composition of 10 wt% (80Al2O3-20TiO2) on Ti6Al4V substrate
and reported an enhanced bonding strength of 30 MP. Table 2 summarizes the properties of different
plasma spray coatings.

Table 2. Comparison between characteristics of different modes of plasma spray coating.

Process Speed Quality Cost Thickness

Air plasma High Low Low High
Inert gas plasma High Moderate Moderate High
Vacuum plasma Low High High High

Suspension plasma Moderate Moderate Moderate Low
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2.4. Electrochemical Coating Techniques

In the electrochemical coating technique, substrates undergo a series of electrochemical processes
prior to being completely coated. Figure 7 represents a schematic overview of an electrophoretic coating
setup. This process utilizes the potential difference between cathodic and anodic poles of an electrical
circuit to form micro-arcs or to exchange ions between anion and cation sides [100]. The coating
process takes place in two steps called electrophoretic and electrolytic deposition. The former is
responsible for depositing large suspension particles existing inside the electrolyte, while the latter
is in charge of depositing fine materials and structure. These two steps may be considered as two
distinct processes or as separate steps of a single coating process [101,102]. In electrochemical processes,
desired coating materials, e.g., CaP precursors, are dissolved in the working electrolyte. The highest
number of applications of electrodeposition coatings done on Ti and Ti alloys substrates [103]. One of
the characteristics of the electrochemical coatings is the uniformity in thickness of the deposited layer
throughout the substrate [104]. Zhao et al. [105], investigated the applications of Pt and graphite anodic
electrodes and reported an increased rate of deposition and enhanced coating quality. Although this
process is considered a low-temperature method, the coated substrates have to undergo a series of
densification and sintering in the furnace. The reason is that the surface of the coated substrate is not a
compact structure due to the large suspension particle deposition during the electrophoretic step [106].
Due to electrochemical facts, the sharp edges, such as micro-cracks, are more prone to ion exchange,
and as a result, they undergo a higher rate of material deposition. This characteristic guarantees the
highest value of homogeneity and integrity in the coating layers [107].
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Figure 7. Schematic view of simple electrophoretic deposition process [108].

Peng et al. [109] investigated electrochemical coating of CoCrMo substrates and proved that
although the thickness of the coating layer was decreased after sintering and annealing processes,
the adhesion of HA deposited layer was significantly enhanced. The same results were reported by
Zhang et al. [110] after annealing HA coated substrates at 500 ◦C for 1 h. However, they reported
that due to the nature of electrochemical reactions in water-based electrolytes, a notable volume of
hydrogen and air bubbles form on the surface of the cathode (the substrate) and prevent the complete
HA deposition process. This discontinuity in the deposition step results in less uniformity and integrity
of the coating layer. Moreover, after the sintering and annealing processes, these defects may get more
intense due to shrinkage [111–113]. To solve this issue, it was recommended to implement H2O2 as
a replacement for water. Because peroxide cancels the deteriorating effects of released H2 gas [114].
In addition, utilizing pulsed power supplies can result in enhanced coating quality and thickness while
the uniformity is improved [115]. They suggested a higher off-time of the pulse to let the HA structures
nucleate and grow easily. Xavier et al. [116] reported an increased apatite crystal formation after
immersing the samples in SBF. There are different types of electrochemical coating processes known as
micro-arc oxidation (MAO) and anodization. The voltage range, at which MAO occurs is comparably
higher than that of anodization [117]. However, anodization is mostly considered as a pretreatment to
electrochemical coating processes, whereas MAO is known as a separate coating technique [118–120].
He et al. [121], reported a successful deposition of a porous Al2O3 structure on Ti substrate utilizing
anodization pretreatment. They observed an increase in CaP structure nucleation inside the pores
of the coating layer. Figure 8 depicts the effect of different parameters on the morphology of the
electrodeposited HA coating layer. In constant voltage mode, with an increase in coating voltage,
the needle structure increases in size. While the process is run under the constant current mode,
in the current density of 5 mA/cm2, the deposited material structure is similar to snowflakes while
with increasing the current density to 10 mA/cm2, the materials deposition takes place in needle
structures again.
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Figure 8. SEM micrographs of HA-coated samples by electrodeposition at (a) 1 V, (b) 2 V, (c) 3 V, (d,e)
5 mA/cm2 and (f) 10 mA/cm2 [122].

