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Abstract

We investigated whether the covert orienting of visuospatial attention can be effectively used in a brain-computer interface
guided by event-related potentials. Three visual interfaces were tested: one interface that activated voluntary orienting of
visuospatial attention and two interfaces that elicited automatic orienting of visuospatial attention. We used two epoch
classification procedures. The online epoch classification was performed via Independent Component Analysis, and then it
was followed by fixed features extraction and support vector machines classification. The offline epoch classification was
performed by means of a genetic algorithm that permitted us to retrieve the relevant features of the signal, and then to
categorise the features with a logistic classifier. The offline classification, but not the online one, allowed us to differentiate
between the performances of the interface that required voluntary orienting of visuospatial attention and those that
required automatic orienting of visuospatial attention. The offline classification revealed an advantage of the participants in
using the ‘‘voluntary’’ interface. This advantage was further supported, for the first time, by neurophysiological data.
Moreover, epoch analysis was performed better with the ‘‘genetic algorithm classifier’’ than with the ‘‘independent
component analysis classifier’’. We suggest that the combined use of voluntary orienting of visuospatial attention and of
a classifier that permits feature extraction ad personam (i.e., genetic algorithm classifier) can lead to a more efficient control
of visual BCIs.
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Introduction

Farwell and Donchin [1] first investigated the possibility of

participants to communicate by means of event-related potentials

(ERPs; e.g., P300), without the involvement of the peripheral

nervous system and the voluntary muscle activity. This is possible

through brain-computer interfaces (BCIs), systems that permit

users to translate their brain signals directly into commands for

controlling external devices [2]. A BCI comprises a system for

acquiring brain signals (e.g., an electroencephalograph for re-

cording ERPs). Once acquired, brain signals are digitized and

analyzed by specific algorithms for extracting specific features.

Afterwards, these features are classified, and then they are

translated into commands. Finally, these commands are executed

by a device [3]. The execution of a command constitutes

a feedback for the users about their performance. As a conse-

quence, users must try to modulate their mental states (e.g.,

concentrate on the target stimulus and ignore the non-target ones)

to obtain the desired effect on the device.

To date, the majority of the BCIs have relied on electroen-

cephalographic (EEG) signals. The EEG technique has the

advantage to be non-invasive, inexpensive, and suitable for the

use at patients’ bedside. EEG-based BCIs can exploit users’ ability

to modulate the sensorimotor rhythms (SMR) or the slow cortical

potentials (SCP) [4]. Unfortunately, an efficient control of SMRs

and SCPs requires long training, which can last for months [5].

The alternative solution is to exploit the EEG potentials that do

not require long training for the users, because the signal is elicited

by specific stimuli. This is the case of the BCI based on the P300

[6] or of the steady-state visually evoked potentials (SSVEPs) [7].

BCIs offer new perspectives regarding communication and

control of devices for patients affected by severe motor impair-

ment, such as patients with amyotrophic lateral sclerosis (ALS),

who can be completely paralyzed. The ALS is a motor neurode-

generative pathology characterized by progressive paralysis

resulting from selective death of both upper and lower motor

neurones [8]. In the latest stages of the illness, ALS patients can

show a clinical condition called the locked-in syndrome (LIS). LIS

is characterised by quadriplegia, head muscles paralysis, and

mutism. Nonetheless, consciousness is preserved [9]. Usually, the

eye muscles are the last muscles that can be still controlled by LIS

patients [10]. When the control of all the muscles is lost, the

patients enter in the completely locked-in syndrome (CLIS), in

which the communication abilities of the patients are completely
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absent. The use of brain signals might be the only way for giving

a chance to LIS patients to communicate [11]. For this reason, in

the last years the development of efficient BCIs for communication

has been considered an important scientific and clinical challenge.

Although more than twenty years have passed since the first

study [1], the P300 speller (i.e., the visual word spelling BCI),

remains the most used and studied BCI. The P300 speller is

composed by a 666 matrix of letters and numbers. Users have to

concentrate their visuospatial attention on the target (i.e., a letter

or an Arabic digit), while the brightness level of each row and

column of the matrix is randomly and repeatedly changed. When

the brightness of the row and column containing the target symbol

is changed, the amplitude of the P300 is larger than when the

brightness of the rows and columns containing non-targets is

changed. Finally, the P300 with the expected feature (i.e., larger

amplitude elicited by the target) is automatically detected by

specific algorithms, and the target (i.e., letter or Arabic digit) is

selected and displayed.

Several studies have been conducted on the P300 speller, to

investigate the effects, on users’ performance, of different matrix

sizes and inter-stimulus intervals (ITI [12,13]), the effect of colour

contrast between the stimuli and the background [14], and the

effect of arranging the matrix depending on the psycholinguistic

frequency of the English letters [15]. Most BCI studies, however,

have been focused on the domains of signal processing and feature

extraction. Different efficient techniques are available nowadays

for signal classification: support vector machines (SVM [16]),

stepwise linear discriminant analysis (SWLDA [17,18]), Bayesian

linear discriminant analysis [19], hidden Markov models [20],

neural networks [21], and genetic algorithms (GA; [22]). In

particular, the approach proposed by Dal Seno et al. [22] is

appealing as it merges in a closed loop the feature extraction task

(by using a GA) and the issue of the classification task (by using

a logistic classifier).

