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Relational models of cognition provide parsimonious and actionable models of generative 
behavior witnessed in humans. They also inform many current computational analogs of 
cognition including Deep Neural Networks, Reinforcement Learning algorithms, Self-
Organizing Maps, as well as blended architectures that are outperforming traditional 
semantic models. The black box nature of these computer models artificially limits scientific 
and applied progress and human computer interaction. This paper presents a first in the 
field attempt to model relational processes using logical derivation scripts and network 
graph visualizations written in the open-source R language. These tools are presented 
as a way for researchers and practitioners to begin to explore more complex relational 
models in a manner that can advance the theory and empirical science, as well as prepare 
the field for future collaborations with advanced computational models of cognition.
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INTRODUCTION

Relational models of language and cognition are receiving increased attention in both cognitive 
science and behavioral psychology. For example, cognitive researchers have shown that relational 
reasoning is central to fluid intelligence developmentally (Crone et  al., 2009); behavioral 
psychologists have found that training in relational reasoning can impact intelligence in normally 
developing (May et  al., 2022) and developmentally delayed populations (Dixon et  al., 2021). 
Artificial general intelligence (AGI) is similarly drawing together research traditions in their 
focus on relational reasoning (Johansson, 2019). For example, “relation networks” are being 
successfully explored in neural network models of AGI (Santoro et  al., 2017) and Relational 
Frame Theory (RFT: Hayes et  al., 2001) is being effectively used to address shortfalls of 
traditional structural semantics models in AGI implementations (Edwards et  al., 2022).

In order to explore the broader implications of assessing and training relational reasoning 
for complex issues in human cognition it is necessary to have both highly specified tasks 
(e.g., see Cortes et  al., 2021) and carefully crafted analytic and descriptive models. We  will 
use the example of RFT to explain why that is so.

Relational frame theory accounts for generativity in human language through a learned 
behavior of combining two or more previously trained relations into novel derived (not directly 
trained) relations. For example, if A is less than B and B is less than C, by combinatorial 
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derivation A must be  less than C. Combinatorial derivation, 
along with learning to respond in reverse to a trained relation 
(i.e., Mutual Entailment: If A > B then B < A) generate relational 
responding behavioral repertoires rooted in human language 
at the rate of ~ 2(n–1) for any given set of n trained relations 
with shared relata.

This massive generativity leads to enormously complex 
relational networks and systems such as the entire corpus of 
human written knowledge. The expansive quality of human 
cognition when it is viewed relationally means, on the one 
hand, that simplified models and procedures used in controlled 
research are subject to criticisms of excessive extrapolation. 
On the other hand, it means that more naturalistic and expansive 
models that may describe and predict human behavior can 
either become inexact or entirely incomprehensible when they 
are examined as a collection of discrete elements.

A variety of computational systems and analogs of relational 
models have emerged to facilitate research and understanding 
because of this conundrum. Some of the computational analogs 
informed by RFT have been drawn from machine learning 
expert systems and artificial intelligence neural networks. 
Examples include the use of Deep Neural Networks (DNN) 
to detect effects in multiple baseline single case design graphed 
data (Lanovaz and Bailey, 2020) and forecast human participant 
learning of trigonometry (Ninness et  al., 2019; Ninness and 
Ninness, 2020); the use of Kohonen Self-Organizing Maps 
(SOM: Kohonen, 1988) for behavioral pattern detection in 
legislature voting, breast cancer diagnosis (Ninness et al., 2012), 
visual symmetry detection (Dresp-Langley and Wandeto, 2021), 
and surgical expertise detection (Dresp-Langley et  al., 2021); 
and blends of DNN and SOM architectures to model decision 
making in child welfare systems (Ninness et al., 2021). Additional 
work with Connectionist Models (CM) has provided confirmatory 
validation of methodological nuances in relational training 
sequencing for humans (Lyddy and Barnes-Holmes, 2007).

Much of the above work is evaluated solely on predictive 
validity or goodness of fit to untrained data. Relationally 
informed computer analogs provide a yes/no decision or predicted 
value and confidence interval given an input set of data, but 
otherwise do not provide interpretable output to contextualize 
the results. This generic criticism of AI systems is called “the 
black box problem” (Bunge, 1963) and the need to both 
experimentally analyze these systems and the possibility of 
human–computer collaboration with them has highlighted the 
need to generate descriptions of relational networks that are 
interpretable by humans. One specific conceptual description 
of such output is a relational network represented as a directional 
graph of vertices and edges where each vertex represents some 
relata and edges represent relations. A complex version of this 
graph representation generated by a blended AI architecture 
is conceptually described by Edwards et al. (2022). The present 
paper describes scripts for the R Statistical Software package 
(R Core Team, 2020) that constitutes a graph network generator 
and visualizer that conform to a relational learning model. It 
is provided as a means of exploring how such a visual 
representation of relational responding might complement 
applied and experimental practices.