According to many research reports, the addition of materials such as ZrO2, carbon nano-tubes
(CNT), and titanium dioxide (TiO2) enhances HA coating performance [123,124]. In addition, it was
observed that addition of other coating layers on the initial one (increasing the thickness by deposition
of multilayered coating) increases the corrosion resistance and enhances ion release behavior of
the coated substrate. This technique is called multi-walled coatings [125]. Henriques et al. [126]
observed that a post heat treatment significantly improves the coating/substrate adhesion and the
nucleation of CaP microstructure. Park et al. [127] reported an enhancement in corrosion resistance
and stability of composite CNT/HA coating resulted in significantly increased biocompatibility. Yuan
et al. [128] observed higher thickness homogeneity and enhanced coating/substrate adhesion in HA
layers deposited on stainless steel. More information can be found in the literature [129,130]. Table 3
represents a brief comparison between different characteristics of the different methods of deposition.

Table 3. A qualitative comparison of properties of different deposition processes.

Method Nature of
Coating Thickness Porosity Adhesion Flexibility Speed Cost References

Sol-gel Physical Low-medium Medium-high Medium-high Very high Very low Low [35]
HVOF Thermal High High High Moderate high Moderate [131]

Plasma spray Thermal High High High High High Moderate-high [132]
Electrochemical Chemical Low-medium Low-medium High Very high Moderate Low [133]

3. Properties of Coating Layers

Coating processes and the materials deposited on any substrate are assessed based on their
performance. Some of these important criteria are the deposition-substrate bonding strength, the coating
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thickness, the corrosion resistance of the coating layers, and the stability of coatings in different working
conditions. Bonding between deposited layers and substrates, called adhesion strength, is evaluated by
applying a stress to the coating layer and measuring the highest strength value, at which no breakage
or delamination occurs. The coating layers adhesion have to be equal or higher than the human bone
stiffness [134]. To enhance the coating layer adhesion, several studies are carried out to investigate
the chemical composition of the deposited materials. As an instance, Zhang et al. [135] reported up
to 35% enhancement in adhesion of sol-gel deposited HA layers on Ti substrates with an increase in
fluorine content of the coating medium. In addition, they claimed that with an increase in the heat
treatment temperature, the adhesion increases, as well. Sopcak et al. [136] utilized the addition of
polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) polymers into HA containing coating
medium and coated Ti samples with electrostatic spraying. In a comparison between substrates
coated using different process parameters, they observed a significant increase of the coating adhesion
strength with an increase in PEG and PVP compounds (up to 400% of the sole HA-coated samples).
Figure 9 represents the surface conditions of different coated samples by HA, PEG, and PVP. In an
investigation by Rocha et al. [71], Ti6Al4V substrate was coated by thermal spraying, and HA-TiO2

