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Abstract
Among the properties that are common to complex systems, the presence of critical thresh-

olds in the dynamics of the system is one of the most important. Recently, there has been

interest in the universalities that occur in the behavior of systems near critical points. These

universal properties make it possible to estimate how far a system is from a critical thresh-

old. Several early-warning signals have been reported in time series representing systems

near catastrophic shifts. The proper understanding of these early-warnings may allow the

prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this

paper we analyze this universal behavior for a system that is a paradigm of phase transi-

tions, the Ising model. We study the behavior of the early-warning signals and the way the

temporal correlations of the system increase when the system is near the critical point.

Introduction
Complex systems are those in which the agents or elements that compose the system interact
non-linearly and in such a convoluted way that it is impossible to describe the behavior of the
system in terms of the simpler behavior of its components. Intuitively, it should be easy to
define precisely what a complex system is and under which conditions complexity emerges.
However, so far there is no general agreement of what complex systems are. In fact, the very
definition of complexity is a main research topic [1–4]. Complex systems share certain general
properties which in some fashion describe them: emergence, self-organization, homeostasis,
entangled properties on multiple scales, ability to efficiently transmit and process information,
etc. [1, 2, 4]. In this work we focus on a property that is apparently common to many complex
systems: the existence of critical thresholds [5]. A large number of complex systems display
behaviors related to criticality and phase transitions [6–8]. When a physical system is in a
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critical point it acquires unique properties, one of which is scale invariance. Theoretically, at
that point the correlation length diverges, which in practice means that the correlation length
becomes very large when compared to the scales of interaction of the system. These properties
may be the key to the robustness and adaptability of complex systems. One of the main proper-
ties that most of complex systems share is the fact that they seem to lie on the boundary
between order and chaos [9]. It is in this regime where complex systems acquire robustness
and where they can adapt to environmental changes. If the system has excessive order, it tends
to be too rigid to react promptly to the pressures of the environment, and is thus incapable of
responding to its requirements. It is not capable of evolving. On the other hand, if the system
behaves too randomly, then it is too fragile and any environmental perturbation will impair
fundamental properties of the system. Living on the edge between order and chaos, complex
systems are capable of being adaptive to changes in a robust way. In the physical sciences, this
regime between order and chaos is frequently associated with phase transitions and criticality.
Although the relation between robustness, adaptability and criticality in complex systems is
quite evident, a second way in which the complex systems are related to the phase transition
phenomena is through the appearance of catastrophic shifts. It is known that many complex
systems have critical thresholds at which the system changes dramatically from one stable state
to another. Usually these changes are abrupt and dramatic relative to the long-range time scales
of the system. These shifts are driven by small perturbations (again in terms relative to the typi-
cal scales of the system), follow paths with hysteresis, and are related to the critical slowing
down phenomenon [5]. This kind of transition is present in a large and diverse set of complex
systems, which include ecosystems [10–12], species population [13], biodiversity, the global
economy [14], physiological systems [15–17], climate systems [18], social systems, etc.
Although the particular features of these systems are quite diverse, all these transitions display
characteristic signals which in principle are independent of the particularities of the system. In
other words, the dynamics of systems near critical points exhibit universal properties. There
has recently been an increased interest in understanding how a complex system behaves in the
vicinity of catastrophic shifts, in part to predict and possibly control the timing and evolution
of such transitions. Usually early warnings and critical transitions are studied either in model
systems, for which it is possible to describe the behavior of the system in terms of a mathemati-
cal model, or in actual complex systems in which the description is based in a rich collection of
data, but where a full mathematical description is not available [5]. In this work we focus on a
very well known physical system, the Ising model [19]. We choose this model because the
phase transition associated to it is very well known and the presence of critical slowing down is
a well studied phenomenon [20]. For the study of biological systems, the Ising model has been
applied to the study of human brain [21–23], cancer [24], protein folding [25], ion channels
[26], statistical genetics [27] and cardiac activation [28]. The Ising model has also been used
successfully to study collective phenomena in social systems [29], specially in order to simulate
crowd dynamics and opinion formation. It is a system on which we can delicately control the
parameters and the location of the critical point, but that is not trivial in terms of its dynamics,
i.e., it is not possible to fully understand the system in terms of dynamical equations in a trivial
way. The main goal of the present work is to analyze the dynamics of the Ising model in terms
of the classic early warning properties described in literature.