These scripts are designed to intake a base set of relational 
statements and generate tabular output of all expected derived 
relations. That output can be interpreted on its own or visualized 
with the accompanying visualization script. The immediate 
purpose of the package is to provide a tool for relational 
cognition researchers to model and visualize the deriving of 
relationships that is human readable, reliable, quick, and 
repeatable to a level of complexity not previously available. 
The following sections of this paper include a detailed description 
of the specific steps taken to translate theory into code (see 
section “Materials and Methods”), a tutorial on how to use 
the code itself with accompanying reference outputs (see section 
“Results/Tutorial”), and an extensive discussion of the 
considerations, limitation, and future directions (see section 
“Discussion”). It is not necessary to be familiar with the theory 
to start working with this package. A reader who wishes simply 
to get the code up and running via the tutorials can skip to 
“Results/Tutorial”.

MATERIALS AND METHODS

A consistent method of computer automated relational derivation 
is not currently available. RFT is being used as a base model 
of doing so because of its clarity and simplicity regarding the 
minimal requirements of relational learning. Outside of the 
computer coding itself, one key element required for this kind 
of automation is a formalized set of steps that can reliably 
derive relations for both mutual and combinatorial derivation. 
In this first attempt we  set aside issues of contextual control 
over derived stimulus relations and the separate contextual 
control of functions that are altered by these relations. Instead, 
in a first attempt to create just an automation tool, the first 
author (PS) has focused on formalizing the logical steps of 
derivation at the mutual and combinatorial levels for three of 
the most common relations used in RFT research and application, 
the equivalence relation (SAME or “=”) and the simple 
comparative relations GREATER THAN (>) and LESS THAN 
(<).The next sections will attempt to describe each rigorously 
and following sections will discuss some of the challenges that 
surfaced and how they were addressed in software package 
now available for use under a General Public License version 
3 (GPLv3) copyleft license, written in the R Statistical language 
(R Core Team, 2020), and available on GitHub.

Equivalence Derivation
Mutual Entailment
At the level of mutual entailment, equivalence relations are 
defined by symmetric responding (Sidman et al., 1982; Sidman 
and Tailby, 1982). That is, for any relational response to 
Stimulus A as it relates to Stimulus B, the response to Stimulus 
B as it relates to Stimulus A is functionally identical. One of 
the most common incidences of equivalence responding in 
human behavior are responding to words as if they are the 
event we  equate them to and vice versa. The symbolic 
representation of equivalence is commonly the mathematical 
equals sign (=). If an equivalence relation is trained (e.g., 
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A = B) then the mutually entailed equivalence response is 
described by a relational statement that simply swaps the 
stimuli around the equals sign (e.g., B = A). Pseudo code for 
mutual derivation of equivalence relations would look something 
like the following:

 Input: One relational statement composed of two stimuli 
names to either side of an equal sign (the relational operator; 
e.g., A = B).
Step 1: Locate relational operator and assign to a variable (r).
Step 2: Assign all characters to the left of (r) to a variable (x).
Step 3: Assign all characters to the right of (r) to a variable (y).
Step 4: Return derived relational statement arranged (y)(r)(x).
 Output: One relational statement with stimuli names reflected 
across the equals sign (e.g., B = A).

Combinatorial Entailment
At the level of combinatorial entailment, equivalence relations 
are defined by what Sidman called transitivity. That is, the 
combination of two relational statements of equivalence that 
each involved one shared stimulus (e.g., A = B and B  = C) 
resulted in equivalence responses to the other two stimuli (e.g., 
A = C). This transitivity of equivalence is experienced when 
the word of something previously known is learned in another 
language by being told that the new word is the same as the 
old word. Combinatorial entailment for combining an equivalence 
relation with other non-equivalence relations will be  covered 
later so the pseudo code for combinatorial entailment of two 
equivalence relations would look something like the following:

 Input: Two relational statements each composed of two 
stimuli names to either side of an equals sign (e.g., A = B 
and B  = C).
 Step One: Assign each relational statement to their own 
variable (a & b).
 Step Two: Locate the relational operator in (a) and assign 
to variable (ra).
 Step Three: Assign all characters to the left of (ra) to a 
variable (xa).
 Step Four: Assign all characters to the right of (ra) to a 
variable (ya).
 Step Five: Locate the relational operator in (b) and assign 
to variable (rb).
 Step Six: Assign all characters to the left of (rb) to a 
variable (xb).
 Step Seven: Assign all characters to the right of (rb) to a 
variable (yb).
 Step Eight: Count the number of unique stimuli names in 
the list (xa, xb, ya, yb) and assign to a variable (u).
 Step Nine: Count the number of items in the list (xa, xb, 
ya, yb) and assign to a variable (c).
Step Nine: IF (u) is equal to (c) minus 1, continue, ELSE STOP.
 Step Ten: Find the stimuli names in the list (xa, xb, ya, 
yb), that only occur once and assign to variables (da) 
and (db).
 Step Eleven: Return derived relational statement arranged 
(da)(ra)(db).

 Output: One relational statement with stimuli names of the 
unique stimuli on either side of the equals sign (e.g., A = C).

