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Abstract: Smart home and smart building systems based on the Internet of Things (IoT) in smart
cities currently suffer from security issues. In particular, data trustworthiness and efficiency are
two major concerns in Internet of Things (IoT)-based Wireless Sensor Networks (WSN). Various
approaches, such as routing methods, intrusion detection, and path selection, have been applied
to improve the security and efficiency of real-time networks. Path selection and malicious node
discovery provide better solutions in terms of security and efficiency. This study proposed the
Dynamic Bargaining Game (DBG) method for node selection and data transfer, to increase the data
trustworthiness and efficiency. The data trustworthiness and efficiency are considered in the Pareto
optimal solution to select the node, and the bargaining method assigns the disagreement measure
to the nodes to eliminate the malicious nodes from the node selection. The DBG method performs
the search process in a distributed manner that helps to find an effective solution for the dynamic
networks. In this study, the data trustworthiness was measured based on the node used for data
transmission and throughput was measured to analyze the efficiency. An SF attack was simulated in
the network and the packet delivery ratio was measured to test the resilience of the DBG and existing
methods. The results of the packet delivery ratio showed that the DBG method has higher resilience
than the existing methods in a dynamic network. Moreover, for 100 nodes, the DBG method has
higher data trustworthiness of 98% and throughput of 398 Mbps, whereas the existing fuzzy cross
entropy method has data trustworthiness of 94% and a throughput of 334 Mbps.

Keywords: data trustworthiness; dynamic bargaining game; internet of things; smart homes; packet
delivery ratio; wireless sensor networks

1. Introduction

Internet of Things (IoT) networks consist of many sensors and devices connected
to the Internet for communication and data collection. IoT applications and services
have gained popularity for various reasons such as flexibility and scalability, and are
used in applications such as home appliances, industries, and smart cities. The smart
home system provides the convenience of connecting household applications to a single
network for control and management. Home automation systems involve devices for
lighting, thermostats, air conditioning, lawn/gardening management, and smart door
locks. Specifically, the smart home generally involves the application of various types of
sensors, such as a thermal sensor (electronic thermistor sensor) for temperature monitoring,
a camera sensor (CMOS sensor) for security, a humidity sensor for moisture detection,
and a passive infrared (PIR) for motion sensor. Moreover, the home automation system
requires the sensor devices to be connected to the cloud and are usually controlled from the
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user’s mobile. Furthermore, real-time IoT networks provide many benefits and also suffer
from various security vulnerabilities, such as data leakage, multi-latency, side-channels,
and cross-site scripting [1–3]. An IoT sensor network collects data from a source node
and passes it to the multiple intermediate sensor nodes to reach a destination node. The
Base Station (BS) in the IoT network allows the destination nodes to communicate to
the gateway. Sensor data reliability and trustworthiness are important for the data in
several critical decisions in a real-time IoT network [4,5]. The rapid development of the
IoT in mobile applications increases the requirement of feasibility (stable transmission)
of the underlying Wireless Sensor Networks (WSNs), considering factors such as data
trustworthiness, low power consumption, ultra-low latency, and security [6]. In this
context, node trustworthiness is fundamental to the development of IoT networks for
decision processes based on observation. Although some security methods provide high
data trustworthiness, they are difficult to apply in an IoT environment due to cost and
performance reasons [7].

Globally accessible devices and resource-constrained interconnections via an unre-
liable and untrusted Internet are vulnerable to attacks using packet drops, false data
injection, and data forging, which affect the decision-making processes in applications.
The provenance reliance for data trustworthiness is considered an effective method to
track data transmission and data acquisition [8,9]. Most traditional global detection meth-
ods used in building secure networks focus on the nodes encounter ratio and requires
holistic cognition for the network structure. Real-time IoT applications with incomplete
and large-scale structures have limitations, such as instability in dynamic networks and
lower security [10–12]. IoT networks are affected by various attacks, such as Selective
Forwarding (SF), eavesdropping, sniffing, Man-in-the-Middle, and Denial of Services (DoS).
Cyber-attacks can be applied to the targeted network to steal data, thus causing significant
disruption to IoT systems. Various methods in the IoT-WSN have been developed and
applied to improve the security of networks [13]. Recent mitigation methods to improve
security in IoT networks are trust-based approaches, Intrusion Detection Systems, and
machine learning for routing and malicious node discovery [14,15]. A secure method
with high data trustworthiness and low end-to-end delay is required to provide a flexible,
reliable, and effective real-time home automation system.

Various types of models have been applied to improve the data trustworthiness of
networks, and the commonly used types of models are discussed in the following. A node
selection method based on neighborhood information [1] was applied to eliminate the
malicious nodes in the network. The direct and indirect trust among nodes was measured
to reduce the packet drop ratio and improve the packet data rate among different nodes.
The Digital Twin (DT) method [2] was applied to find the faults in the network and then
take the necessary precaution to prevent the network from failing. The fault diagnosis
system helped to improve the efficiency of the network and increased the packet delivery
ratio. A probabilistic graphical model [3] was used to measure the trust between the nodes
in the network based on data collection and communication behavior. The developed
method helped to improve the data trustworthiness in the network and improved the
efficiency of the model.