Methods

The Ising model
The Ising model is a statistical physics model for ferromagnetism. It is paradigmatic both for
systems in which cooperative phenomena play an important role and for the study of physical
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phase transitions. The definition of the system is very simple. Consider a lattice of N sites with
a spin state σ defined on each site. We let each of the spins take one of two possible orientation
values, denoted by σ = ±1. There are thus 2N possible configurations of the system. Each of
these spin sites interact with its nearest neighbors with an interaction energy given by

HðsÞ ¼ �
X

i;j

Jijsisj � m
XN

i¼1

Bisi ð1Þ

where the first summation runs only through neighboring spins and Jij represents the coupling
strength between spins i and j. If this coupling is positive then the neighboring spins will tend
to align parallel to each other, since this minimizes the energy. Bi represents the external
magnetic field acting on site i and μ is the magnetic moment. In this work we focus only in the
case where Jij = constant and Bi = 0 (no external magnetic field). The probability that the
system is in a given configuration depends on the energy of the configuration and the value of
the parameter T, which is identified as the temperature of the system. This probability is given
by the Boltzmann distribution

PbðsÞ ¼
e�bHðsÞ

Zb

ð2Þ

where β = (kT)−1, k is the Boltzmann constant and the normalization Zβ is the partition
function. It is possible to measure the order present in the system through the total
magnetization, defined as

M ¼ 1

N

XN

i¼1

si ð3Þ

A well-known fact is that if it is defined on a 1-dimensional lattice, in which each spin has only
two nearest neighbors, the system will have no phase transition. However, for lattices in 2 or
more dimensions the system goes through a phase transition when T is equal to a critical value
Tc. Below the critical value, the system undergoes spontaneous magnetization and all the spins
tend to align towards either the +1 state or the −1 state. For temperatures higher than Tc, the
system becomes paramagnetic, where the total magnetization of the system is zero on average.
The presence and size of clusters of equally aligned spins is also markedly different in these two
regimes: when T is lower than Tc, large resilient clusters form, while above Tc only small
clusters can survive momentarily. If the temperature is high enough, all the clusters are
completely destroyed. In the critical point (T = Tc), however, clusters are continually formed
and destroyed in a wide range of scales, with the distribution of cluster sizes following a power
law. Fig 1 shows a typical spatial configuration for each of the three regimes of temperature for
a 2-dimensional system. Black squares represent spins with σ = +1 and white ones represent
those with σ = −1.

While we are interested in the dynamics of the Ising model, the model described thus far
does not incorporate dynamics since there is no kinetic term in the Hamiltonian. A kind of
artificial dynamics can be imposed on the system through Monte Carlo simulations using the
Metropolis algorithm [30]. This algorithm iteratively generates successive spin configurations.
While these configurations do not represent the time evolution of a system of spins, it is possi-
ble to associate them to such a system in contact with a heat reservoir through Glauber dynam-
ics [31]. We will analyze the successive configurations obtained with the simulation assuming
that they represent the evolution of a correlated system. We are not interested in the Ising sys-
tem as a model for ferromagnetism, but rather as a nearest neighbor interaction system in
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Fig 1. Spatial configurations in the Ising model. Typical spatial configurations for a 2-dimensional Ising
model. Three regimes are shown: a) T < Tc, b) T� Tc and c) T > Tc. Black squares represent spins with σ = +1
and white one correspond to σ = −1.

doi:10.1371/journal.pone.0130751.g001
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which two competing effects are acting: on the one hand, the short-range interactions between
neighbors, while on the other the stochastic fluctuations caused by temperature. We are thus
not interested in recovering the usual thermodynamic properties through the simulation.
While the critical slowing down phenomenon near the critical transition has been previously
seen with the Metropolis algorithm [20], the focus has always been on trying to avoid it since
the main goal of Monte Carlo simulations is to obtain independent configurations of the sys-
tem. The presence of critical slowing down is an indication that the successive configurations
obtained through the simulation are correlated, i.e., not independent. Usually, the critical slow-
ing down is estimated through relaxation times and it is considered a deficiency rather than a
feature of the system. It is thus typically used to determine how many simulation steps need to
be skipped in order to obtain independent configurations. In this work we take an opposite
view and consider critical slowing down as a feature of the system which can be used to detect
criticality. Based on this we simulate the Ising model through the Metropolis algorithm and
consider correlation between successive configurations as an indication of early warnings of an
oncoming critical threshold.