Greater Than and Less Than Derivation
Mutual Entailment
All relational responses other than equivalence do not 
demonstrate symmetrical responding at the level of mutual 
entailment (Hayes et  al., 2001, pp.  29–31). In the case of the 
comparative relational pair Greater Than (>) and Less Than 
(<), the mutually derived relational response of one is the 
other. For example, the mutually entailed relationship to “A 
dime is greater than a nickel” is “A nickel is less than a dime.” 
Pseudo code for mutual derivation of these two relations would 
look something like the following:

 Input: One relational statement composed of two stimuli 
names to either side of a left carrot (<) or right carrot (>) 
sign. (e.g., A < B).
 Step One: Locate the relational operator and assign to 
variable (r).
 Step Two: Assign all characters to the left of (r) to a 
variable (x).
 Step Three: Assign all characters to the right of (r) to a 
variable (y).
 Step Four: When (r) is (<), assign (>) to variable (rm), 
else assign (<) to variable (rm).
 Step Five: Return derived relational statement arranged (y)
(rm)(x).
 Output: One relational statement with stimuli names reflected 
across the relational operator and the relational operator 
swapped with its mutually entailed alternative. (e.g., B > A).

Combinatorial Entailment
At the level of combinatorial entailment, comparative relations 
do not demonstrate transitivity as described by Sidman. That 
is, just because at least one of the two relational statements 
includes a comparative does not necessarily determine that 
the combinatorially entailed relation will be  the same. For 
example, the derived relation between unique stimuli when 
combining the statements “A lemon is less than a potato” and 
“An apple is less than a lemon” is “A potato is greater than 
an apple.” Additionally, special cases of combinatorial entailment 
with comparative relations are logically indeterminate (Vitale 
et  al., 2008, 2012; Quinones and Hayes, 2014). In the same 
example above, if the second statement had been “An apple 
is greater than a lemon,” there would not be enough information 
provided to fully derive a specific comparative relation between 
the potato and apple. That is, given the available information 
it is equally possible that the potato and apple are equal or 
different for the characteristic referenced by the comparative 
relation. The following pseudo code should handle all cases 
of combinations of at least one greater than or less than 
relational statement and a second greater than or less than 
or an equivalence statement and return a derivable relation 
where possible and some indication when an indeterminate 
case occurs.
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 Input: Two relational statements each composed of two 
stimuli names to either side of a relational operator with 
at least one being Greater Than (>) or Less Than (<; e.g., 
A < B & B < C).
 Step One: Assign each relational statement to their own 
variable (a & b).
 Step Two: Locate the relational operator in (a) and assign 
to variable (ra).
 Step Three: Assign all characters to the left of (ra) to a 
variable (xa).
 Step Four: Assign all characters to the right of (ra) to a 
variable (ya).
 Step Five: Locate the relational operator in (b) and assign 
to variable (rb).
 Step Six: Assign all characters to the left of (rb) to a 
variable (xb).
 Step Seven: Assign all characters to the right of (rb) to a 
variable (yb).
 Step Eight: Count the number of unique stimuli names in 
the list (xa, xb, ya, yb) and assign to a variable (u).
 Step Nine: Count the number of items in the list (xa, xb, 
ya, yb) and assign to a variable (c).
Step Nine: IF (u) is equal to (c) minus 1, continue, ELSE STOP.
 Step Ten: Find the stimuli names in the list (xa, xb, ya, yb), 
that only occur once and assign to variables (da) and (db).
 Step Eleven (see “Sequence Matters”): Based on sequence 
of (da & db) in (a & b) and the combination of (ra & 
rb) assign (<), (>), or (indeterminate) to (ra).
 Step Twelve: Return derived relational statement arranged 
(da)(ra)(db).
 Output: One relational statement with stimuli names of the 
unique stimuli on either side of the appropriate relational 
operator OR “indeterminate” in cases where the relation 
cannot be  derived from the input statements (e.g., A < C).

RESULTS/TUTORIALS

The most current R script files may be  downloaded.1 The two 
scripts are task specific. The first script (relational permutation. 
R), intakes the relational base set and outputs the derived 
relational set list. The second script (network graph visualizer. 
R), intakes the output from the first and outputs network 
graph visualizations. This separation was done so that the 
derivation processes may be deployed in standalone applications 
without the additional overhead of the visualization dependencies. 
The following tutorial walks through how to generate solution 
sets for the two most common three stimulus relational networks 
discussed in RFT literature.

Tutorial 1: Three Stimulus Equivalence 
Network
A stimulus equivalence network is any set of stimulus where 
the relationship between each is equivalence (i.e., sameness). 
Many RFT publications use the example of an equivalence 

1 https://github.com/CoachPatrickSmith/Relational-Network-Generator.git

network connecting the letters of a word, the sound, and the 
referent object as an introduction to the stereotypical three 
stimulus network. For example, the letters D-O-G are a distinct 
stimulus from the sound “dog” and the animal that the English 
language refers to as a dog and yet once learned, most individuals 
will respond to all three functionally the same. In this package, 
each stimulus is represented by a character (i.e., 0–9, a–z, or 
A–Z) and the relation is represented by a relational operator 
(i.e., =, <, >, and “ku”). In this example, the stimuli letters: 
DOG, sound: “dog,” and object: dog will be  represented by 
A, B, and C, respectively. The equivalence relation between 
each will be  represented by the equals sign (=). The simplest 
set of relational statements that derives to the entire equivalence 
network are any two statements that involve all three stimuli. 
Those may take the form “A = B, B = C,” “C = A, B = A,” or any 
other of the possible permutations afforded by the bi-directional 
nature of the equivalence relation. For purposes of this tutorial, 
“A = B” and “B = C” will be  the base set.