The Reversible Watermarking and Asymmetric Cryptography (AC) method [4] has
been used to improve the data trustworthiness and ensure integrity. The developed method
has higher efficiency than Reversible Watermarking, while ensuring integrity and lowering
performance in terms of security. An elastic slide window and machine learning method [5]
was used to improve the data trustworthiness and increase the security of the network. The
developed method has lower efficiency in terms of detecting malicious nodes and node
selection. Trust measurement models [1,3] provide an effective measure for the detection of
malicious nodes, but fail to select the proper node for transmission. The water marking [4],
fault detection [2] and machine learning [5] methods have lower efficiency in malicious
node detection.
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In comparison, the trust value has been measured from multi-dimensional data [6],
and the trust value was mapped to find the node. Direct trust and indirect trust were
measured from the network, and the best node was found for transmission. An assurance
policy template [7] was applied for the trust measure based on the data collection process
and human behavior. The assurance policy instance is applied in the assurance policy
template for the selection of node. The efficiency and adaptability of the model is low in
the network. The routing protocol method [8] was used for low-power and lossy networks
to identify malicious nodes or faults in the nodes. The collected data was analyzed to
study the malicious node and improved the efficiency of the model. A Markov Decision
Process (MDP) [9] was applied for allocation of resources to service and encode a service
provisioning system. Reinforcement Learning (RL) was applied to find the node to improve
the efficiency. The trained policy increased the trustworthiness in the model.

The Detection Scheme for Dynamic Trustworthiness Overlapping Community (D2-
TOC) was applied to improve data trustworthiness [10]. The node pair information, such
as service degree, recency and contact probability, were measured for data trustworthiness.
The developed method had lower performance in terms of the efficiency of the network.
The trust-based methods [6,7] showed a strong performance in node selection and a
lower performance in malicious node detection. The routing protocol [8] had higher
performance in detecting malicious node and lower efficiency in the dynamic network.
The reinforcement learning and MDP [9] provided higher efficiency network allocation,
which failed to operate in the dynamic network. The overlapping-based model [10] had
lower efficiency in node selection for transmitting the data.

The Analytical Network Process (ANP) [11] was applied to improve data trustwor-
thiness and efficiency. The pairwise comparison was applied to analyze the criteria and
available alternatives. The Supervisory Control and Data Acquisition (SCADA) method [12]
was applied for a reliable and scalable network in a cyber-attack detection model. The
Random Subspace (RS) with the Random Tree (RT) was applied for detection of cyber-
attacks. The ANP [11] method had lower efficiency in the detection of the malicious node
and Random Tree [12] method had an overfitting problem in the detection.

Hence, the existing methods used in IoT security have the limitations of low data
trustworthiness, low adaptability, and high latency. The existing methods used in path
selection to improve the IoT-WSN security have the limitations of lower performance in
the dynamic network and low data trustworthiness. This study proposes the DBG method
to improve the data trustworthiness in the dynamic network. The system model was
developed and applied with the SF attack to test the performance of the method. This
study aimed to improve the data trustworthiness and security in IoT home appliances. The
novelties of the proposed DBG method are as follows:

1. The proposed DBG method is based on bargaining techniques to improve the data
trustworthiness of the IoT network. The bargaining technique in the DBG method
applies disagreement measures to the nodes, thus helping to avoid malicious nodes
in the IoT network.

2. The DBG search process is carried out in a distributed manner to enable node mobility
to be effectively achieved in the dynamic network. Unlike existing methods, the DBG
method is performed in a distributed manner and considers the node mobility, which
helps to achieve an effective performance in a dynamic network.

3. Time Difference to Collision (TDTC) is applied in the method to measure the probabil-
ity of the node collision, and the bargaining method helps to avoid malicious nodes
in the IoT network. Avoiding the malicious nodes and collision of nodes in dynamic
networks effectively improves the network packet delivery ratio.

4. The proposed DBG method and existing methods in IoT path selection are evaluated
in the dynamic network and compared in terms of data trustworthiness, packet
delivery ratio, throughput, and end-to-end delay.

This rest of this paper is organized as follows. Recent methods for data trustworthiness
in the IoT are reviewed in Section 2. Section 3 presents the proposal, and introduces the
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system model and the DBG method. Next, Section 4 provides the experimental setup, and
Section 5 presents the results and discussion. Finally, the conclusion of this research paper
is provided in Section 6.

2. Literature Review

The Internet of Things (IoT) provides resilient data accessibility and different forms
of system management. In addition, as introduced above, the IoT has a number of chal-
lenges, such as power management and data trustworthiness (DT). Various recent methods
involved in IoT security, and their related background, are introduced in this section.

Abdalzaher and Muta [16] proposed a repeated game model to improve the data
trustworthiness and clustered WSN in IoT networks. The developed model can reduce
power consumption in retransmission due to a hardware failure in a cluster member. The
collision in the delivery packets in cluster members is avoided based on the TDMA protocol.
The proposed model differentiates between a malicious cluster member and a hardware
failure in the cluster member. The developed method carries out isotropic or non-isotropic
transmission from a cluster member to increase the data trustworthiness. The developed
Pareto optimal method increases the data trustworthiness compared to the non-cooperative
defense method in the IoT.

Li et al. [17] proposed Trustworthiness Enhanced Reliable Forwarding (TERF) for
the IoT to avoid malicious nodes in the network. The dual trustworthiness framework
consists of local and global trustworthiness in the network nodes. A weighted directed
graph was applied to model the mobile IoT, and the TERF method was applied to measure
the service degree and contact probability. This method measures the nodes’ familiarity
and reduces the interference from malicious nodes, resulting in a significant improvement
in the trustworthiness. The social similarity measures the association of mobile nodes
with the personal centrality for the relative node importance and avoids malicious nodes.
The TERF method performs the dot product of two-node trustworthiness to measure the
social similarity, and employs the degree and local trustworthiness to measure the personal
centrality. The TERF method improves stability and security, and reduces latency and
the network cost. The model has low adaptability in dynamic networks due to the node
familiarity measures.