The Metropolis algorithm
The goal of the Metropolis [30] Monte Carlo simulation is to generate a large number of differ-
ent and independent configurations of the system in order to have enough statistical sampling
to estimate average values of thermodynamic properties. In this algorithm, new configurations
are generated from a previous state using a transition probability which typically depends on
the energy difference between the initial and final states. The exact form of the probability
comes from considering detailed balance in the master equation for the transition probabilities.
Following the Boltzmann distribution, the probability of the system being in a state n is:

Pn ¼
e�En=kT

Z
ð4Þ

where En is the energy of the state, k is the Boltzmann constant, T is the temperature and Z is
the partition function. The transition probability from state n to statem is then given by

Pn!m ¼ exp ½�DE=kT� ð5Þ
where ΔE = Em−En.

Given a previous state of the system, defined by a specific set of values for all spin sites σi,
the algorithm proceeds as follows:

1. Randomly choose a site i;

2. Calculate the change in energy ΔE if spin site i were to be flipped;

3. If ΔE is negative, then flip the spin of site i. If on the other hand ΔE is positive, generate a
uniformly distributed random number between 0 and 1 and flip the spin only if this random
number is less than exp(−ΔE/kT);

4. Choose another site and go back to step 1.

An iteration or a simulation time unit has passed when every spin in the system has had a
chance to flip. We randomly choose the order in which the spin sites are selected for the pro-
cess described above. It is common that when the system temperature is near the critical point
Tc, relaxation times are computed in order to skip several iterations and avoid correlations
between successive configurations. In this analysis we keep all the iterations because we are pre-
cisely interested in the correlations in the system and how these correlations behave as T
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approaches Tc. Particularly, we analyzed an Ising system defined over a 2-dimensional square
lattice so that each spin has 4 nearest neighbors. We choose the units of the system such that Tc

� 2.27 which means that k = 1 and Jij = 1. The lattice has a finite size of 100×100 sites with peri-
odic boundary conditions. Although the finiteness of the lattice can affect the value of Tc, we
are not interested in simulating the system precisely at the critical point but rather in wider
regions near criticality. We simulate the system for three temperature regimes: T< Tc, T� Tc

and T> Tc. For temperatures lower than Tc we choose as initial condition a configuration
where all the spins are aligned with the +1 state. We do this in order to avoid as much as possi-
ble the metastable configurations typical of this regime (metastable states are described later).
For both regions where T� Tc and T> Tc, we choose an initial condition where all the initial
spin states are randomized, so that the average total magnetization isM = 0. We sampled the
system from T = 1.42 to T = 3.12, changing the temperature in intervals of ΔT = 0.05. For each
of these temperatures we run an ensemble of 1000 simulations of 5000 iterations each (where
the first 1000 iterations are discarded in order to remove the initial transient). We then com-
puted the total magnetization of the system as a function of time and analyzed the properties of
the magnetization temporal fluctuations considering them as a time series. It is important to
note that we are not dynamically changing the temperature; its value is fixed for every run of
the simulation. Thus our system is not being driven towards the critical threshold. This can
also be thought as the rate of change of temperature being very small compared to the dynamic
scale of the system. Under this assumption, we can consider that we are sampling separate
instants of this very slow transition through the critical threshold. Fig 2 shows a typical magne-
tization time series for each of the three temperature regimes. For each temperature value we
computed the ensemble average of several parameters that can function as early warnings in
order to better understand how the system behaves when it is near the critical region.

Early Warnings
The variety of early warning signals that have been proposed in the literature is overwhelming.
There recently has been an effort to summarize, compare and contextualize the different tech-
niques that have thus far been explored [5, 32]. It is possible to broadly classify early warning
signals in two main categories: themetric-based indicators which essentially detect subtle
changes in the statistical properties of the time series, and themodel-based indicators which
detect changes in the time series dynamic fitted by a reasonable model. In this work we will
focus only on the former approach. Among themetric-based estimators we can distinguish two
main lines of thought.