In the classic approach [2], the feature extraction component is

separated from the classification component: the extracted features

are used to feed a classifier; in Dal Seno et al. [22] there was not

an a priori feature set, but the ‘‘goodness’’ of the single feature was

measured during the running of the GA itself, through the

performances obtained by the logistic classifier. In this way, the

two components of the system (feature extraction vs. classification)

were in a closed loop, which was stopped when the obtained

feature set did not further improve the classification performance.

GAs have been already used in the BCI field, although in

a different way from that in the study of Dal Seno et al. [22]. In

the study of Boostani et al. [23] the best combination among

different features and classifiers was sought for a motor-imagery

task, whereas in the study of Citi et al. [24] a classifier, operating

on P300 features, was selected by a GA.

Recently, it has been reported that good performances with the

P300 speller are due to the participants’ possibility to move their

eyes [25,26]. Both Brunner et al. and Treder and Blankertz have

reported that the classification accuracy of the P300 speller is not

sufficient for communication, if participants cannot perform eye

movements (even healthy participants). Thus, the fact that the

P300 speller performance depends on eye movements can be

a critical obstacle for the use of visual BCIs by CLIS patients [27].

Nonetheless, the use of visual BCIs seems to be still possible by LIS

patients who might have some residual eye movements [27,28].

To overcome this problem, two different solutions have been

proposed. The first solution was to develop P300-BCI systems

based on other senses, such as auditory BCIs [28–32] and tactile

BCIs [33]. The second solution was to design visual BCIs based on

the covert (i.e., without eye movements) orienting of visuospatial

attention [19,34,35].

In our recent study [35], we tested a P300-based BCI for

controlling the movement of a cursor on a screen with a four

choice interface [36], in a covert visuospatial attention condition.

The aim of Marchetti et al. [35] was to investigate whether there

was an advantage in implementing the principles of covert

orienting of visuospatial attention, described by Posner [37], on

these interfaces. Many studies in the last four decades (for

a comprehensive, recent review, see [38]) have suggested that

visuospatial attention can be oriented by two types of cues:

peripheral cues, which elicit an automatic orienting of visuospatial

attention, and central cues, which activate voluntary orienting of

visuospatial attention.

We investigated the possibility to modulate the performance of

an ERP-based BCI system, by designing and implementing three

new interfaces (see [35]), in which participants were required to

perform covert orienting of visuospatial attention [37,39]. The first

interface (‘‘Arrows’’) was similar to that used by Piccione et al.

[36]. The second interface (‘‘Auto’’) was designed by implement-

ing the automatic orienting of visuospatial attention. The third

interface (‘‘Vol’’) was designed by implementing the voluntary

orienting of visuospatial attention. Note that also the interface

proposed by Piccione et al. was implicitly based on the automatic

orienting of visuospatial attention. By using on-line classification,

Marchetti et al. showed that good performance could be reached

using visual interfaces controlled without eye movements.

Furthermore, it was reported that the interface based on the

voluntary orienting of visuospatial attention could yield better

performance than those based on the automatic orienting of

visuospatial attention.

To investigate whether the findings of Marchetti et al. [35]

depended on the classification system they had used, in the present

study we performed an offline reclassification of the original EEG

data. In the previous study the online analysis of the epochs was

performed by means of Independent Component Analysis (ICA)

and of subsequent fixed features extraction and support vector

machines (SVM) classification [40]. In the present study we

performed offline analysis by means of a GA that permits to

retrieve the relevant features of the signal, which can be classified

by means of a logistic classifier [41]. Thus, we tested whether the

effects reported by Marchetti et al. [35] depended on the specific

classification system used, and whether the offline classification

performed with the GA could improve classification with respect

to the previously used classification system (i.e., ‘‘ICA classifier’’)

[40,35]. In addition, we used a measure of performance that takes

into account the specific characteristics of our visual interfaces.

Indeed, it has been reported that the same performance level,

achieved by means of different BCIs (e.g., the four choices

interface of Piccione et al. [36]; or the 363/666 choices interfaces

tested by Sellers et al. [13]), can be associated with different BCI-

control efficacy [42,43]. We used the F-measure (see below)

instead of the classic accuracy measure (i.e., the percentage of

correct classifications [2]), because of the unbalanced number of

targets and non-targets in our study. We could have artificially

balanced the training and the testing sets; but, besides being not

realistic, this approach does not take into account the presence of

false positives and false negatives [44]. Finally, we tested for the

first time the effects of the three interfaces on the participants’

brain potentials, as a function of the two classification approaches

(i.e., ‘‘ICA classifier’’ vs. ‘‘GA classifier’’). In summary, the novelty

of the present study, with respect to that of Marchetti at al. [35],

consisted in the use of the GA and in the implementation of the F-

measure. In addition we analysed not only performance but also

Covert Attention BCI: Classification Improvements
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the ERPs, for interpreting the classification results under the light

of the possible different morphology of the ERPs elicited by the

three interfaces.

Methods

2.1 Participants
Twelve healthy participants with normal or corrected-to-normal

vision took part in the study (mean age: 37 years; range: 20–61

years; 5 males). The study was performed in accordance with the

Declaration of Helsinki principles. All participants gave their oral

informed consent to participate in the study. The research project

(including the use of oral informed consent) was approved by the

Ethical Committee of the IRCCS San Camillo Hospital, Venice-

Lido. Oral consent was used given that all participants’ data

remained anonymous. Upon their own request, participants could

interrupt their participation to the experiment at any moment,

without any negative consequences for them, and without

providing explanations regarding their withdrawal from the study.