Liu et al. [18] proposed a blockchain-based method called Tornado that consists of
a corresponding algorithm and space-structured ledger in the IoT. Network scalability
was increased based on the data structures and space-structured chain architecture. The
collaborative proof-of-work was applied in this model for heterogeneous IoT devices
in this analysis. The resource efficiency was improved in IoT devices based on Space
Structured Greedy Heaviest-Observed Subtree (S2GHOST). Data trustworthiness was
improved based on the dynamic weight assignment method in the S2GHOST model. The
Tornado method improves the performance in terms of latency and resource efficiency
in the IoT. The security of the model was less defensive in the heterogeneous IoT system
due to the distributed manner used. Javanmardi et al. [19] proposed a security-aware
task scheduler in IoT-fog networks called FUPE, based on fuzzy-based multi-objective
Particle Swarm Optimization, to increase the security of protection. The FUPE method has
higher security against DDoS attacks, and effectively detects the attack. The FUPE method
combines the Software-Defined Network (SDN) and Fog Technology to protect against the
DDoS attack. The FUPE method has a higher performance in terms of lower latency and
security compared to the state-of-art methods. The model has poor convergence in the
optimization process and can withstand a single attack.

Shijie and Yingfeng [20] applied the cross-entropy method and fuzzy Analytic Net-
work Process to analyze the credit of Manufacturing Services (MS) tasks the in IoT. The
blockchain method was applied to increase the data security in this model, and processing
took place in the unified platform. The Service Scoring Mechanism (SSM) personalizes
the service of credit evaluation and the smart service configuration model carries out the
matching of demand and supply. The adaptability of the model was low and its security
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was lower in the dynamic network. The data trustworthiness of the model was affected by
the fuzzy model of the sub-attributes. Roldán et al. [21] applied machine learning Complex
Event Processing (CEP) to detect the different types of attacks in real-time IoT networks.
Automatic code generation and attack prediction patterns based on the model-driven
graphical tool were provided. The CEP model was applied to the healthcare IoT network
to detect malicious nodes. Lee et al. [22] proposed a game theory method to quantify
vulnerability and to increase the security in IoT networks. The developed model consists
of three stages: game strategy, cost impact, and payoff calculation. The developed method
has higher resilience than the existing methods in IoT networks.

Djedjig et al. [23] proposed a metric-based routing protocol that was applied to evalu-
ate the secure routing topology. Game theory was applied to analyze the cooperation and
MRTS was used to find the malicious node. The metric-based routing protocol method has
higher efficiency in terms of node rank changes, energy consumption, and packet delivery
ratio. Alzubi et al. [24] applied the Hermitian-Based Cryptosystem (HBC) to improve
IoT security and to find malicious nodes. Kerckhofs’s desideratum was the main guid-
ance to choose the Hermitian curve and generate encryption keys. The error connection
shows that the Hermitian method has higher performance than the McEliece cryptosystem.
Hayajneh et al. [25] applied the Software Definition Network (SDN) in the system model
to improve the security of the IoT network. The developed method has the advantages
of mitigating the Man-in-the-Middle attack, thereby increasing security. The results indi-
cate the developed method shows higher resilience to the Man-in-the-Middle attack than
existing methods.

Thirumalai et al. [26] presented a non-linear Diophantine equation to provide resilience
against side-channel attacks such as timing attacks. The RSA and ESR were applied to
provide three-stage encryption and two-stage decryption. The knapsack method was
also applied in the developed method to increase the security in the IoT cloud. The
key generation of the model shows that the developed method has higher resilience
compared to the existing methods. Hu et al. [27] proposed a data trustworthiness enhanced
Crowdsourcing Strategy (DTCS) method to increase the security in the IoT environment.
The attribute relevancy and participant’s familiarity were assessed to select the node for
the path and data transfer in the IoT cloud. The DTCS method increases the security of
crowdsourcing and provides defense against behavior attacks and collision attacks. The
DTCS method provides higher security compared to the existing methods of TSCM. Habib
et al. [28] proposed modified multi-objective Particle Swarm Optimization (PSO) with
the Levy flight method, which was applied for intrusion detection in the IoT network. A
modification in the PSO method was applied to tackle the problem of feature selection in
the network. The UCI repository data were used to test the performance of the optimization
method, and the results show that the developed method has higher detection performance
compared to existing methods.

Other researchers [16–20] achieved higher security in IoT networks using game theory,
optimization, and attribute-based security models. However, the review of recent methods
applied in the IoT shows that the existing approaches have the limitations of low data
trustworthiness, low adaptability, and high latency.

3. Proposal
3.1. System Model

The cluster members (CMs) set in WSN is used in this model, and the cardinality of
the set N is represented as |N|, and defines the number of CMs, N, in the cluster. In the
clustered WSN, the TDMA protocol is applied to manage the packet transmission and
synchronization between the cluster head (CH) and CMs. The cluster head is responsible
for collecting the information from cluster members to assign the task. The cluster head
is selected randomly because changes in the cluster head do not have a large impact on
the data transmission. The cluster head and cluster member are the sensor nodes in the
network having mobility. Various sensors are used in real-time networks, as discussed
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previously, and these sensors are considered as nodes in the system model. Although the
proposed DBG method is applicable in various MAC protocols, such as the OFDM-based
protocol [16], the TDMA protocol is used in this method due to its power conservation
features in the network. TDMA has been proven to provide a long network lifetime for
the WSN-IoT devices [29–31]. DMAC is a MAC protocol based on the scheduled time of
TDMA, and is efficient in the IoT-WSN because it avoids overhearing, prolongs the network
life, and improves energy conservation [32]. The block diagram of the DBG method in the
IoT-WSN model is shown in Figure 1. The TDMA protocol, which has adequate intensity,
was applied to test the performance of the proposed DBG method [33–38].

Figure 1. The block diagram of the Dynamic Bargain Game in the dynamic network.