ceramic was deposited on the surface. They observed the adhesion strength of 30 ± 2 MPa, which was
higher than what was reported in the literature. Fujihara et al. [137] compared thermal spraying-coated
samples with ion/laser beam-treated samples and reported that after long-term in vivo tests, 90% of the
thick coatings of the first group failed, while ion/laser beam-deposited HA provided higher durability
despite their considerably lower thickness.
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Another factor affecting the protective properties of coating layers is the layer thickness. It has
been reported that hot-isostatic press can form thick coatings of up to 200 µm that is close to the
range of thermal spray coating thicknesses. High-temperature processes such as ion/laser beam
material deposition provide the least thickness of coatings, while they have a reliable adhesion and
protection. In addition, low-temperature processes such as electrochemical processes and sol-gel have
variable thicknesses and offer multi-layered coating layers. Although the last two types of the material
deposition processes are very flexible in coating composition and thickness, they cannot offer a very
thick coating layer, and they are categorized as moderate thicknesses coating techniques [138–141].
Based on the previous discussion, it has been revealed that the protective purposes of ion/laser beam
coating layers have maintained their functionality during long-term applications offering the best
performance. However, the disadvantages of these two processes are the high costs of the process and
equipment and their inability to coat complex geometries [84]. Based on the coating layer adhesion and
thickness, it is important to have a higher physical and chemical stability of the deposited materials.
Stability of a coating means the interaction of the deposited materials under different chemical and
mechanical conditions while the coated implants are in use. Degradation of the coating material in
physiological fluids can be an example of these conditions [142,143]. Figure 10 depicts the degradation
of body implants in different conditions after a specific number of days of application. The samples are
coated by plasma electrolytic oxidation (PEO), then sealed with polycaprolactone (PCL), and finally
dipped in polydopamine (PDAM). The final sample was then washed to remove loosely bonded PDAM
from the coating surface. In many applications, the implants are needed to degrade in the human body
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after a specific time of utilization, e.g., after a fractured bone is healed, but it is important to maintain
the minimum function time [144,145]. Mg implants are very vulnerable to the body fluids, and they
corrode quickly after exposure. However, these materials are good candidates for implants due to
their biocompatibility properties. Many researchers have tried to coat Mg substrates in an engineered
way to provide enough time for the implant to serve inside the human body and to dissolve gradually
and disappear after the healing period. However, if Mg samples are coated with durable coatings,
such as the ones provided by ion beam deposition, the implants remain inside the patient body for
a long time, and another surgery is needed to remove them [146–148]. This example highlights the
importance of stability of the coating materials.
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Figure 10. Degraded Mg-1.2Zn-0.5Ca alloy coupons aged at different durations after in vitro immersion
in the SBF solution for different times of 1, 7, and 28 days. (a) Degradation of Mg-1.2Zn-0.5Ca (b)
degradation of PEO coated Mg-1.2Zn-0.5Ca samples, (c) degradation of PEO-coated Mg-1.2Zn-0.5Ca
samples sealed with PCL, and (d) degradation of PEO/PCL-coated Mg-1.2Zn-0.5Ca samples dipped in
PDAM. In the non-coated samples, a severe cracking scheme is visible which is a result of dehydration
of Mg(OH)2 as the main byproduct of corrosion. PEO-treated samples represent no severe sign of
corrosion after 28 days. The PEO/PCL-treated samples provide higher corrosion resistance with a slight
degradation of PCL layers on the PEO-deposited layer. Finally, the PEO/PCL/PDAM samples provide
high corrosion resistance with no signs of pitting or cracking on the surface while sites of HA formation
can be seen obviously on the outer layer which is resulted by addition of PDAM [149].

One of the most important applications of the coating layers is to increase the corrosion resistance
of a substrate, which is exposed to a harsh environment. This means that not all of the bio-applications
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need a coating layer, which degrades gradually and disappears after a period of time [150]. The corrosion
resistance of the coating layers is desired for two reasons: (1) The protection integrity of the implants
and (2) to prevent ion release into the body fluids. Metallic ions are the products of corrosion of metallic
implants and can be harmful to human health, especially when they are higher than a specific dosage.
A significant instance of these materials can be the released Ni ions from NiTi body implants [4]. Based
on the literature, although CaP-based coatings enhance the bone ingrowth and form a quick and strong
interface between bones and implants, they suffer from low corrosion resistance, compared to metallic
oxide coatings, such as TiO2, Al2O3, etc. As a result, solid implants are exposed to corrosive media
and lose their mechanical properties that can be considered as a malfunction in healing a fractured
bone [151]. However, various techniques, such as surface finish, surface blast, heat treatment, change
in composition, etc., have been proposed to modify the surface quality and the deposited materials
structure, thus to enhance the corrosion resistance of CaP-based coatings [152,153]. Zhao et al. [154]
have utilized PCL to seal porous structure of HA coating. They obtained HA/PCL composite scaffolds
with higher corrosion resistance. Based on the surface finish and porosity of the deposited layer,
many considerations can be considered to improve the corrosion properties of a coating layer. Heat
treatment is another method of coating modification that improves the crystallization and enhances
corrosion resistance. Xia et al. [155] investigated an HA-coated Ti6Al4V substrate by the thermal
spraying technique with a successive hydrothermal treatment (HT) resulted in an increased crystallinity.
They reported an enhancement in coating degradation after the HT process. Moskalewicz et al. [156]
implemented TiO2 nanoparticles to enhance the electrochemical corrosion of Ca/P-based coatings. They
introduced a specific ratio of TiO2 nanoparticles to HA solutions prior to implementing the coating
process. Corrosion testing of the coated substrates revealed an enhancement in the corrosion resistance
and bioactivity of the deposited layer. In another study, Ionita et al. [157] achieved a TiO2/HA coating
layer with enhanced corrosion properties and bioactivity, while the deposited materials presented
active antibacterial properties. Santos-Coquillat et al. [158] modified Ti substrate by utilizing MAO.
They observed an increased corrosion resistance after depositing Ca/P structures on the substrates.
In addition, they implemented cell culture experiments and reported a good cell adhesion with no or
lower signs of toxicity after MAO surface treatment. Figure 11 represents the MAO-treated surface.
The difference in coating structure results from different exposure time of specimens. In the two
groups, the microstructure is porous with different pore sizes reflecting the voltage of current density
applied to the sample surface. After exposure of the coated parts to the cell platform, it can be seen
that in both cases, the cells are growing well, which reveals the suitability of the coating composition
and microstructure.