The first one is based on the non-stationarity of the time series. If we think of the time series
as a stochastic process, it is possible to estimate the probability distribution of events. Theoreti-
cally, if the system approaches a critical point then due to critical slowing down several
moments of the probability distribution will change. The second moment of the distribution,
the variance, will diverge because near a critical threshold a system recovers very slowly from
perturbations, which in principle allows the system to drift across the boundaries of different
states [33]. Depending on the particularities of the system, it is possible that the fluctuations
become asymmetric if the system approaches configurations with an unstable equilibrium.
This will produce changes in the third moment of the distribution, the skewness [34]. Changes
in the fourth moment of the distribution are also possible, because near criticality the system
will visit extreme states more often [32].

The second approach in the family ofmetric-based estimators is to analyze changes in the
memory of the time series via its temporal correlations. Changes in the temporal correlation of
events are strongly linked with the situation in which the system approaches a tipping point. If
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Fig 2. Total magnetization as a function of time in the Ising model. Typical behavior of the total magnetization time series in a 2-dimensional Ising model.
Three regimes are shown: a) T < Tc, b) T� Tc and c) T > Tc. It is important to notice the change of scale between plots.

doi:10.1371/journal.pone.0130751.g002

Early Warnings for Criticality in the Ising Model

PLOS ONE | DOI:10.1371/journal.pone.0130751 June 23, 2015 7 / 20



the system recovers slowly from perturbations, as happens near the critical threshold, then it is
expected that the temporal correlations of the system for short time scales will increase. This
effect can be calculated by means of the autocorrelation function for small time lags τ, specially
through the autocorrelation at lag 1, C(τ = 1) [35]. The correlations for long time scales are also
modified when the system approaches criticality. These correlations are associated with slow
oscillations in the fluctuations and with long range memory effects in the system. This kind of
effects are visible when an analysis for all the temporal scales is performed. Some of the effects
most commonly used early warnings are the Power Spectral Density (PSD) analysis [18] and
the Detrended Fluctuation Analysis (DFA) [36]. The PSD is connected to the amount of corre-
lations present in the system. Particularly, it is well known that the PSD of scale invariant series
obey a power law [7, 8]. It is important to mention that in this work we have focused on tempo-
ral early warnings. However, given the rich spatial behavior of the Ising model, it would also be
interesting to study early warnings in the spatial domain [37, 38]. It is our intention to analyze
this kind of early warnings and their relation with the magnetization cluster patterns formed
when the Ising system approaches the critical region in a future work.

Results and Discussion
We carried out simulations of the Ising model dynamics for a range of temperatures. We fol-
lowed the total magnetization of the system through time as the simulation evolved, and in this
way we constructed a magnetization time series for each simulation. We repeated the experi-
ment 1000 times for each temperature in order to estimate the ensemble behavior of the sys-
tem. For each temperature we computed the ensemble average of the early-warning signals
described previously, the first four moments of the probability distribution, the autocorrelation
at lag 1 and the power spectral density. It is important to note that a study has been previously
reported of a careful analysis in terms of early-warning signals based on the autocorrelation
function for the Ising model [39]. The part of our calculations concerning the early warnings
related with correlations fully agree with the conclusions and results shown there.

The first moment of the distribution is the mean and corresponds to the average magnetiza-
tion of the system. Fig 3 shows the ensemble average for the magnetization as a function of
temperature (it is important to mention that for low temperatures the global magnetization
can also converge towards −1; we have thus in general used only the positive values). It is clear
that our simulation follows the usual behavior of an Ising model. The three regimes can be
clearly identified in the simulations. a) For T> Tc, the stochastic contribution to the fluctua-
tions dominates the neighbor spin interactions. In this regime clusters of magnetization are
very small, and practically all spin sites change orientation independently of the state of the
neighboring spins. The system is governed by stochastic fluctuations and any attempt to trans-
mit information through the system will fail, since correlations are quickly destroyed by the
high stochasticity of the system. b) On the other hand, for T< Tc, the main contribution to the
dynamics comes from the short range interaction between neighbors. In this regime large clus-
ters of magnetization are formed, which is shown by the fact that magnetization does not quite
reach a value of 1. Again, any attempt of transmit information fails, essentially because any
spin flip is promptly outweighed by the dominating neighbor interaction. c) Finally, at the criti-
cal point, T = Tc, the two opposing effects are in balance. As we mentioned before, in this
regime magnetization clusters of various sizes are formed and the corresponding size distribu-
tion of the clusters follows a power law, which is a very strong indication that the system is spa-
tially scale invariant. The effects of perturbations in this regime are stable and robust. [40]
succinctly summarized this phenomenon as follows: “For all other temperatures, one can dis-
turb the system locally and the effect of the perturbation will influence only the local
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neighborhood. However at the transition temperature, the local distortion will propagate
throughout the entire system. The effect decays only algebraically rather than exponentially.
Although only ‘nearest neighbor’members of the system interact directly, the interaction effec-
tively reaches across the entire system. The system becomes critical in the sense that all mem-
bers of the system influence each other.” The fundamental emergent property of the system
near criticality is its capacity to transmit information over scales comparable to the entire scale
of the whole system. While the average magnetization of the system is zero, it is located pre-
cisely at the frontier between the zero magnetization regime and the magnetized one.