 Step One: Open the “relational permutation. R” script, load 
dependent libraries and the “relationParse,” “mutualEntail,” 
“combinatorialEntail,” and “relationTrain” functions.
 Step Two: Assign base set to a list with a variable name (a). 
c(“A=B”,“B=C”) -> a
Notes:
1.  This example uses “a” as a generic variable name but any one 

can be used as long as you are consistent throughout the code.
2.  The left to right syntax used here is for sequential readability 

by R coding novices. R handles a number of different 
syntax structures. In pseudo code this line would read as 
“Combine (c(…)) the character strings “A = B” and “B=C” 
into a vector list and assign (−>) to the variable named “a.”

 Step Three: Assign the output of the relational derivation 
function with (a) as the input to a variable (x). 
relationTrain(a) -> x
 Notes: The relationTrain output is a table of all the base 
and derived relational statements.It includes additional 
information used for visualization and diagnostic purposes. 
The table (x) should look like Table  1.
 Step Four: Open the ‘network graph visualizer. R’ script 
and load dependent libraries.
 Step Five: Using (x), create a list of unique relational 
statements and assign to variable (edgeList). 
filter(x,!duplicated(Relation))-> edgeList
 Note: While there is a constrained set of derivable relationships, 
relation Train can sometimes create duplicates since a relation 
may be derived via both combinatorial and mutual entailments.
 Step Six: Coerce (edgeList) into a network object type and 
assign to a variable (relTnet). 
network (edgeList,  matrix.type='edgelist',  

ignore.eval=FALSE, loops=TRUE, 
directed = FALSE, multiple = TRUE)->  
relTnet

 Step Seven: Coerce (relTnet) into an Igraph object and assign 
to variable (rel_graph). 
asIgraph(relTnet) -> rel_graph
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 Step Eight: Plot (rel_graph) to generate the network graph 
visualization. 
plot (rel_graph, vertex.size=8,  

vertex.label=V(rel_graph)$vertex.names,  
edge.label=E(rel_graph)$Relation,  
edge.color=E(rel_graph)$edge_color, 
edge.arrow.size=1)

Note: Output plot should match Figure  1.
Notes:
 1. Steps four through eight are already written in the ‘network 
graph visualizer. R’ script so they only need to be  executed. 
They are spelled out here for illustration purposes.
 2. Code includes additional line by line commentary to 
signpost how various settings affect visualization output.

Tutorial 2: Three Stimulus Mixed Relations 
Network
Very little changes in terms of coding between an equivalence 
network and one that includes either all comparative relations 

or mixed relations. Below will only cover those changes. Steps 
that are identical to Tutorial 1 will be abbreviated and indicated 
with ellipses (…). For tutorial purposes, the base set used will 
be  “A > B” and “B=C.”

Step One: Open the relational permutations. R script…
 Step Two: Assign base set to a list with a variable name (a). 
c("A>B","B=C") -> a
Step Three: Assign output to a variable …
 Note: The table generated by Step Three (x) should look 
like Table  2.
Step Four: Open network graph visualizer. R script…
Step Five: Create an edge list…
Step Six: Coerce edge list to network object…
Step Seven: Coerce network object to an igraph object…
Step Eight: Plot Network Visualization…
Note: Output plot of Step Eight should match Figure  2.

Tutorial 3: Complex Mixed Relations Network
While the stereotypical two base relation (three stimulus) 
networks are used for the first two tutorials, the package is 
not limited to only two base relation sets. It can handle single 
relation inputs (i.e., “A > B”) as well as many relations as the 
base set input. For this example, the base set will be  “gkuj,” 
“h < i,” “i < k,” “k < j,” “l < o,” “mkuk,” “n = o,” and “p > o” to highlight 
how little changes in the actual code.

Step One: Open the relational permutations. R script…
 Step Two: Assign base set to a list with a variable name (a). 
c("gkuj", "h<i", "i<k", "k<j", "l<o", "mkuk", 
"n=o", "p>o") -> a
Step Three: Assign output to a variable …
Note:
 The table generated by Step Three (x) should look like Table 3.
Step Four: Open network graph visualizer. R script …
Step Five: Create an edge list …
Step Six: Coerce edge list to network object …
Step Seven: Coerce network object to an igraph object …
Step Eight: Plot Network Visualization …
Note:
Output plot of Step Eight should match Figure  3.