The game theory-based approach is applied in this model and two action states are
present for each game player. First, every ith CM needs to perform a drop (D), i.e., dropping
packets of malicious action, or no drop (ND), i.e., not dropping packets. The drop is
stopped, or the packets that are supposed to be sent to nodes are dropped, while no drop
is transmitting the packets to respective nodes. The CM is performed with the D action
to save battery power in the network. Second, the CH performs a no Beacon (NB) or
Beacon (B) action for each CM based on the game theory decision. The benevolent CM is
provided with permission and denoted as action B, i.e., it does not drop packets to send
the observed data [32]. The sleep mode of CM is also activated based on the B permission
and battery life is saved using a rest in packet transmission, and power recovery while
recharging is available. If D is applied in the ith CM, then NB action is performed in the
model. If an SF attack is performed on a network, a random hardware failure occurs in the
real-time network due to CM performance. This hardware suffers from excessive packet
transmission and dropping of packets that are considered in the proposed method. The
proposed method effectively classifies the malicious CM due to the SF attack and the nodes
that suffer from the hardware failure. The benevolent CM is applied with B based on the
TDMA at the time of data transmission. A Selective Forwarding (SF) attack acts as a normal
node and discards the critical information to the destination. This attack causes loss of
important information and failure of smart devices due to this information loss. Traffic
rate, duration, number of logins, and number of failed logins are important attributes used
to detect the SF attack in game theory.

Node mobility is common in IoT networks, and is mostly a subset of an element in
the network. The integration of mobile nodes, connectivity, and resource allocation are
carried out in the model. The proposed method was developed to support the mobile
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nodes in IoT networks and improve the data trustworthiness. After CM behavior checking,
the Beacon (B) action is distributed in the network. Initially, all CMs are considered to
be benevolent and the cluster head (CH) action for all CMs is B. The CMs are calculated
with the utility function of the ith CM (Ui), and the CH determines whether the CM has
the right to be supported by the Beacon action based on the utility function. The TDMA
performed on the ith CM determines if the CM is benevolent and can thus receive the
Beacon. If the model finds that the ith CM is malicious, the Beacon is not sent to the ith CM.
The continuous re-transmission of packets by the malicious node and acknowledgment
are not received by the CH. If the battery power is weakened by the CM due to malicious
behavior, then the CM is prone to die. All CMs are considered to be benevolent in the final
round; the total number of rounds in the given period is denoted as Nrd and hardware
failure is not considered. A star topology is applied for the communication between CMs
and the CH, and a dedicated communication link between them is used to facilitate the
checking procedure of the received packets for every ith CM. A star topology is also applied
to maintain stable communication between the CH and CMs in the dynamic network. A
stark topology has the capability to change the CH if one of the CH fails, thus improving
the stability in the dynamic network. CM communication to other clusters is through the
CH, and a conventional topology in the real-time network is applied to determine the
benevolent CMs that do not drop. Four scenarios were considered relating to the CH action
(Ai CH) and the ith CM action (Ai). Four representations of three scenarios denote the
one-shot games in which the same action is performed by the CM and the CH regardless
of other players’ actions. The rational interaction between the ith CM and the CH is the
last scenario to decide the reward and punishment to act as a defense mechanism, and is
carried out by every CM action. The behavior of all of the malicious rational CMs becomes
benevolent based on this method. The four action states of the two players (i.e., the ith CM
and CH) are denoted based on following processes:

Ai
CH = NB and Ai = D

Ai
CH = NB and Ai = ND
Ai

CH = B and Ai = D
Ai

CH = B and Ai = ND

The system model performance is explained as follows:

1. The game theory method is used to decide to perform drop or no drop;
2. Every ith CM must perform a drop or no drop action based on the game theory decision;
3. Drop is performed to send the sensor data to the destination;
4. No drop equates to a denial of transmission of the data;
5. No drop is performed for two reasons:

a. Game theory labels the node as malicious;
b. The system performs no drop to save power (sleep mode). In this case, the drop

is activated once the node is recharged;

6. CH has two action states: Beacon or No Beacon. This action is decided by game theory.

a. Beacon provides permission for no drop, to go into sleep mode, and re-activation
from the sleep mode;

b. No Beacon denies data transmission for the node.

7. Beacon action is performed after checking the behavior of the CMs;
8. The CH monitors the communication between the CMs;
9. The game theory method is performed for CH decisions.

Special Cases

There is a chance that the malicious node and hardware failure node will suffer from
the no drop. The proposed game theory model is able to differentiate between nodes
experiencing a hardware failure and those subject to an SF attack.
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3.2. Dynamic Bargain Game Method

Game theory is an approach for decision making based on several players character-
ized by various conflicts of interest and mutually interdependent situations. Co-operation
and interaction are the important processes in game theory, which is considered a rational
method to solve conflict based on the node interaction. The game theory tool is used to
obtain the negotiation process, which is transformed from intersection resolution. The CH
consists of data related to the CMs and communication between the CMs. Game theory
uses monitoring to determine if the node is malicious. The major objective of game theory
is to analyze the node data from the CH monitoring data to determine if the node is mali-
cious. Game theory selects the possible path based on the objectives to provide a suitable
path to effectively transfer the data. If nodes are represented as players in game theory,
more possible paths are selected in the method and irrelevant paths are also considered
for the objective. The consideration of more possible and irrelevant paths results in low
efficiency and high computational complexity. The typical scenario of game theory is
described as follows.

The players: The players are regarded as entities that influence the game outcome and
are denoted as G = {V1, V2, V3}.

The strategies: The game strategy set comprises a player’s sequence of actions that are
undertaken to complete a plan. This strategy is used to decide if an action is necessary for the
particular step, and the set of strategies is denoted as S = {Accelerate, Uni f orm, Decelerate}.
The strategy denotes the states of the node, which are increase speed, maintain speed, and
decrease speed.