In order to analyze the following moments as early-warning signals it is important to notice
that criticality and critical transitions are not the same. This fact spawns an interesting ques-
tion: what is the connection of the critical point in the Ising model with bifurcations? It is cer-
tainly possible to analyze the Ising model in terms of a bifurcation. By considering a mean field
approximation it is possible to neglect fluctuations in the Ising model. Under this assumption
the average magnetization satisfies the following rate equation:

dMðtÞ
dt

¼ �MðtÞ þ tanh ½bMðtÞ� ð6Þ

Fig 3. Temporal mean as a function of temperature. Ensemble behavior of the mean as a function of temperature. The mean corresponds to the total
magnetization of the system. Three regimes are shown, T < Tc, T� Tc and T > Tc. Note that the mean can also approach −1 at low temperatures; we only
show here the positive values.

doi:10.1371/journal.pone.0130751.g003
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which can be expanded as:

dMðtÞ
dt

¼ �ðbc � bÞMðtÞ � 1

3
ðbMðtÞÞ3 þ ::: ð7Þ

This expression is precisely the normal form of a supercritical pitchfork bifurcation, which is
typical in physical problems that have symmetry. Under this view it is clear that Fig 3 can be
thought as the upper half of a pitchfork bifurcation diagram (if we imagine the symmetric neg-
ative magnetization branch), and that the stable fixed point atM = 0 for T> Tc becomes an
unstable fixed point when T goes below Tc. The negative derivative of the free energy can be
related to an effective force driving the magnetization dynamics. Expanding the free energy as
a power series in the magnetization gives:

FðMÞ ¼ C þ 1

2
ðbc � bÞM2 þ 1

12
b3M4 þ ::: ð8Þ

which is known as the Landau expansion. Below the critical temperature the free energy has
two minima and one maximum, while for temperatures greater than the critical value there is a
stable minimum atM = 0. According to this analysis, the system is bistable for temperatures
lower than the critical value. When the system acquires a nonzero magnetization the symmetry
of the system has been broken. It is known that the supercritical pitchfork bifurcation is a non-
catastrophic shift. However it has been shown previously that this type of bifurcation also dis-
plays the most typical early-warning signals [41].

Changes in the higher moments of the distribution constitute important early warnings.
Fig 4 shows the ensamble behavior of the temporal variance of the magnetization and the way
it changes as a function of temperature. There are two ways to approach the critical value:
either reaching it from temperatures below Tc, or coming from higher temperatures. It is evi-
dent that the response of the system is different in these two cases. At the critical point the vari-
ance is maximal, but its increase is quite different depending on which side of the critical point
the system is coming from. In the high temperature regime the variance grows smoothly as the
temperature diminishes. In this regime the variance will constitute an excellent early-warning
signal, for its changing behavior will indicate that the system is approaching a critical region
even if we are not aware beforehand of the existence of a criticial point. On the other hand, for
the low temperature regime the variance increases abruptly, so it is difficult to use the variance
as an early-warning signal when reaching the critical temperature from below. It is also inter-
esting that the standard error of the mean (defined as the standard deviation divided by the
square root of the sample size and shown with error bars in the figures) becomes larger when
the system is near the critical point. The asymmetry in the behavior of the variance around Tc

can be explained qualitatively in terms of the potential. It was mentioned before that if T> Tc

the potential has only one stable minimum and below Tc the potential has two minima. The
deformation of the potential should be different if we approach Tc from each side. When we
approach Tc from below, the main effect should be that the barrier formed by the maximum
shrinks, disappearing in Tc. However the two minima are stable all the time at least for fluctua-
tions up to an energetic scale. On the other hand, when we approach Tc from above, the poten-
tial widens and flattens allowing the system to fluctuate on a larger scale.