Identity information of all participants who gave oral informed

consent was documented in a separate file. This process was

witnessed by both the participants and the experimenters.

2.2 Apparatus, Stimuli, and Procedure
The experiment took place in a sound-attenuated chamber.

Participants sat in an adjustable chair in front of a computer screen

(HP L1906T Flat Panel LCD Screen; dimension: 38630.5 cm;

refresh frequency: 60 Hz; resolution: 10246768), with their head

positioned on a chinrest fixed on the table. The distance between

the center of screen and the participant’s eyes was 57 cm. At

a distance of 57 cm between the center of screen and the

participant’s eyes, 1u of visual angle corresponds to the size of

1 cm on the monitor. Three interfaces (Figure 1) were presented to

all participants: two designed on the basis of the principle of the

automatic orienting of visuospatial attention and one designed on

the basis of the principle of the voluntary orienting of visuospatial

attention. All interfaces were based on the Piccione et al.’s [36]

paradigm, where participants had to control the movement of

a cursor to reach a target position by paying attention to

peripheral cues. The three interfaces have been extensively

described in Marchetti et al. [35].

In each interface all stimuli were displayed against a black

background. Each interface comprised a fixation point (i.e., a white

cross presented in the center of the screen) and a cursor placed in

the center of the screen (i.e., a blue circle measuring 1u in

diameter). During the experimental sessions with all the interfaces,

participants were required to maintain their gaze on the fixation

point and to avoid head and eye movements, while their EEG was

recorded.

The ‘‘Arrows’’ interface (Figure 2) was similar to that designed

by Piccione et al. [36], and used a stimulation paradigm that

elicited automatic orienting of visuospatial attention. Four arrows

were presented in the periphery of the screen at a distance of 7u
from the fixation point. Each arrow indicated one out of four

possible directions: above, right, below, and left. On each trial,

a red ‘‘X’’ indicating the target position was displayed close to

a specific arrow.

For eliciting brain potentials, we used a fast change of the color

of each arrow from green to yellow and then back to green (color

change duration: 150 ms; overall event probability for each arrow:

25%). A trial was defined as the time elapsed between the

consecutive color changes of two arrows. Participants were

required to pay attention to the arrow close to the red X (target)

and to ignore the other three arrows (non targets), to control the

movement of the cursor for reaching the red X.

The ‘‘Auto’’ interface (Figure 3) used a stimulation paradigm

that elicited automatic orienting of visuospatial attention. Instead

of the arrows, four icons were presented in the periphery of the

screen at a distance of 7u from the fixation point. The icons were

four squared (side: 3.5u), black-and-white drawings depicting

everyday life activities (eating, drinking, etc.). The drawings had

Figure 1. The three interfaces.
doi:10.1371/journal.pone.0053946.g001

Figure 2. The ‘‘Arrows’’ interface. Scheme of a ‘‘target’’ trial: a)
initial situation of a session: the fixation point (white cross), the cursor
(the circle initially placed at the center, colored in blue), and the four
arrows were displayed on the monitor; b) one arrow changed color for
150 ms; c) if the classifier recognized the ‘‘target’’ ERP pattern, then the
cursor was moved one step towards the spatial position of the arrow
that had changed color; d) next trial (ITI 2.5 sec): an arrow in a different
spatial position changed color. Note that the target was the X placed
close to one of the arrows, which was colored in red.
doi:10.1371/journal.pone.0053946.g002
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been adapted from a battery for the assessment of aphasic

disorders [45].

For eliciting brain potentials, we used a brief offset of one icon

(duration: 75 ms; overall event probability for each icon: 25%) and

its onset in the same position. A trial was defined as the time

elapsed from the offset of an icon to the offset of the next icon.

Participants were required to pay attention to the target icon,

previously indicated by the examiner, and to ignore the remaining

three non-target icons, in order to control the movement of the

cursor for reaching the target.

In the ‘‘Vol’’ interface (Figure 4) we used a stimulation

paradigm that activated a voluntary orienting of visuospatial

attention. In this interface we used the same display as that used

for the ‘‘Auto’’ interface.

For eliciting brain potentials, on each trial we presented at the

fixation point one out of four capital letters (duration: 900 ms,

overall event probability for each letter: 25%), while the four icons

remained always on the screen. A trial was defined as the time

elapsed from the onset of a letter to the onset of the next letter.

Each letter was the initial letter of an Italian spatial directional

word (i.e., ‘‘A’’: alto=above, ‘‘B’’: basso=below, ‘‘S’’: sinistra= left,

‘‘D’’: destra= right), each indicating the position of a specific icon.

Participants were required to attend to the onset of the letter

defining the spatial position of the target icon, which was indicated

by the examiner before each session, and to ignore the other three

letters.

The order of the events for eliciting the brain potential was

semi-random in all the interfaces. That is, within each block of

four consecutive trials, each of the four possible events (i.e.,

‘‘Arrows’’ interface = brief color change of one arrow, ‘‘Auto’’

interface = offset-onset of one icon, ‘‘Vol’’ interface = onset-offset

of one letter) occurred randomly. The first trial of the next block

could have been either the same one or a different one from that of

the last trial of the preceding block. The ITI was 2.5 s. The initial

distance between the starting-point of the cursor (i.e., center of the

screen) and each of the targets, encompassed four discrete steps in

all interfaces. Each time the classifier detected the target ERP in

the EEG epoch, following one of the four possible events, the

cursor moved one step on the screen accordingly to the direction

of the event that elicited the ERP. On the contrary, each time the

classifier detected a non-target ERP in the EEG epoch, following

one of the four possible events, the cursor was not moved. Thus, at

least four correct classified epochs following the target event were

required to reach the target icon (i.e., true positive case). Note that

even if the classifier detected a target ERP following a non-target

event, the cursor was moved one step towards the direction of the

non-target event (i.e., false positive case). A session was defined as

the sequence of trials needed to reach the target, to reach one of

the non-targets, or after 92 trials elapsed without reaching a target

or a non-target. As a consequence of the interface design and the

single epoch classification, the number of trials presented during

the BCI sessions was different among the participants and within

the sessions performed by each participant (range 13–92 trials).