The payoff: At the end of the game, the payoff is applied to benefit the players who
followed their strategy. Each player has a payoff set of Pm = {S1, S2, S3}, m = 1, 2, 3.

In this stage, the acceleration element is classified into three categories and strategy is
varied in the range of [amin, amax], which is different from the deceleration and acceleration
of the fixed value in a static game.

3.2.1. Payoff Design

This method focuses on three important aspects (three players) of the network, namely,
efficiency, safety, and interaction. A safe intersection and more efficiency between the nodes
are considered to be objectives in this method. The conflicts of place and time are predicted
based on the neighbors’ shared states and the unsignalized intersection is followed in this
method. The co-operation method is applied to increase the network traffic in the shared
states, and velocity changes influence the efficiency. Control strategies in the node aspects
are limited to the node’s execution capacity (velocity of the node).

The payoff is sorted into two levels based on different aspects by considering the
safety and efficiency intersection level. The execution capability is considered at the node
level and the payoff is given as follows in Equations (1) and (2).

f i
p,m = αp,mTi

m + βp,m∆Ti
m,n − γp,m∆vi

m + δp,m∆αi
m, (1)

m, n ∈ {1, 2, 3, m 6= n}, i ∈ N (2)

where the pair of nodes, node ID, priority are denoted as mn, m, and p subscripts and the ith iter-
ation is denoted in superscript. The node weight elements are denoted as αp,m, βp,m, γp,m, and

δp,m, respectively. Matrices Ti
m =

[
Ti

1, Ti
2, Ti

3
]T and ∆Ti

mn =
[
∆Ti

12, ∆Ti
13, ∆Ti

23
]T denote the

weights corresponding to αp,m =
[
αp,m1, αp,m2, αp,m3

]
and βp,m =

[
βp,m12, βp,m13, βp,m23

]
,

respectively. The matrix transpose operation is denoted using the superscript “T” and
weights are satisfied using the following condition in Equation (3).

W·αT
p,m + W·βT

p,mn + γp,m + δp,m = 1 (3)

where W = [1, 1, 1], and various weights combinations are denoted based on the interaction
degree and various driving characteristics.
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The payoff of each level in each related element is given as follows.
Intersection level in the payoff: The intersection level in the payoff focuses on the

nodes that are described as safe and efficient.
The negotiation game of crossing efficiency is the key aspect. The TTC is applied for

each node with parameters of pm, vm, and am, as given in Equation (4). Ti
m =

√(
vi

m
ai

m

)2
+
(

2pi
m

ai
m

)
−
(

vi
m

ai
m

)
, m = 1, 2, 3, i ∈ N,

vmin ≤ vi
m ≤ vmax

(4)

The constraint is set for the minimum and maximum velocity, and network traffic
rules are applied in the method. The acceleration, velocity, and collision point position are
denoted as pi

m, vi
m, and ai

m in a certain iteration loop, respectively.
The basic principle of cooperative intersections is the safe transmission of data.

Each node safety pair is denoted as the Time Difference to Collision (TDTC), as given
in Equation (5).

∆Ti
mn =

∣∣∣Ti
m − Ti

n

∣∣∣, m, n ∈ {1, 2, 3, n 6= m}, i ∈ N (5)

Each node’s safety is defined as the TDTC in a certain loop, which indicates each node
with the appropriate time to transfer the data. Equation (5) denotes the two nodes’ time
difference to consecutively pass the data while ensuring safety. The interaction crossing
efficiency is denoted in Equation (6).

Equation (6) is defined based on the third term in Equation (1).

∆vi
m = vi+1

m − vi
m, m = 1, 2, 3, i ∈ N (6)

The velocity change and initial velocity affect the network traffic efficiency. A positive
value indicates an improvement in the node speed, and node slowdown is denoted by a
negative value. An improvement in network traffic efficiency is indicated by a negative
sign for the node velocity.

Node Payoff: The acceleration and deceleration of nodes affect the efficiency and
safety of the nodes. The acceleration and deceleration change is denoted in Equation (7).

∆ai
m =

∣∣∣ai
m − ai−1

m

∣∣∣, m = 1, 2, 3, i ∈ N (7)

Normalization: Different parts with different dimensions are considered based on a
zero-mean normalization, as adopted in Equation (8).

y∗ =
y− µy

σy
(8)

where the original input and the normalized input are denoted as y, y∗, µy denotes the y
expectation, and σy is the standard deviation of y.

3.2.2. Pareto Optimal Set

A satisfactory solution of the Pareto optimal solution is introduced in this method.
The best payoff for each node is not ensured by minimizing the global payoff. The genetic
algorithm is applied to select the minimum global payoff in the search for the Pareto optimal
solution. The optimal solution is regarded as a fitness function, as given in Equation (9).

Fi
p = ωi

p,1· f i
p,1 + ωi

p,2· f i
p,2 + ωi

p,3· f i
p,3 (9)

where payoff functions f i
p,1, f i

p,2, and f i
p,3 considered in the ith generation are provided

in Equation (1), and are measured using the strategy set
{

ai
1, ai

2, ai
3
}

. The coefficient
weights are denoted as ωi

p,1, ωi
p,2, and ωi

p,3. Each generation i is constantly applied in
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amin = −2 m/s2, amax = 2 m/s2. The global optimal strategy set is applied after the genetic
algorithm standard procedure.

3.2.3. Bargaining Game

A bargaining game is applied to improve the mutual interaction between the nodes
using disagreement point d(k) and decision space Y, which is defined as {(Y, d(k))}.