The third moment of the distribution, the skewness, is shown in Fig 5. This moment is
related to the asymmetry of events in the time series, and we expect this asymmetry to appear
only in the low temperature regime. The reason for this is that in this regime the system has the
possibility of becoming trapped in a meta-stable state where the average magnetization is lower
than the expected value. These meta-stable states are produced when instead of one large clus-
ter of magnetization, two stable clusters with opposite alignments are formed. A large
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perturbation is required for the system to spring out of this state. If the temperature is too low,
the stochastic perturbations are too weak compared to the neighbor interactions and the sys-
tem can spend a long time in meta-stabilty. However, near the critical point the stochastic per-
turbations are large enough to carry the system away from such meta-stability. This effect
increases the skewness of the probability distribution. We thus conclude that skewness is an
effective early-warning signal if the system is going towards the critical point from below.
When approaching Tc from higher temperatures it is not possible to produce asymmetries in
the distribution and thus the skewness is not sensitive to the approaching criticality. It is possi-
ble to understand, in terms of the potential, why the skewness of the distribution appears only
for the T< Tc regime. When T> Tc the potential is symmetric, therefore we expect a symmet-
ric distribution. On the other hand, when T< Tc the system should be on one of the two stable
minima. The boundaries of the potential around the chosen minimum are not symmetric. On
one side lies the wall of the potential, on the other side lies the barrier made by the unstable
maximum. Because of this asymmetry the rate of change due to fluctuations is lower on the
barrier side. This is reflected as a less step slope in that side of the potential [5].

Fig 6 shows the kurtosis of the distribution. It is clear that this moment is a good early warn-
ing for this system regardless of the direction in which the system approaches criticality. Kurto-
sis behaves quite symmetrically and increases smoothly when coming from either direction.
The only difference is whether the distribution is more strongly peaked or not than the refer-
ence normal distribution (which has a kurtosis of 3). When approaching criticality from lower

Fig 4. Temporal variance as a function of temperature. Ensemble behavior of the variance as a function of temperature. Three regimes are shown, T < Tc,
T� Tc and T > Tc.

doi:10.1371/journal.pone.0130751.g004
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temperatures we have a strongly peaked or leptokurtic distribution, while when doing so from
higher temperatures we have a flattened or platykurtic distribution.

In terms of correlations, it is well known that simulations of the Ising model with the
Metropolis algorithm display critical slowing down. It is expected that early warnings based on
correlation estimations are useful for this system. Fig 7 shows the ensemble behavior of the
autocorrelation at lag τ = 1 as a function of temperature. As expected the autocorrelation of the
system for very short temporal scales increases when the temperature approaches the critical
value Tc. The increase is not symmetrical; it is faster when the system approaches the critical
value from lower temperatures. However, in both cases it is possible to use this information as
an early warning. The autocorrelation is almost 1 for temperatures near the critical value,
which means that the system configuration of a given iteration is highly dependent on the pre-
vious configuration from which it was obtained. The increase of variance and short term corre-
lations is related to the form of the potential driving the dynamics of the system. They are
different if we approach the critical threshold from lower temperatures than from higher tem-
peratures because the form of the potential, basically the way in which it flattens out, is differ-
ent in these two regions. For this short time scale the system exhibits a clear memory effect.

When a system is critical, all scales are important for the system dynamics. This is reflected
in the fact that the system becomes scale invariant. Because of this, an accurate representation
of the system should include all the scales available. According to theory [5] and our previous

Fig 5. Absolute values of temporal skewness as a function of temperature. Ensemble behavior of the skewness as a function of temperature. Three
regimes are shown, T < Tc, T� Tc and T > Tc.