For each interface participants performed 8 learning sessions in

the first experimental day, 16 testing sessions that were distributed

over the following ten days, and four follow-up sessions which took

place, on average, 27 days after the last testing sessions (Figure 5).

The learning sessions were characterized by a ‘‘perfect feed-

back’’, provided to participants by a correct movement of the

cursor, which did not depend on the online classification system.

This was necessary for collecting the first sample of epochs related

to target and non-target trials, in order to prepare the online

classifier for the first day of the testing sessions. In contrast, during

the testing sessions the cursor was moved only as a response to

participants’ brain waves, once classified as target ERPs. Thus, in

Figure 3. The ‘‘Auto’’ interface. Scheme of a ‘‘target’’ trial: a) initial
situation of a session: the fixation point (white cross), the cursor (the
circle initially placed at the center, colored in blue), and the four icons
were displayed on the monitor; b) one icon disappeared (represented
by the grey shape) for 75 ms and reappeared in the same position; c) if
the classifier recognized the ‘‘target’’ ERP pattern, then the cursor was
moved one step towards the spatial position of the icon which
disappeared; d) next trial (ITI 2.5 sec): an icon in a different spatial
position disappeared.
doi:10.1371/journal.pone.0053946.g003

Figure 4. The ‘‘Vol’’ interface. Scheme of a ‘‘target’’ trial: a) initial
situation of a session: the fixation point (white cross), the cursor (blue
circle), and the four icons were displayed on the monitor; b) one capital
letter indicating a spatial position appeared for 900 ms; c) if the
classifier recognized the ‘‘target’’ ERP pattern, then the cursor was
moved one step towards the spatial position indicated by the letter; d)
next trial (ITI 2.5 sec): a capital letter indicating a different spatial
position appeared.
doi:10.1371/journal.pone.0053946.g004

Figure 5. Experimental procedure.
doi:10.1371/journal.pone.0053946.g005
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each testing and follow-up session the number of trials was

different for each participant, depending upon the performance of

the classifier and the ability of the participant to control the cursor

movements. Within an experimental day, the position of the

targets was different for each session. The target positions in the

follow-up sessions were the same as those in the sessions of the last

testing day. The order of target positions was counterbalanced

across testing sessions. The order of presentation of the three

interfaces was counterbalanced across participants.

2.3 Electrophysiological Data Acquisition and Processing
On each trial the EEG was recorded. Recording electrodes were

placed according to the International 10–20 System at Fz, Cz, Pz,

and Oz. The Electrooculogram (EOG) was recorded from a pair

of electrodes below and laterally to the left eye. All electrodes were

referenced to the left earlobe and the ground was on Fpz.

Impendence was lower than 5 kV. The five channels were

amplified, band-pass filtered between 0.15 Hz and 30 Hz, and

digitized (with a 16-bit resolution) at 200 Hz sampling rate. Each

ERP epoch, synchronized with the stimulus, began 500 ms before

the stimulus onset and ended 1000 ms after the cue (total duration:

1500 ms). Thus, after each cue presentation the system recorded

a matrix of 300 samples per 5 channels, available for online and

offline data processing.

2.3.1 ‘‘ICA classifier’’ data analysis. To control online the

BCI system, we used a classification algorithm that has been

extensively described elsewhere [35,36,40]. Before each testing

day and for each of the three interfaces a different classifier was

trained and adapted ad personam through a three-step procedure:

Independent Component Analysis (ICA) decomposition, fixed

features extraction, and support vector machine (SVM) classifica-

tion. The ICA decomposition was used for splitting up the EEG

signals into statistically independent sources of signal [46,47], with

the specific hypothesis that one of the sources reflected the ERP.

Then the source that was more similar to the target ERP was

automatically selected using a fuzzy method [48]. On the basis of

the selected source, a single-sweep normalized data set was

obtained for each trial of the testing sessions, and it was used for

feature extraction [49]. The extracted features encompassed a set

of 78 values representing a concise description of the ERPs. The

extracted features were used for the classification of the testing

session trials with a SVM classifier.

The SVM classifier was updated after each testing day with a 20-

fold cross-validation procedure, except for the epochs of the last

session [50]. The 80% of the remaining epochs were randomly

selected as training set, whereas the 20% composed the testing set.

ERP epochs with artifacts greater than 100 mV, with regard to

each channel’s activity (including EOG), were excluded from each

training set [51]. All available ERP epochs were analyzed for each

testing set. The epochs of the last session were used to perform

a further validation of the updated SVM classifier. After the last

testing session, no other classifier updating was performed. Thus,

the classifier used in the follow-up sessions was the same as that of

the last testing sessions. The three-step classification procedure was

applied during online operations to each single sweep synchro-

nized with the cue. The output of the SVM classifier was

converted into a binary value (1 = target ERP; 0= non target ERP)

to control each movement of the cursor.