The general game is used to formulate the bargaining and to search for the Pareto
optimal set, and each node-weighted global payoff is minimized to formulate the game
problem. The game problem is defined in Equation (10).

min
u(k)

∑M
m=1 ωmφm(u(k)) (10)

S.t. um(k) ∈ um, m = 1, 2, 3

where each node weight coefficient payoff is M = 3 and ωm.
The fitness function is applied to the disagreement point to develop the bargaining

game based on cooperative game theory. The disagreement point dm(k) at time step k
is denoted as dm(k) = ϕm(up(k)), and up(k) is obtained to solve the problem, as shown
in Equation (11).

min
um(k)

max
u−m(k)

φm(u(k)) (11)

S.t. um(k) ∈ um, m = 1, 2, 3

u−m(k) ∈ u−m, m = 1, 2, 3

where the node m strategy set is denoted as u−m(k), the worst-case node is denoted as G,
and the best benefit is denoted as dm(k), which is used to measure the worst case.

The disagreement point of the bargaining game based on the Nash solution is given
in Equation (12).

max
u(k)

M

∏
m=1

[dm(k)− φm(u(k))]
ωm (12)

S.t. dm(k) > φm(u(k)), m = 1, 2, 3

um(k) ∈ um, m = 1, 2, 3

The maximization problem is rewritten equivalently in Equation (13).

max
u(k)

M

∑
m=1

ωm log[dm(k)− φm(u(k))] (13)

S.t. dm(k) > φm(u(k)), m = 1, 2, 3

um(k) ∈ um, m = 1, 2, 3

Problem (13) is solved in a distributed manner using the feasible-cooperation method.
The application of the greedy method in a strategy that focuses on the local payoff provides
more benefit in the cooperation manner; thus, the greedy strategy was applied in the
current iteration.

4. Experimental Setup

This study applied the Dynamic Bargain Game method in the IoT network to improve
the data trustworthiness and performance. The DBG method improves the efficiency of
data transfer and maintains the security of the method. This section provides the details of
the network parameters, metrics, and system requirements of the proposed DBG method.
The parameters of the network are given in Table 1. The given parameter settings are
common for this network and are applicable to dynamic nodes in the network.
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Table 1. The parameter settings of the network model.

Parameters Value

Total number of CM 1 and 2

Offset Start-up time 580 µs

Transmission Data Rate 250 kb/s

Battery voltage of sensor devices 3 Volts

Transmission energy per bit 50 nJ

Distance between the ith CM and CM 125 m

Transmission power level 31

Total number of packages per second 11

Metrics: The DT calculated by the CH is defined as the average utility function of all
CMs during the given time period, as shown in Equation (14).

DT =
∑Nrd

rd=1 ∑
|N |
i=1 Urd

i
Nrd

(14)

System Requirement: The proposed method was implemented on a system consisting
of an Intel i9 processor, 128 GB of RAM, a 22 GB hard disk, and a Windows 10 64-bit OS.
The network simulator 2.35 (NS-2) was used to simulate the network model and test the
proposed DBG method.

Dataset: The input dataset consists of 11 columns and 148 rows related to sensor
information. The rows denote the number of smart rooms and the columns denote the
attributes of the collected information. The column attributes consist of thermistor sensor,
CMOS sensor, humidity sensor, PIR sensor, total size of the data, traffic rate, duration,
urgency, server error, number of logins, and number of failed logins. Sensor data denotes
the value of the collected information; total size of the data denotes the data size of all
sensors; traffic rate is considered to be an important attribute for security; duration denotes
the connection time of the sensors; server error denotes the package loss in transmission;
number of logins is the number of users present in the cloud environment; and number
of failed logins is an important attribute for security. Because users can login to the cloud
environment to check the sensor data of their specific ids, the number of logins and number
of failed logins are measured.

5. Results and Discussion

This study applied the DBG method to perform transmission with increased data
trustworthiness and improved security. The DBG method is applied in the system model
to identify malicious nodes and differentiate nodes experiencing a hardware failure from
malicious nodes. The bargaining concept is applied using game theory to increase the
interaction of the nodes, and the Pareto optimal method is applied to identify suitable
nodes to transfer the data with higher data trustworthiness. Various metrics were assessed,
such as data trustworthiness, packet delivery ratio, throughput, and end-to-end delay.

The DBG method and existing methods were applied in the simulated system model
to evaluate the data trustworthiness, as shown in Table 2. The data trustworthiness was
measured based on the selection of trusted nodes to transfer the data to the destination.
The DBG method applies the Pareto optimal solution to determine the fitness values for
the nodes to transfer the data, and the bargaining method applies the disagreement point
to avoid malicious nodes in the path. The cooperation process of the DBG is improved by
performing the search in a distributed manner in the network. The Pareto optimal solution
in the DBG method effectively handles the tradeoff between safety and efficiency. These
advantages in the DBG method improve the data trustworthiness of the network compared
to existing models. The fuzzy cross entropy [20] model has the second higher performance



Sensors 2021, 21, 7611 12 of 21

in terms of data trustworthiness. The Pareto optimal [16] solution provides a considerable
increase in performance by improving the data trustworthiness. The existing models have
the limitation of low adaptability in dynamic networks and lower efficiency in choosing
the node for the data transmission.

Table 2. Data trustworthiness of the DBG method.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

10 76 62 65 73 81 88

20 81 63 67 75 83 89

30 83 65 68 76 85 87

40 85 67 73 78 86 92

50 86 69 75 81 87 94

60 87 73 77 83 88 97

70 89 76 78 85 88 98

80 91 79 83 89 90 98

90 94 81 84 91 92 98

100 96 83 88 93 94 98

The DBG and existing methods were applied in the simulated network to test the node
selected for data trustworthiness, and are compared in Figure 2. The DBG method has
higher data trustworthiness than existing methods due to the Pareto optimal solution for
the security, and the bargaining method for eliminating the malicious nodes in the path. The
fuzzy cross entropy model [20] achieved the second highest performance in terms of data
trustworthiness, and the Pareto optimal [16] solution demonstrated a strong performance.
FUPE [19] based on the multi-objective PSO method showed a weaker performance due
to poor convergence. The fuzzy cross entropy [20] and Pareto optimal [16] methods have
the limitation of lower adaptability in the dynamic network. The DBG method shows
higher data trustworthiness for more nodes than existing methods. The DBG method
performs the search process in a distributed manner and is therefore an effective solution
in dynamic networks.