Overall, various parameters are effective in obtaining a reliable coating layer, which is suitable
for bio-purposes. Although at first glance, some of these parameters look more important than the
others, they are all in a direct interrelationship and ignoring one may affect the overall performance
of the coated surface. In most of the bio-applications, corrosion resistance, stability, composition,
and bioactivity of the coating layers are simultaneously in action to offer the best protection and
healing properties.
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Figure 11. SEM micrographs of MAO-treated Ti CP before and after immersion in α-MEM without
cells: (a) MAO-90s, (b) MAO-600s, (c) MAO-90s 5-day immersion, (d) MAO-600s 5-day immersion,
(e) MAO-90s 14-day immersion, (f) MAO-600s 14-day immersion [158].

4. Summary

Many metallic and non-metallic materials are used as body implants to facilitate patient healing.
However, to date, the ratio of implementation of non-metallic to metallic implants is negligible. As a
result, a deep investigation is needed to select the best metallic compound or alloy to derive the
best performance for implants. Unfortunately, metallic implants suffer from different deficiencies,
such as low/high corrosion resistance, releasing toxic ions, and low biocompatibility. To resolve this
issue, many surface modification methods are proposed that coating techniques are among the most
important ones. Each of these techniques demonstrates different capabilities and one has to select a
coating method based on their needs and applications. Among these techniques the most common ones
are sol-gel, high-velocity suspension spray, plasma spraying, and electrochemical coating processes.
Table 4 represents a summary of the materials deposited on different substrates using sol-gel, HVOFS,
plasma spraying, and electrochemical processes.

I. Sol-gel is the cheapest method that has high flexibility in the composition of the deposited
materials and can form deposition on complex substrates.

II. Electrochemical processes are in the same run while they are applicable only to conductive
materials. This limits their applications on surfaces that are not electrically conductive.

III. High-velocity flame and plasma spraying processes in different forms can produce considerably
thick depositions. However, these processes implement a high-temperature thermal process to
melt the feedstock or change them into a semi-solid form. A high thermal gradient may affect the
properties of a metallic or ceramic substrate while makes these processes unable to coat polymeric
and plastic substrates.
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Table 4. Summary of materials deposited on different substrates via various coating techniques.

Process Deposited Materials Substrates Reference

Sol-gel HA, TiO2, PCL Ti alloys, ceramic, Stainless steel [35,37,59,60]

HVOFS Metal oxides such as TiO2, Al2O3,
Cr2O3, ceramics Ti alloys, Stainless steel, ceramics [77–80]

Plasma spray HA, HA-Zr2O3, Al2O3-TiO2
Ti alloys, Zr alloys, ceramics,

metallic alloys [85–90]

electrochemical ZrO2, TiO2, MgO, CNT, HA,
HA-TiO2, SWCNT, MWCNT Metallic alloys, ceramics, Ti alloys [119–125]

Therefore, a method should be selected based on the desired needs and functionalities. Many
scientific reports have been revealed that multi-layered coatings are achieved to employ the advantages
of different deposition processes while diminishing their drawbacks. Although current deposition
techniques are reliable means of surface protection, there is still a need for finding better solutions by
introducing new techniques and materials for coating. Perspective studies can focus on developing
combined processes with fewer side effects, higher control on deposition rate, less cost and higher ease
of use.
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