2.3.2 ‘‘GA classifier’’ data analysis. For the offline

classification of target vs. non-target ERPs, we used a method

that combines a GA for both feature extraction and selection, and

a logistic classifier for classification. A detailed description of the

method can be found in Dal Seno et al. [22]; here only the main

aspects are reported.

GAs belong to the class of evolutionary algorithms (i.e.,

optimization algorithms inspired by the theory of evolution)

[52]. In particular, in a GA the solutions of the optimization

problem are coded in strings called chromosomes: the best

chromosomes are selected, combined together, and modified in

a process which imitates that of evolution, including mutation,

cross-over, and natural selection. Generation-by-generation, the

best solution will emerge from a population of sub-optimal

solutions [53]. In our implementation, each chromosome

encoded the set of features, to be used by the logistic classifier

for the classification of target vs. non-target ERP epochs. Each

feature was computed by the dot product between the EEG

signal and a weighting function coded in one gene. Different

weighting schemas were potentially similar to the possible

shapes of kernel, in a kernel smoothing approach. In the present

study we used the Gaussian weighting function kernel. The gene

was characterized by four parameters: two parameters charac-

terized the Gaussian curve (the timing of the Gaussian peak

within the epoch, and its width), one parameter identified the

EEG lead used, and the last parameter activated/deactivated

the gene (i.e., the parameter stated whether the related feature

should be used for classification or not). The length of the single

chromosome (i.e., the number of its genes) was not defined

a priori. Indeed it might change from generation to generation

[54]. By combining several Gaussian functions we obtained

a Radial Basis approximation of the original signal, as was also

done in Karjalainen et al. [55].

A constant population of 120 individuals, randomly initial-

ized, was used. The maximum number of generations was set to

20.Tthe evolution was stopped if both the maximum value and

the average value of a performance metric (i.e., the F-measure,

defined below) did not increase for at least 4 generations.

Tournament selection with elitism was used as the selection

criterion [53]. A tournament size of 10 chromosomes and an

elitism of 2 individuals were used for each generation. After

selection, individuals underwent crossover and mutation. Cross-

over was applied to pairs of chromosomes randomly chosen

with a probability of 0.7.The chromosomes were randomly

divided in two segments (without breaking any gene), and then

the four parts were recombined. Mutation was applied to any

single element of the gene with a probability of 0.005.Mutation

consisted in small perturbations of its value. The output of our

GA consisted in a set of chromosomes. It included all the

chromosomes with a performance above 99% of the maximum

performance value obtained during the whole evolution. In our

implementation, the features extracted from the GA were used

as input for a logistic classifier [56]. For each single interface,

learning and testing sessions (Section 2.2) were used as training

set for the logistic classifier, whereas last testing and follow-up

sessions (Section 2.2) were used as testing set. To avoid over

fitting in the optimization of features by the GA, k-fold cross-

validation (k = 4) was used [57]. GA parameters were not

optimized for our specific dataset. The parameters’ values used

in the present study were the same as those used in previous

studies [22,41]. Although it could be possible to improve the

GA’s speed and its final solution, by optimizing the choice of

the abovementioned parameters, this was not necessary for the

scope of the present study.

2.3.2 Artifactual epochs detection. The percentage of

ERP epochs with amplitude values greater than 75 mV was

calculated. This analysis was performed to obtain a measure of

the eye-movement artifacts for the Testing sessions and the

Follow-up sessions of each interface. The criterion of 675 mV
was chosen in order to detect the artifacts due to eye-blinks [58]

Covert Attention BCI: Classification Improvements
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and in order to detect gaze shifts greater than 5u of visual

angle. In fact, a bipolar EOG recording permits to detect

deflections of about 16 mV for each degree of eye movement

[59]. The distance between the fixation point and the center of

the icons (i.e., ‘‘Auto’’ and ‘‘Vol’’ interfaces) or the barycenter

of the arrows (i.e., ‘‘Arrows’’ interface) was of 7u of visual angle.

The cut-off level of 675 mV permitted us to detect whether

there were artifacts in the epochs, because of gaze shifts from

the center towards one of the icons or arrows displayed in the

periphery of the interfaces (or viceversa).

2.4 Experimental Design
Independent variables were manipulated within an experimen-

tal design for repeated measures. We manipulated the following

independent variables to test whether there was a non-homoge-

neous distribution of eye artifacts because of gaze-shifts or blinks

among the experimental conditions: Interface with three levels

(‘‘Arrows’’, ‘‘Auto’’, ‘‘Vol’’) and Session with two levels (Testing

sessions, Follow-up sessions). The dependent variable measured

was the percentage of ERP epochs with amplitude values greater

than 75 mV.
The independent variables manipulated for testing the effects on

BCIs’ performance were: Classifier with two levels (‘‘ICA

classifier’’, ‘‘GA classifier’’), Interface with three levels (‘‘Arrows’’,

‘‘Auto’’, ‘‘Vol’’), and Session with two levels (Testing sessions,

Follow-up sessions). To assess classification performances, the F-

measure [44] was chosen as the dependent variable. Most

commonly used in Information Retrieval, F-measure is the

harmonic mean of recall (Re) and precision (Pr). Re is the rate

of the number of correct target classification with respect to the

number of true target epochs (true positive epochs/total target

epochs), whereas the Pr is the rate of correct target classification

with respect to the epochs that have been labeled as target by the

classifier (true positive epochs/[true positive epochs+false positive

epochs]). The traditional F-measure (or balanced F-measure)

equally weights precision and recall and it is defined as (1):

F1~2
Pr :Re

PrzRe
ð1Þ

We have used F-measure, instead of the classic accuracy

measure [2], mainly because of the unbalanced number of targets

and non-targets in our experiments. We could have artificially

balanced the training and the testing sets. Besides being not

realistic, this approach does not take into account the presence of

false positives and false negatives.