The DBG and existing methods were evaluated based on the packet delivery ratio
in the dynamic network environment, and the comparison is provided in Figure 3 and
Table 3. The packet delivery ratio was usually affected by the collision of the nodes in the
data transmission and the attack of the malicious nodes. The bargaining method applied
the disagreement in the nodes, based on the node activity, to eliminate the malicious nodes.
The TDTC approach was applied in the DBG method to analyze the possible collisions in
the search process, and thus avoid the collisions. The existing methods failed to eliminate
the collision possibilities and the performance for the detection of malicious nodes was
weaker. The packet delivery ratio shows that the DBG method has higher security than
that of the existing methods.
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Figure 2. Data trustworthiness of the DBG method.

Figure 3. Packet delivery ratio of the DBG method.

Table 3. The packet delivery ratio of the DBG method.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

10 86 53 73 71 83 96

20 86 53 73 71 83 96

30 88 58 75 74 84 97

40 89 61 76 75 86 98

50 89 63 76 76 87 98

60 92 65 76 77 89 98

70 94 67 78 77 91 99

80 96 71 85 79 93 99

90 96 73 86 83 94 100

100 96 75 88 85 95 100
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The DBG and existing methods were evaluated based in throughput in a dynamic
network to analyze the capacity of the method to transfer the data, as shown in Figure 4
and Table 4. The DBG method attained a higher throughput in the dynamic method than
the existing methods due to the efficiency of its Pareto optimal solution. The DBG method
considers the data trustworthiness and efficiency in the Pareto optimal solution when
forwarding the data to the nodes. The cooperation in the DBG method is involved in
the selection of the optimal path, thus increasing the data transmission capacity, and this
process increases the throughput of the DBG method. The Pareto optimal [16] method
selects the path based on the sole objective of data trustworthiness, and this affects the
efficiency of the method. The fuzzy cross entropy [20] method has lower adaptability in
the dynamic network, which affects the efficiency of the method.

Figure 4. Throughput of the DBG method in a dynamic network.

Table 4. Throughput of the proposed DBG method.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

10 234 164 186 221 224 324

20 237 183 193 226 253 326

30 238 187 196 237 257 336

40 243 194 204 264 264 338

50 246 196 216 304 268 345

60 252 206 234 316 283 363

70 276 217 262 324 297 384

80 281 223 283 337 304 392

90 293 267 293 339 328 396

100 297 283 297 342 334 398

The end-to-end delay of the DBG method was compared with that of existing methods
in a dynamic environment, as shown in Figure 5 and Table 5. The DBG method has a
lower end-to-end delay than existing methods in the dynamic network. The DBG method
searches for the solution in a distributed manner, and this helps to find the effective solution
for the data transfer. The fuzzy cross entropy method [20] and Pareto optimal [16] solution
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have lower adaptability in the dynamic network. FUPE has poor convergence in the
multi-objective PSO method for the node selection in the network.

Figure 5. End-to-end delay of the proposed DBG method.

Table 5. The end-to-end delay of the proposed DBG method.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

10 1.26 1.82 1.53 1.46 1.26 0.62

20 1.34 1.85 1.57 1.49 1.28 0.64

30 1.35 1.87 1.58 1.53 1.29 0.67

40 1.35 1.88 1.63 1.57 1.36 0.81

50 1.36 1.93 1.64 1.58 1.39 0.83

60 1.42 1.95 1.67 1.62 1.45 0.87

70 1.47 1.98 1.83 1.67 1.47 0.91

80 1.47 2.01 1.85 1.68 1.52 0.92

90 1.47 2.07 1.87 1.73 1.53 0.92

100 1.47 2.08 1.93 1.75 1.53 0.92

The network utilization of the proposed DBG and existing methods in a dynamic
environment is presented in Table 6. These results show that the proposed DBG method
has lower network utilization compared to the existing methods. The DBG method has a
Pareto optimal solution, which improves the security and eliminates the malicious nodes
that reduce the network utility of the model. The fuzzy cross entropy [20] and Pareto
optimal [16] methods have lower performance due to their low adaptability in the model.
The FUPE [19] method has poor convergence, which affects the performance of the model.
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Table 6. Network utilization of the DBG method.

Nodes Pareto Optimal [16]
(kbps)

TERF [17]
(kbps)

Blockchain [18]
(kbps)

FUPE [19]
(kbps)

Fuzzy Cross Entropy [20]
(kbps)

DBG
(kbps)

0 0 0 0 0 0 0

10 153 146 127 118 106 92

20 157 149 129 126 112 95

30 162 153 134 131 117 98

40 167 157 138 133 119 104

50 176 162 142 137 124 107

60 182 165 145 142 126 112

70 188 181 148 147 128 118

80 189 183 153 150 134 123

90 191 186 158 152 136 127

100 196 190 161 155 141 128

The network utilization of the proposed DBG and existing methods in a dynamic
network is compared in Figure 6. The DBG method has the advantage of performing the
search process in the distributed manner that improves the efficiency of the network. The
Pareto optimal [16] and fuzzy cross entropy [20] methods have lower adaptability, which
increases the network utilization. The FUPE [19] method has poor convergence in the
optimization process, which increases the network utilization.

Figure 6. Network utilization of DBG and existing methods.