DISCUSSION

Sequence Matters
In the process of converting the various metaphors of comparative 
relational derivation behavior into computer code logic it became 

TABLE 1 |  RelationTrain output for three stimulus equivalence network.

From To          Relation_Type Derivation_Level Relation Edge_color Derived_from

A B             = Directly Trained A = B Blue NA
B A             = Mutually Entailed B = A Purple NA
B C             = Directly Trained B = C Blue NA
C B             = Mutually Entailed C = B Purple NA
A C             = Combinatorially Entailed A = C Orange A = B,B = C
C A             = Combinatorially Mutually Entailed C = A Orange A = B,B = C

FIGURE 1 | Visualization Output for three Stimulus Equivalence Network 
with a Base Relational Set of A = B and B = C. Vertex represent stimuli, blue 
edges are input relations, purple edges are mutually derived relations, and 
orange edges are combinatorially derived relations.
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apparent that the deeper implication of intransitivity is that 
the input sequence of relational statements impacts how the 
code derives output. Vitale et  al. (2008, 2012) highlighted 
related sequential effects and identified six major sequence 
forms when two greater than and less than statements are 
combined. These forms are based on a combination of the 
similarity of the two relations and the linearity of the sequence 
of stimuli presented. For example, a simple relational pair A > B 
& B > C is described as having the same relational operator 
and presenting linearly. In contrast, A > B & C < A present mixed 
relational operators and a non-linear arrangement of statements. 
This method of structurally parsing comparative relational pairs 
identified 48 unique forms of possible inputs when constrained 
to only comparative pairs. Allowing for one statement of the 
input pair to be an equivalence statement expands the possible 
unique input forms to 72 unique forms falling into seven 
major sequence forms.

The task required in step  11 above requires a conditional 
match to one of those seven major forms to identify the output 

relational operator. In the provided R package, this was 
accomplished by a series of nested conditional IF ELSE statements 
that first identify the shared stimuli and their relative locations 
and then compares the relational operators and works through 
a matching tree until a final TRUE value returns the appropriate 
(ra) relational operator value. Alternatively, this step  11 task 
may be  accomplished through a lookup table, but in either 
method, the input sequence of each relational statement cannot 
be  ignored or discarded.

Two Input, One Output
The pseudo code presented above for each combinatorial 
entailment variant outputs one relational statement. According 
to RFT, two relational statements are a product of combinatorial 
entailment. This seeming contradiction is not actually a 
shortcoming of the code or theory. In the metaphor of derivation 
provided by the theory, either relational statement between 
unique stimuli may be  derived combinatorially. In 
implementation, however, to use the combinatorial entailment 
script to derive both statements would require more computation 
than to feed the single output of the combinatorial entailment 
script right into the input of the mutual entailment script. 
This nesting of combinatorial and mutual entailment scripts 
yields a savings of ~ 5–7 steps or ~ 50–64%.While this may 
not be  the exact method in which relational derivation occurs 
in human organisms, the exponential expansion of relational 
networks implies that the computational efficiency gain here 
is increasingly significant as input sets grow in size and  
complexity.

Indeterminate but Known Derived 
Relations
In the special case of comparative relations not providing enough 
information to explicitly derive a comparative or equivalence 
relationship there is a pragmatic issue of how to handle these 
exceptions computationally. The two immediate possibilities are 
to (1) treat these cases as errors and not include them in any 
further derivation or the final output, or (2) treat these cases 
as any other derivable relation but with their own special 
properties that impact mutual and combinatorial derivation 
processes. The first option is reasonable but may contradict 
both RFT and expectations of human behavior. The full discussion 
of this contradiction is not within the scope of this paper and 
will be  described in more detail in related publications. The 
short explanation is that individuals engaging in derivation can 
respond with respect to a derived relation between two stimuli 

TABLE 2 | RelationTrain output for three stimulus mixed relation network.

From To                Relation_Type Derivation_Level Relation Edge_color Derived_from

A B                   > Directly Trained A > B Blue NA
B A                   < Mutually Entailed B < A Purple NA
B C                   = Directly Trained B = C Blue NA
C B                   = Mutually Entailed C=B Purple NA
A C                   > Combinatorially Entailed A > C Orange A > B, B = C
C A                   < Combinatorially Mutually Entailed C < A Orange A > B, B = C

FIGURE 2 | Visualization Output for three Stimulus Mixed Relation Network 
with a Base Relational Set of A > B and B = C. Vertex represent stimuli, blue 
edges are input relations, purple edges are mutually derived relations, and 
orange edges are combinatorially derived relations.
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without knowing more about that relationship. Consider the 
example of missing puzzle pieces. An individual presented with 
two pieces of a puzzle that do not fit together will engage in 
responses that reflect the absence of one or more pieces with 
only the partial knowledge of the shape and colors of the 
present pieces. Similarly, when provided two relational statements 
that describe metaphorically neighboring stimuli (e.g., “Neveah 
is taller than Damerus,” and “Meara is taller than Damerus.”) 
individuals will respond to the unique stimuli as if they were 
related to each other in some way.