The independent variables manipulated for testing the exper-

imental effects on the ERP were: Interface with three levels

(‘‘Arrows’’, ‘‘Auto’’, ‘‘Vol’’), Session with two levels (Testing

sessions, Follow-up sessions), Channel with four levels (Fz, Cz, Pz,

and Oz), and Trial Class with two levels (Target, Non-target). The

dependent variables were the amplitude of the P300 component

and the amplitude of the late negative component (LNC). The

amplitude of the P300 was defined as the averaged ERP amplitude

from 300 to 500 ms with respect to a baseline (i.e., the average

amplitude of the epoch from 500 ms before the stimulus onset to

the zero, the point of the stimulus onset). The amplitude of the

LNC was defined as the averaged ERP amplitude from 500 to

900 ms with respect to the baseline. The time windows used for

the amplitude definition were identified through visual inspection

of the grand average ERP by the experimenters.

Results

Data were subjected to Analyses of Variance (ANOVA) for

repeated measures. The Greenhouse-Geisser correction coefficient

(e) is reported when the assumption of sphericity has been violated.

3.1 Eye-movement Artifacts Analysis
The percentage of eye-movement artifacts was lower than 15%

in all the conditions. The percentage of eye-movement artifacts for

each participant was subjected to ANOVA for repeated measures.

Both the main effect of the Interface and the main effect of the

Session were not significant, F(2,22) = .65, p= .531, and

F(1,11) = .64, p..05, respectively. Also the interaction effect

between Interface and Session was not significant, F(2,22) = .46,

p..05.

3.2 Classification Performance Analysis
The results of the classification performance with the ‘‘ICA

classifier’’ and with ‘‘the GA classifier’’ for the Testing and Follow-

up sessions of each interface are reported in Figure 6.

There was a main effect of the Classifier F(1,11) = 24.22,

p,.001, because of a better classification performance of the ‘‘GA

classifier’’ (M=57.85, SD=11.24), than that with the ‘‘ICA

classifier’’ (M=43.93, SD=17.87). Participants’ performance was

significantly modulated as a function of the Interface,

F(2,22) = 13.99, p,.001. Post-hoc comparisons, corrected with

Bonferroni, revealed that participants reached higher performance

with the ‘‘Vol’’ interface (M=55.16, SD=16.38), than with both

the ‘‘Auto’’ (M=50.61, SD=16.31; p,.05) and with the

‘‘Arrows’’ (M=55.16, SD=16.38; p,.001) interfaces. The

comparison between the ‘‘Auto’’ and the ‘‘Arrows’’ interfaces

was not significant (p..05). Moreover, participants’ performance

was lower in the Follow-up sessions (M=49.43, SD 16.42), than in

the Testing sessions (M=52.35, SD=16.43), Session,

F(1,11) = 5.97, p,.05.

The Classifier by Interface interaction was significant,

F(2,22) = 5.63, p..05. To further investigate this interaction effect,

an analysis of the simple effect of the Interface within each level of

the Classifier factor was performed. The simple effect of the

Interface was significant when the epoch classification was

performed by means of the ‘‘GA classifier’’, F(2,22) = 14.22,

p,.001. Post-hoc comparisons, corrected with Bonferroni, showed

that higher performance was associated with the ‘‘Vol’’ interface

(M=63.6, SD=12.01) than with both the ‘‘Auto’’ (M=55.63,

SD=10.13; p..05) and the ‘‘Arrows’’ (M=54.31, SD=9.53;

p,.001) interfaces. On the contrary, there was no significant

difference between the ‘‘Auto’’ and ‘‘Arrows’’ interfaces (p..05).

The simple effect of the Interface was significant also when the

epoch classification was performed by means of the ‘‘ICA

classifier’’, F(2,22) = 8.57, p,.01. This Interface effect was due to

a significantly lower classification performance associated with the

‘‘Arrows’’ interface (M=39.5, SD=17.62), than with both the

‘‘Auto’’ (M=45.58, SD=19.71; p,.05) and the ‘‘Vol’’

(M=46.72, SD=15.98; p,.01) interfaces. There was no signif-

icant difference between the ‘‘Auto’’ and the ‘‘Vol’’ interfaces

(p..05).

The Interface by Session interaction was also significant,

F(2,22) = 4.98, p,.05. To further investigate this interaction effect,

an analysis of the simple effect of the Session for each interface was

performed. There was a significant reduction in the classification

performances in the Follow-up session (M=51.6, SD=12.36),

with respect to the Testing sessions (M=58.71, SD=13.32;

p,.01) of the ‘‘Vol’’ interface. In contrast, the comparisons
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between the Follow-up and Testing sessions within both the

‘‘Auto’’ and ‘‘Arrows’’ interfaces were not significant (p..05).

Both Classifier by Session interaction and the Classifier by

Interface by Session interaction were not significant,

F(1,11) = 1.16, p..05 and F(2,22) = 1.14, p..05, respectively.