doi:10.1371/journal.pone.0130751.g005
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results, it is evident that Autocorrelation(τ = 1) signal is enough in order to catch the dynamical
shift. However an important question arises: How the presence of the different scales available
to the system are modified when a system approaches criticality? This can be explored through
the behavior of the whole autocorrelation function and the Power Spectral density (PSD). The
autocorrelation function is related with the PSD through the Wiener-Khinchin theorem, pro-
vided that the time series is a stationary random process [42]. In order to explore the behavior
of the long range correlations we analyzed the PSD of the system. Fig 8 shows the memory
effect for the whole range of scales. In panel (a) we can observe the evolution of the PSD for
temperatures smaller than the critical value. The temperature increases from bottom to top,
with the critical value corresponding to the topmost curve. Panel (b) shows the corresponding
PSD evolution for the high temperature regime. Again, the topmost curve corresponds to the
critical temperature, and this time temperature increases from top to bottom. In both panels
the PSD curves for the different temperatures have vertically shifted for clarity. It is clear that a
power law appears in the PSD at the critical point. Power laws have been previously connected
to criticality, specially with temporal scale invariance [7, 8]. As we have mentioned, at the criti-
cal point the Ising model exhibits spatial scale invariance as well as fractal structure in the sizes
of the magnetization clusters formed by the system. It is remarkable that the system also dis-
plays temporal scale invariance because as far as the authors know it is not well understood

Fig 6. Temporal kurtosis as a function of temperature. Ensemble behavior of the kurtosis as a function of temperature. Three regimes are shown, T < Tc,
T� Tc and T > Tc.

doi:10.1371/journal.pone.0130751.g006
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whether temporal scale invariance implies spatial scale invariance or vice versa. The spatial
scale invariant properties of the critical Ising model are well studied and reported in the litera-
ture. However, it is our personal opinion that the temporal properties of the critical state are
less known. Temporal scale invariance means that the time series is statistically the same at all
temporal scales. This property is related to long range correlations and long range memory in
the system [8]. As soon as the system’s temperature departs from the critical value, either to
lower or higher temperatures, the low frequency part of the PSD flattens out. A flat PSD is
characteristic of an uncorrelated system, where the fluctuations are white noise. We observe
that the flat region of the PSD becomes wider as temperature gets further away from the critical
value. For temperatures that are very far from the critical one, we can expect that the PSD will
flatten out for all frequencies.

It is important to notice that for every temperature, there exists a crossover frequency at
which the behavior changes from a power law to the flat profile, implying an uncorrelated sys-
tem. This crossover frequency can be computed for each temperature fitting a dual model to
the Log of the PSD. The model consists of a linear model with null slope, a constant, up to a fre-
quency Cf and a linear model ax + b from Cf up to the Nyquist frequency. Then we minimize
the error as a function of Cf. Fig 8 shows as red dots the crossover frequency computed for each
temperature. This crossover is connected to the temporal scale at which the long range correla-
tions cease to be relevant. States of the system that are separated by a time interval equal or

Fig 7. Temporal auto correlation at lag 1 as a function of temperature. Ensemble behavior of the autocorrelation function for lag τ = 1 as a function of
temperature. Three regimes are shown, T < Tc, T� Tc and T > Tc.

doi:10.1371/journal.pone.0130751.g007
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Fig 8. Power Spectral Density as a function of temperature. Ensemble behavior of the Power Spectral Density as a function of temperature. Panel (a)
shows the behavior of the PSD for temperatures T� Tc. Temperature increases from bottom to top, with Tc corresponding to the topmost curve. Panel (b)
shows the behavior of the PSD for temperatures T� Tc. Temperature increases from top to bottom, with Tc corresponding to the topmost curve. The
crossover frequency for each temperature is shown as a red dot.

doi:10.1371/journal.pone.0130751.g008
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greater than this scale should thus be independent. This behavior is known in the early warning
literature as spectral reddening [18]. It is a property of the PSD which appears when the system
approaches a critical threshold. The crossover frequency where the power spectrum behavior
changes is directly related to the range of the temporal correlations, in turn related with the
temporal scale at which the system becomes independent from its past states. When a system is
near a critical transition, the correlation length increases, and scale invariance appears. It is evi-
dent in Fig 8 that it is possible to use the crossover frequency as an early-warning signal. Thus,
by comparing the scale at which the crossover occurs it is possible to estimate how far the sys-
tem is from a critical transition. Fig 9 shows the crossover frequency value as a function of tem-
perature. The resemblance with the early-warnings analyzed previously is remarkable. It is
important to notice that this split in the PSD profile has been reported in other systems in
which criticality is a desired property and the appearance of the the two-part spectrum is con-
sidered as an indication that the system is losing the properties associated with criticality, i.e.,
robustness and adaptability. For instance, in physiological time series, and in particular for car-
diac interbeat intervals, the PSD exhibits a power law when the heart of the subject is deemed
healthy [43, 44]. The underlying hypothesis is that the heart is a complex system that has
evolved to be both robust and adaptable, and it has achieved this by approaching spatial and
temporal scale invariance. One can think that these properties allow the heart to be resilient
against environmental changes while at the same time being able to adapt to the typical efforts
to which a heart is subjected. This resilience and criticality are lost over time and due to illness,

Fig 9. Crossover frequency as a function of temperature. Behavior of the crossover frequency as a function of temperature. Three regimes are shown, T
< Tc, T� Tc and T > Tc.

doi:10.1371/journal.pone.0130751.g009
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and it has been reported that when this happens the PSD stops being a power law and a two
part spectrum appears [45, 46].