The computational time of the DBG and existing methods for various CMs is shown in
Table 7 and Figure 7. The DBG method performs the search process in a distributed manner
and eliminates the malicious nodes. This reduces the computation time of the data transfer
of malicious nodes and enables the process to be performed in a parallel manner. The Pareto
optimal solution in the DBG method improves the security and reduces the computation
time. The FUPE [19] method requires an optimization process for node selection and
has poor convergence, which improves the computation time of the method. The Pareto
optimal [16], TERF [17], and fuzzy cross entropy [20] methods have low adaptability, which
increases the computation time for node selection and identification of malicious nodes.
This shows that the proposed DBG method has higher performance compared to the
existing methods in terms of security and efficiency.
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Table 7. Computation time for various CMs.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

5 0.62 0.58 0.52 0.48 0.43 0.34

10 0.67 0.61 0.55 0.5 0.47 0.37

15 0.73 0.65 0.62 0.53 0.51 0.39

20 0.75 0.68 0.65 0.55 0.53 0.4

25 0.78 0.72 0.68 0.57 0.56 0.43

30 0.82 0.74 0.69 0.58 0.58 0.46

35 0.86 0.76 0.73 0.63 0.61 0.48

40 0.87 0.77 0.75 0.67 0.63 0.5

Figure 7. Computation time of the DBG and existing methods for various CMs.

The communication overhead of the DBG and existing methods for various nodes in
a dynamic network is compared in Table 8 and Figure 8. The DBG method performs the
search process in a distributed manner to select the node, and transmits the data after node
selection. The Pareto optimal approach in the DBG method helps to effectively eliminate
the malicious nodes in the network. The DBG method has less communication overhead
due to the elimination of malicious nodes and the selection of nodes in a distributed
manner. The FUPE [19] method has the limitation of poor convergence, which affects the
performance of the model. The Pareto optimal [16], TERF [17], and fuzzy cross entropy [20]
methods have lower adaptability in the network.

The RAM utilization of the DBG and existing methods was measured for various
nodes, and is compared in Table 9 and Figure 9. These results show that the RAM utilization
of the proposed DBG method is low compared to that of existing methods. The proposed
DBG method discards the data used for the search process because it is not required to be
processed in the dynamic network. The DBG method stores the data related to the nodes
and malicious nodes for the node selection. The existing methods generate more data to
identify the suitable nodes for transmission in the optimization process and this tends to
improve the memory requirement.
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Table 8. Communication overhead of the DBG method.

Nodes Pareto Optimal [16] TERF [17] Blockchain [18] FUPE [19] Fuzzy Cross Entropy [20] DBG

0 0 0 0 0 0 0

10 0.42 0.4 0.36 0.33 0.28 0.16

20 0.44 0.44 0.39 0.36 0.31 0.18

30 0.45 0.46 0.43 0.38 0.34 0.22

40 0.47 0.48 0.45 0.42 0.37 0.24

50 0.49 0.52 0.48 0.44 0.41 0.27

60 0.52 0.56 0.53 0.48 0.47 0.3

70 0.55 0.58 0.57 0.51 0.49 0.33

80 0.56 0.63 0.61 0.53 0.51 0.35

90 0.72 0.67 0.65 0.55 0.53 0.37

100 0.74 0.71 0.66 0.57 0.54 0.39

Figure 8. Communication overhead of the DBG and existing methods.

Table 9. RAM utilization of the DBG method.

Nodes Pareto Optimal [16] (%) TERF [17] (%) Blockchain [18] (%) FUPE [19] (%) Fuzzy Cross Entropy [20] (%) DBG (%)

0 0 0 0 0 0 0

10 67 63 58 53 51 38

20 69 65 60 55 54 40

30 73 68 62 58 56 41

40 78 69 65 61 58 43

50 82 71 67 63 61 46

60 83 72 71 65 64 48

70 84 75 72 67 67 50
80 86 76 75 68 68 52

90 88 78 76 69 69 53

100 90 81 78 71 70 54
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Figure 9. RAM utilization of the DBG and existing methods.

The proposed method is applicable to smoke sensors (infra-red LED sensors) for
fire detection, camera sensors (CMOS sensors) for security alarms, temperature sensors
(electronic thermistor sensors) for smart thermostats, moisture detection sensors (humidity
sensors) for leak/moisture detection, and Passive Infrared (PIR) in motion sensors. The
application of the proposed method to the network instead of individual sensors reduces
the cost of the network.

6. Conclusions

The existing methods used to select nodes for data transmission have low efficiency
in dynamic networks and exhibit a poor performance for malicious node detection. Smart
home devices are used to control various home appliances and require high security to
protect the privacy of the users in real-time networks. A security measure is required for
IoT-based smart home systems to provide high data trustworthiness and low end-to-end
delays. This research proposed the DBG method for the selection of the nodes for data
transmission, to increase the data trustworthiness and efficiency of the network. The data
trustworthiness and efficiency were applied as the objective function in the Pareto optimal
solution for node selection. The bargaining technique in the DBG method assigns the
disagreement to the node, which eliminates the malicious nodes in the node selection
process. The DBG method of the TDTC process considers the possible collision of a node in
the network and selects the node to eliminate the collision. The DBG method searches in a
distributed manner, thus providing a better solution for dynamic networks. The packet
delivery ratio shows that the DBG method has higher resilience than the existing methods.
The developed DBG method improved the data trustworthiness and effectiveness in terms
of throughput, end-to-end delay, and resource utilization. The communication overhead
was reduced up to 27% and RAM utilization was reduced up to 16%. The throughput and
end-to-end delay show the DBG method has higher efficiency than the existing methods.
The DBG method has data trustworthiness of 98%, compared to the fuzzy cross entropy
method, which has data trustworthiness of 94%. In future work, this method will be
applied to the attack detection model to provide security against various attacks.
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