3.4 P300 Amplitude Analysis
The ANOVA results for the mean amplitude of the P300 are

shown in Table 1. For reason of clarity, only the results relevant

for the hypotheses of the present study were extensively reported in

the paragraph below, especially those where the Trial Class factor

was involved.

The main effect of the Trial Class was significant,

F(1,11) = 9.76, p,.05. A larger P300 was elicited following the

Target trials (M=4.83 mV, SD= .86) than following the Non-

target trials (M=3.32 mV, SD= .45). The distribution of the P300

increased in amplitude from the frontal to the posteriors sites

(Channel, F(3,33) = 4.95, p,.01; see Figure 7). The three interfaces

elicited P300s of similar amplitudes on Target and Non-target

trials. In fact, the interaction Interface by Trial Class

(F(2,22) = 2.84, p..05) and Interface by Channel by Trial Class

(F(6,66) = .59, p..05, e= .33) were not significant. Moreover, none

of the effects involving the Session factor was significant.

To investigate whether the differences between the interfaces’

performance found in the EEG data classification were due to

differences in P300 amplitude, a Target vs. Non-target trials

planned contrast was performed within each interface. There was

a significant difference in P300 amplitude in the ‘‘Vol’’ interface

(Target: M=4.99 mV, SD=2.36; Non-target: M=2.78 mV,
SD=1.32; t(11) = 4.98, p,.001), but not in the ‘‘Auto’’ (Target:

M=4.78 mV, SD=3.7; Non-target: M=3.54 mV, SD=1.94;

t(11) = 1.91, p..05) and in the ‘‘Arrows’’ (Target: M=4.72 mV,
SD=3.33; Non-target: M=3.61 mV, SD=1.78; t(11) = 1.88,

p..05) interfaces (see Figure 7).

3.4 LNC Amplitude Analysis
The ANOVA results for the mean amplitude of the LNC are

shown in Table 2. Only the results relevant for the experimental

questions of the present study were extensively reported, with

particular reference to the Trial Class factor.

There was a larger negativity in the last portion of the epochs on

the Target (M=22.22 mV, SD= .51) than on the Non-target

trials (M=2.05 mV, SD= .2), Trial Class, F(1,11) = 21.43, p,.01.

This difference was significantly larger in the frontal site and

progressively decreased towards the posterior sites along the

midline (see Figure 7), Channel by Trial Class F(3,33) = 11.05,

p,.01, e= .49. The Interface by Trial Class interaction was

significant, F(2,22) = 8.97, p,.01, revealing that the LNC ampli-

tude related to the Target and Non-target trials was differently

modulated among the three interfaces. To further investigate this

interaction effect, two separate ANOVAs were performed for

testing the simple effect of the Interface on each level of the Trial

Class (i.e., Target and Non-target). No different modulation in

LNC amplitude was found on the Target trials, F(2,22) = .24,

p..05. In contrast, there was a significant effect of the Interface on

the Non-target trials, F(2,22) = 25.56, p,.001. Post hoc compar-

isons, corrected with Bonferroni, showed that the amplitude values

related to Non-target trials on the ‘‘Vol’’ interface (M= .87 mV,
SD= .29) were different from those on the ‘‘Auto’’ (M=2.47 mV,
SD= .18, p,.001) and from those on the ‘‘Arrows’’

(M=2.57 mV, SD= .22, p,.01) interfaces. In contrast, there

Figure 6. Classification results. Means and Standard Deviations of the performance (F-measure) of online (ICA) and offline (GA) classification.
doi:10.1371/journal.pone.0053946.g006

Table 1. Results of the ANOVA for the P300 amplitude.

Factors F Df p e

Interface .34 (2, 22) .62 .64

Channel 4.95 (3, 33) .006 –

Session 3.07 (1, 11) .11 –

Trial Class 9.76 (1, 11) .01 –

Interface 6Channel 1.24 (6, 66) .31 .29

Interface 6 Session .89 (2, 22) .42 –

Channel 6 Session .45 (3, 33) .71 .43

Interface 6 Trial Class 2.84 (2, 22) .08 –

Channel 6 Trial Class 2.89 (3, 33) .05 –

Session 6 Trial Class .59 (1, 11) .68 –

Interface 6Channel 6 Session .77 (6, 66) .5 .43

Interface 6Channel 6 Trial Class .59 (6, 66) .74 .33

Interface 6 Session 6 Trial Class 1.94 (2, 22) .17 –

Channel 6 Session 6 Trial Class .99 (2, 22) .41 –

Interface 6Channel 6 Session 6 Trial Class 2.86 (6, 66) .8 .56

The main factors and the interactions are reported in the first column. The F
values, the related degrees of freedom (df), the associated p values (in bold are
reported those which are ,.05), and the Greenhouse-Geisser correction
coefficient (e) are reported in the following columns.
doi:10.1371/journal.pone.0053946.t001
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was no significant difference between the ‘‘Auto’’ interface and the

‘‘Arrows’’ interface, p=1.

As for the P300, planned contrasts on Target vs. Non-target

trials were performed within each interface. There was a significant

difference between the two levels of the Trial Class in each

interface: the ‘‘Vol’’ interface (Target: M=22.24 mV, SD=2.29;

Non-target: M= .87 mV, SD=1.01; t(11) =25.87, p,.001), the

‘‘Auto’’ interface (Target: M=22.42 mV, SD=1.64; Non-target:

M=2.47 mV, SD= .64; t(11) =24.07, p,.005) and the ‘‘Arrows’’

interface (Target: M=21.98 mV, SD=1.99; Non-target:

M=2.57 mV, SD= .78; t(11) =22.53, p,.05).