Finally, it is a well known phenomenon that the Ising properties depends on the grid size. In
order to analyze the effect of the resolution on the early-warning signals studied in the paper
we performed extensive simulations with several different resolutions. We chose grids with the
following sizes: 60×60, 80×80, 120×120 and 140×140. For each of those grids we repeated the
numerical experiment described previously for the 100×100 grid. We explored temperatures
from 1.42 to 3.12 in step intervals of 0.05. For each temperature we run an ensemble of 1000
simulations of 5000 iterations each. We then computed for each grid size the same early-warn-
ing signals reported on the paper. For all the early-warnings related with the moments of the
distribution the result is the same. Every grid size on every early-warning develops the same
pattern but on a different scale. Since the moments of the distribution are not bounded quanti-
ties the result qualitatively does not depend on the grid size. On the other hand, the autocorre-
lation function is a bounded quantity (between -1 and 1), it is evident that its value depends on
the grid size of the system. However the autocorrelation lag-1 signal develops exactly the same
pattern on the same scale for each of the chosen grids. This is because the shortest correlations
are an extremely local phenomenon. The numerical differences between the results for differ-
ent grid sizes are around 10−3 which is irrelevant for this early-warning. This is important
because it seems to indicate that these early-warning signal are independent of the system size.
Regarding the PSD the conclusion is the same, the pattern developed is independent of the
resolution of the grid. The crossover frequency remains precisely at the same value for all the
grid sizes for every temperature.

Conclusions
In this work we have analyzed the behavior of the Ising system in search of the most common
early-warning signals. We have selected the Ising model because it is a far from trivial example
of a system in which a very well known critical point is present. When the system is near the
critical point it exhibits the critical slowing down phenomenon and our numerical experiments
demonstrate the deep connection of this behavior with several early-warning signals in the evo-
lution of the magnetization time series. We concentrate on early-warning signals related to the
statistical properties of the time series probability distribution. We have shown that the change
in these properties is asymmetrical, i.e., it is not the same when the critical point is approached
from different directions. This effect restricts the applicability of some of the statistics-based
early-warning signals, depending on the system at hand. On the other hand, we also analyzed
early-warning signals that are based on the estimation of the correlation properties of the sys-
tem. These early-warning signals seem more robust in terms of asymmetry, but the change in
the correlations is slower than the change in the statistical properties. It is important to notice
that the in the regions far from criticality this system tends toward states in which either the
correlations are nil (high temperatures) or trivial (low temperatures), but certainly this should
not necessarily be the case for real complex systems which are not under our control. However,
we believe that it is enlightening to understand how these early warnings behave under pre-
cisely controlled circumstances, specially because the main goal of early warning theory is to
detect critical thresholds in systems where there is no a priori knowledge of whether a critical
transition is near or even exists at all. Analyzing the correlations behavior by means of the
Power Spectral Density in all the temporal scales available to the system lets us interpret the
spectrum reddening as a characteristic way in which the scale invariance properties of critical
systems disappear when the system departs from criticality. For systems poised at criticality, a
power law in the PSD appears, and this power law is an indication that the system possesses
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scale invariance in the time domain. When the system departs from criticality the PSD splits in
two distinct regions. The low frequency regime is characterized by a flat spectrum, while the
high frequency domain exhibits a power law. The crossover frequency that divides these two
regions depends on how far the system is from the critical point. When the temperature is far
away from the critical value, the spectrum flattens out completely, reflecting a total lack of cor-
relations. At criticality, a single, full power law appears, i.e., the system acquires long term
memory. We propose that the frequency at which this crossover occurs can be used as an
early-warning signal that can indicate to what extent the temporal correlations have been lost,
as well as provide a measure of the loss of temporal scale invariance in the system.
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