An additional paradox of responding to a relation that 
cannot be derived exactly from information presented is that 

many times the response will be  accurate and consequently 
reinforced as if the behaving individual had known the 
appropriate relation all along. For these reasons, the provided 
R package has been implemented using the second option 
outlined in this section. Additionally, to maintain naming 
consistency with the upcoming publication detailing this 
unique relational response, instead of “indeterminate,” the 
package outputs “ku” (an abbreviation of “Known-Unknown”) 
as the relational operator for those special case derived 
relations that cannot be  otherwise resolved to equivalence, 
greater than, or less than. Additionally, KU relations are 
handled as expressing a dominant transitivity in all mutual 

TABLE 3 | RelationTrain output for complex mixed relation network.

From To Relation_Type Derivation_Level Relation Edge_color Derived_from

g j ku Directly Trained gkuj Blue NA
h i < Directly Trained h < i Blue NA
i h > Mutually Entailed i > h Purple NA
i k < Directly Trained i < k Blue NA
j g ku Mutually Entailed jkug Purple NA
j k > Mutually Entailed j > k Purple NA
k i > Mutually Entailed k > i Purple NA
k j < Directly Trained k < j Blue NA
k m ku Mutually Entailed kkum Purple NA
l o < Directly Trained l < o Blue NA
m k ku Directly Trained mkuk Blue NA
n o = Directly Trained n = o Blue NA
o l > Mutually Entailed o > l Purple NA
o n = Mutually Entailed o = n Purple NA
o p < Mutually Entailed o < p Purple NA
p o > Directly Trained p > o Blue NA
h k < Combinatorially Entailed h < k Orange h < i, i < k
i j < Combinatorially Entailed i < j Orange i < k, k < j
j i > Combinatorially Mutually Entailed j > i Orange i < k, k < j
k h > Combinatorially Mutually Entailed k > h Orange h < i, i < k
l n < Combinatorially Entailed l < n Orange l < o, n = o
l p < Combinatorially Entailed l < p Orange l < o, p > o
n l > Combinatorially Mutually Entailed n > l Orange l < o, n = o
n p < Combinatorially Entailed n < p Orange n = o, p > o
p l > Combinatorially Mutually Entailed p > l Orange l < o, p > o
p n > Combinatorially Mutually Entailed p > n Orange n = o, p > o
h i ku Combinatorially Mutually Entailed hkui Orange i < k, h < k
h j < Combinatorially Entailed h < j Orange h < i, i < j
i h ku Combinatorially Entailed ikuh Orange i < k, h < k
i k ku Combinatorially Entailed ikuk Orange h < i, h < k
j h > Combinatorially Entailed j > h Orange k < j, h < k
j k ku Combinatorially Mutually Entailed jkuk Orange i < k, i < j
k i ku Combinatorially Entailed kkui Orange k < j, i < j
k j ku Combinatorially Entailed kkuj Orange i < k, i < j
l n ku Combinatorially Entailed lkun Orange l < p, n < p
l o ku Combinatorially Mutually Entailed lkuo Orange p > o, l < p
n l ku Combinatorially Mutually Entailed nkul Orange l < p, n < p
n o ku Combinatorially Mutually Entailed nkuo Orange l < o, l < n
n p ku Combinatorially Entailed nkup Orange l < n, l < p
o l ku Combinatorially Entailed okul Orange p > o, l < p
o n ku Combinatorially Entailed okun Orange l < o, l < n
o p ku Combinatorially Entailed okup Orange l < o, l < p
p n ku Combinatorially Mutually Entailed pkun Orange l < n, l < p
p o ku Combinatorially Mutually Entailed pkuo Orange l < o, l < p
h k ku Combinatorially Mutually Entailed hkuk Orange k < j, h < j
i j ku Combinatorially Entailed ikuj Orange h < i, h < j
j i ku Combinatorially Mutually Entailed jkui Orange h < i, h < j
k h ku Combinatorially Entailed kkuh Orange k < j, h < j
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and combinatorial derivations. That is, a KU relation will 
mutually entail another KU relation and any relational pair 
that includes at least one KU relation will combinatorially 
derive to a KU relation.

Relational Recursion
The provided R package was designed to derive all possible 
relations implied by a base set. In simple one, and few, relational 
statement base sets, the complete derivable set is within one 
mutual and combinatorial derivation cycle away from the base 
set. This is not the case as the size of the base set increases. 
For that reason, the package will iteratively recombine the base 
and derived relational statements until all non-KU relational 
statements have been derived. The package handles this process 
in two step fashion. First, all pair sets input into the combinatorial 
entailment script are validated as being unique to each other 
(not two of the same statement) and not being both KU 
statements. This prevents logic loops where the script just 
continuously takes in functionally identical statements expressed 
in both unique sequences (i.e., A < B & B > A) and outputs the 
same as well as the infinite derivation that occurs when both 
statements are KU relations. Second, the final output relational 
statement list of each derivation iteration is compared against 
the most recent full relational statement list prior to that iteration 
and as long the output exceeds input, the two lists are merged 
by unique relational statements and the merged list becomes 
the input for the next iteration of derivation. Once an output 
list has zero unique relations statements compared to the input 
list, the recursion process ends and the final solution set is 

output to a table as well as input into the visualization script 
that generates the network graph visualization.