Discussion

We analyzed whether the performances obtained by 12 healthy

participants using three new interfaces in an ERP-based visual

BCI [35] were influenced by the specific classification system. For

this purpose, we performed an offline classification with a GA for

the features extraction and a logistic classifier for epoch

categorization [22]. The F-measure was calculated and used as

the dependent variable for both online and offline classifications.

We used the F-measure because it is a performance index that

takes into account the unbalanced number of targets and non-

targets. By using the F-measure, we overcame some intrinsic

Figure 7. ERPs grand average. Grand average of the ERPs elicited by the three interfaces on the last testing and follow-up sessions.
doi:10.1371/journal.pone.0053946.g007
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limitations of the classic measures used for testing discrete BCIs

[41,42].

The results of the ‘‘GA classifier’’ analysis revealed different

performances among the three interfaces. Participants reached

better accuracy with the ‘‘Vol’’ interface than with both the

‘‘Auto’’ and the ‘‘Arrows’’ interfaces. These results are in line with

those reported by Marchetti et al. [35], who used: a) online

classification procedure (i.e., ‘‘ICA classifier’’) with a fixed features

extraction algorithm, and b) the classic accuracy as the perfor-

mance measure (i.e., the percentage of correct classified trials on

the total number of trials [2,36]). Our data support the hypothesis,

that independently of the classification system and of the specific

measure (online/classic accuracy measure vs. offline/F-measure),

the ‘‘Vol’’ interface (guided by voluntary orienting of visuospatial

attention) leads the users to reach a better control of the cursor

movement. In accordance with the results of the offline ‘‘GA

classifier’’ analysis using the F-measure, we found a different

modulation of the LNC amplitude on non-target trials among the

three interfaces. That is, the LNC amplitude was lower in the

‘‘Vol’’ interface than in the ‘‘Auto’’ and in the ‘‘Arrows’’

interfaces, revealing that voluntary orienting of visuospatial

attention can be more efficient in inhibiting brain activity related

to non-target events.

On the contrary, the results obtained with the ‘‘ICA classifier’’

analysis by means of the F-measure showed that participants’

performance was lower in the ‘‘Arrows’’ interface than in the other

two interfaces. No difference was found between the ‘‘Auto’’ and

‘‘Vol’’ interfaces. Nevertheless, the different results obtained with

the ‘‘ICA classifier’’ analysis might depend on the use of fixed

features extraction, which seemed to be less sensible in detecting

the differences among the interfaces.

Being the two classifiers tested on exactly the same data, a fair

comparison is possible. Performance with the ‘‘GA classifier’’,

outperformed that with the ‘‘ICA classifier’’. The higher

performance obtained and the smaller standard deviation (see

Figure 6), suggest that the use of the ‘‘GA classifier’’ might be

a better solution for online epoch categorization within our BCI

system.

We did not control the position of the participants gaze during

the sessions with an eye-tracker system, and this might represent

a limit of the present study. It could be argued that the Interface

effect we found could be due to the participants’ possibility to

move their gaze towards different spatial positions on the monitor

during the BCI sessions. Nonetheless, the analysis that we

performed on the percentage of trials with eye-movements

artifacts, supported the idea that the participants did not use

different ‘‘eyes-movement strategies’’ for controlling the three

interfaces. The percentage of epochs with eye-movement artifacts

in all the interfaces was lower than the 15% of the total number of

trials. Furthermore, none of the participants reported any problem

in maintain the gaze at the fixation point during the BCI sessions.

In summary, the results showed that the control of a visual ERP

BCI is possible in a condition of covert orienting of visuospatial

attention that is particularly relevant for patients, whose eye

muscle control is impaired. Moreover, subtle differences in

interface design, such as the implementation of the voluntary

and automatic orienting of visuospatial attention principles,

produced significant differences on the ERP elicited and,

consequently, on BCI performance. This result represents a further

evidence of the fact that the implementation of cognitive principles

on BCI design and development can modulate the underlying

brain signals, leading to advantages in device control for the user.

Nonetheless, to take full advantages of such design implementa-

tions, classifying systems which do not operate on a priori feature

extraction are suggested. For this purpose, the use of genetic

algorithms might represent an efficient ad hoc solution for detecting

the most relevant features deriving from both distinct interface

modulation and interpersonal brain signal differences.

Acknowledgments

We would like to thank all participants for their time and effort.

Author Contributions

Conceived and designed the experiments: M. Marchetti FO M. Matteucci

LM FP SS KP. Performed the experiments: M. Marchetti FO. Analyzed

the data: M. Marchetti FO. Wrote the paper: M. Marchetti FO M.

Matteucci LM KP.

References

1. Farwell LA, Donchin E (1988) Talking off the top of your head: Toward a mental

prosthesis utilizing event-related brain potentials. Electroencephalogr Clin

Neurophysiol 70: 510–523.

2. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002)

Brain-computer interfaces for communication and control. Clin Neurophysiol

113: 767–791.

3. van Gerven M, Farquhar J, Schaefer R, Vlek R, Geuze J, et al. (2009). The

brain-computer interface cycle. J Neural Eng 6: 041001.

4. Birbaumer N (2006) Brain-computer-interface research: Coming of age Clin

Neurophysiol 117: 479–483.
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