Limitations
This package has several limitations that fall into philosophical 
and technical categories. Philosophically, it would be  a critical 
scientific error to assume that humans are perfect deriving 
logic machines or that the output of this package applies 
independent of context. Technically, this package is a prototype 
and should be  used with a general approach of caveat emptor 
with specific awareness of the limitations that come with it 
being built on a small relational set, requiring specific and 
limited input forms, assuming singular context for all input 
relations, and having limited evaluation methods.

Humans Are Not Logic Machines
The pragmatic goal of this software package is to open possibilities 
in empirical research and application of RFT related work and 
for relational reasoning research more generally. It is also meant 
to provide a learning tool for what is likely to become available 
as development of relational computer models continues. The 
method that has been implemented here requires translating 
theory about human behavior into a repeatable logical process 
a computer can execute. That means that the output is, at 
best, an approximation of what may be  expected in human 
behavior within the constraints of declaratory logic required 
by computers. This output may be  reliable and may reasonably 
approximate human behavior under many common conditions 
but conflating human behavior and computer logic is a mistake 
in both research and application. An example is provided by 
the known-unknown relational response discussed above. In 
all of the available basic research on known-unknowns, human 
participants reliably did not respond accurately to derived 
relations that were lacking sufficient information (Saunders 
et  al., 1988; Vitale et  al., 2008, 2012; Quinones and Hayes, 
2014). Simply put, human behavior was not strictly logical, 
and a variety of conditions may contribute to unexpected 
responses when the software accurately derives logically consistent 
relationships such as known-unknowns. For this reason, the 
software intentionally does not check for contradictory 
relationships. A base set input list such as “A > B,” “B = C,” & 
“C > A” will be  handled the same as any other input list. In 
this case, the package will output that the relations “A < C” 
and “A > C” which are both logically derivable within the larger 
solution set despite also being logically paradoxical.

Context Matters
A keystone characteristic of RFT is contextual control. That 
is, human behavior is specific to contextual environments. In 
other words, a behavior that occurs reliably following a specific 
stimulus in one context, may never occur following the same 
stimulus in another context. Additionally, an opposing functional 
response may occur reliably in that second context in the 
presence of the same stimulation. RFT delineates two categories 
of stimulus influence named Crel and Cfunc (pronounced 

FIGURE 3 | Visualization Output for Complex Mixed Relation Network. This 
also illustrates how networks may be isolated from one another. Vertex 
represent stimuli, blue edges are input relations, purple edges are mutually 
derived relations, and orange edges are combinatorially derived relations. 
*Combinatorially derived relational labels omitted for publication readability.
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see-rell and see-funk), the latter of which is described as 
selecting for the contextual function most likely to be reinforced. 
This package, as a first attempt, focused on the simpler task 
of deriving Crels (contextual relations) and assuming a singular 
Cfunc. If a user wishes to model multiple context dependent 
relational sets, the base set for each context should be  run in 
independent instances at this time.

Limited Relational Set
As a prototype, the relational set modeled was significantly 
reduced from what has been described in the RFT literature. 
The goal of modeling equivalence, greater than, and less than 
as the prototype set of relations resulted in either modeling 
for the known-unknown cases or ignoring an interesting 
relational phenomenon. Even amongst the comparative relational 
response family, this constrained set excluded relational types 
such as Difference and Opposition. Future goals of this package 
include developing such derivation logic for each of the relational 
response class families, but for the moment, the package is 
similarly constrained.

Limited Input Structure
Related to the strategic choice to simplify above, the package 
is also subjectively constrained to a specific input form for 
now. Relational statements used as input must follow a “one 
character—relational operator—one character” format. This 
format was adopted because much of the existing RFT literature 
uses a letter or numeral as convention to designate individual 
stimuli (e.g., Lemon = A or Dog = B). In this way, stimulus 
pairs and their relation can be  written in a shorthand such 
as A! = B (i.e., “Lemons are different from dogs”).This shorthand 
convention has been used throughout this paper and became 
the prototypical input structure. Other RFT researchers have 
proposed a more rigorous relational symbolic technical notation 
(McLoughlin et  al., 2019) as an elaboration of the notation 
used since the earliest days of RFT (Hayes, 1991), but this 
notation has not been widely adopted by the field yet and 
requires characters not easily input using a standard QWERTY 
keyboard. While such rigorous notation may be  the future of 
the field and may be  integrated into future releases of this 
package, the current release reliably handles the relational 
operands equals (=), less than (<), greater than (>), and known-
unknown (ku). This leaves all ten numerals (0–9) and 26 
alphabetic symbols to represent a single stimulus. Additionally, 
alphabetic characters are case sensitive in the package so “A” 
is handled as distinct from “a” so there are enough input 
permutations to represent a very extensive relational base set. 
At this time, non-alphanumeric characters (e.g., #, $, %, etc.) 
have not been tested in the input so it may be  best practice 
to avoid such symbols, or at least use them with caution.

Limited Evaluation Methods
While graph theory provides many evaluation methods for 
structural assessment of network graphs as well as relational 
database languages (e.g., NEO4J), there are no currently known 
systematized network evaluation methods that apply to relational 

derivation output as described in this manuscript. In lieu of 
that, stereotypical examples of trained and derived sets previously 
published in RFT work, as well as sets generated and verified 
by hand by the first author (PS), were used as assessment 
tools to validate the output of the software. For example, Vitale 
et  al. (2008, p.  369) provides 48 unique arrangements of 
comparative pairs of base relational statements (e.g., A > B; 
B > C) that they had previously manually solved for the mutually 
and combinatorially derived relations. Each of these base pairs 
were run through the package and the output checked against 
the original key for agreement. There was zero disagreement 
in this comparison set. Similar equivalence and mixed relations 
base sets were generated during development to compare the 
package output against expectations. Several were left in the 
code, with clarifying comments, for users to run themselves 
as additional demonstrations. In all cases, if output did not 
match expectations, manually generated keys were double 
checked for accuracy and code was inspected to diagnose 
the disagreements.

This means that any errors in the validation data may have 
resulted in errors in the coded processes. Until wider adoption 
and systematic validation iron out bugs, output should 
be  generally checked against the user’s expectations. In the 
future more robust validation tools that do not rely on iterative 
permutation of base relational sets may need to be  developed 
to deal with highly complex networks.

Looking Forward
The initial development of this package was largely motivated 
by the number of human hours it took the first author (PS) 
to manually derive networks when planning RFT research or 
reading published experiments. If this package relieves even 
one other person of that task (and the frustration of finding 
an incorrectly derived relation in their handwritten notes) then 
it will have been worth the effort. Beyond the immediate benefit 
of saving labor, it is hoped that this package will pave another 
step in the bridge between basic research procedures and human 
complexity. It will only be  when the basic account of behavior 
can be  demonstrated convincingly, using reasonably complex 
and yet still interpretable models, that the exposure to an 
extrapolation critique will be minimized. By providing a reliable, 
repeatable, and human readable method of generating more 
complex relational models, we hope that procedural complexity 
may become more accessible in research and practice. Along 
these same lines, this package may be  used to survey the 
current relational experimental and applied literature procedures. 
The process of converting behavioral phenomena to abstract 
relational representations and then deriving their implications 
and integrating that into a procedural description is tedious 
and prone to human error. If applied systematically to published 
procedures, this tool may help clarify where conflicting data 
may be  due to such sources of confusion.

One insight into relational network models that only came 
to be  obvious once graphed was that of multiple isolated 
networks as illustrated in Figure  3. In this example, when the 
base relational set was written in text as “gkuj,” “h < i,” “i < k,” 
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“k < j,” “l < o,” “mkuk,” “n = o,” and “p > o,” there is no indication 
that this string of characters will be  arranged such that there 
are no relations between the stimulus sets of “l, n, o, p” and 
“g, h, i, j, k, m.” This isolation of these two networks is very 
clear in graph form but it is not immediately noticeable even 
when viewed as a derived tabular list, such as in Table  3. 
This isolation is not limited to that one specific base set. There 
are a number of additional large base sets provided in the 
code of the relational permutations. R code that can be  run 
to see three and four isolated network examples. If a practitioner 
were to go to the effort of parsing a client dialogue into stated 
relations a la Belisle et  al. (2018) and then input those as a 
base set into this package, isolation of networks as we  see in 
this example may provide immediate and actionable insight 
into key relational connections that a client may not be currently 
responding to and may vastly alter derivations across the rest 
of their presenting network. While this implication is far from 
being tested at the moment, this may provide a pathway toward 
a client focused functional analysis of complex human language.

Relational learning presents an experimental and conceptual 
challenge because of its extreme expansivity, and with it the 
possibility of conceptual confusion and error. This software 
package is designed to help address those limitations. By 
prototyping relational network graph visualizations consistent 
with RFT and other approaches to relational learning users 
can better prepare for evaluation and collaboration with computer 
analog systems such as blended DNN and SOM architectures 
that are currently being developed.

Future opportunities for development that are directly related 
to the package include:

 • publication on CRAN and an associated “Shiny” web app to 
reduce technical barriers to adoption of the package,

 • developing novel methods of validating derivation processes,
 • integrating edge weighting as outlined in Edwards et  al. 

(2022),

 • expanding the relational classes handled by the package,
 • integrating context characteristics for discriminating between 

relations occurring under specific context,
 • automating key parts of RFT research and training 

development processes, and
 • and integration with Natural Language Processing algorithms 

similar to how word2vec (Mikolov et  al., 2013) has been 
applied to early dementia detection (Rutkowski et al., 2021).

ADDITIONAL INFORMATION

Project link: https://github.com/CoachPatrickSmith/Relational-
Network-Generator.git.
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Programming Language: R Statistical Software.
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