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Abstract
Background: Biologists aim to understand the genetic background of diseases,
metabolic disorders or any other genetic condition. Microarrays are one of the main
high-throughput technologies for collecting information about the behaviour of
genetic information on different conditions. In order to analyse this data, clustering
arises as one of the main techniques used, and it aims at finding groups of genes that
have some criterion in common, like similar expression profile. However, the problem
of finding groups is normally multi dimensional, making necessary to approach the
clustering as a multi-objective problem where various cluster validity indexes are
simultaneously optimised. They are usually based on criteria like compactness and
separation, which may not be sufficient since they can not guarantee the generation of
clusters that have both similar expression patterns and biological coherence.

Method: We propose a Multi-Objective Clustering algorithm Guided by a-Priori
Biological Knowledge (MOC-GaPBK) to find clusters of genes with high levels of
co-expression, biological coherence, and also good compactness and separation.
Cluster quality indexes are used to optimise simultaneously gene relationships at
expression level and biological functionality. Our proposal also includes intensification
and diversification strategies to improve the search process.

Results: The effectiveness of the proposed algorithm is demonstrated on four publicly
available datasets. Comparative studies of the use of different objective functions and
other widely used microarray clustering techniques are reported. Statistical, visual and
biological significance tests are carried out to show the superiority of the proposed
algorithm.

Conclusions: Integrating a-priori biological knowledge into a multi-objective
approach and using intensification and diversification strategies allow the proposed
algorithm to find solutions with higher quality than other microarray clustering
techniques available in the literature in terms of co-expression, biological coherence,
compactness and separation.

Keywords: Multi-objective clustering (MOC), Gene expression data, External biological
knowledge, Path-relinking (PR), Pareto local search (PLS)
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Background
During the last two decades, the explosion in the increase of DNA microarray datasets
available has promoted the application of machine learning methods for the understand-
ing of the genomic data. A DNAmicroarray is used to collect information regarding gene
expression level [1] under different conditions like a time series during a biological pro-
cess, experiments of different tissue samples, among others [2]. This high-throughput
technology has allowed a fast progress in biological and biomedical research [3], and it
has facilitated the study of problems such as differential gene expression [4, 5], patterns
of genes with (dis)similar expression levels [6–8], prediction of response to treatment
[9, 10] and detection of gene mutations [11].
Clustering has proved to be a useful unsupervised learning technique for gene expres-

sion data analysis [12]. The goal is to find a partition of genetics elements represented in
the microarray into k distinct groups, where k is the number of clusters which may or may
not be known in advance. It is expected that genetic elements such as gene, EST contigs,
non-coding sequences, among others, with similar expression profiles be put into a single
cluster [13] as a way to reveal hidden patterns. Carrying out clustering is not a trivial task,
in fact this unsupervised learning technique currently remains a complex and challeng-
ing task which was proved to be an NP-hard problem [14]. Clustering can also be seen as
an optimisation problem [15] where a cluster index (objective function) is optimised to
obtain clustering solutions of high quality.
Several clustering algorithms for gene expression data have been proposed during the

last years [16–24]. They are based on guilt-by-association paradigm [25], i.e. groups of
genetics elements which are associated, share similar expression profiles are more likely
to share function. In recent years, this paradigm has been reformulated because the opti-
misation of a single cluster quality index based on expression levels can cause some issues.
The fact that two genetic elements have similar expression patterns can be because they
share some functionality, but also because of noise, which may lead to the misidentifi-
cation of biological relationships [26]. Because of the above, some authors used external
biological knowledge [12, 27] as another source of information about genetics elements as
a way to address this situation and to find clusters with more biological coherence. Often
external biological knowledge concerns the use of repositories such as the Gene Ontology
Project (GO) [28] or Kyoto Encyclopedia of Genes and Genomes (KEGG) [29]. However,
this biological knowledge can be partial, i.e. the information could be available only for a
subset of the genetic elements. Clearly, using only a quality index based on external bio-
logical knowledge will lead to a partition of the data with clusters previously discovered
and thereby extract repetitive information.
Clustering methods can use the expression profiles-based distance (DEB) or biological-

based distance (DBB) to cluster genes. The distance value represents the strength of the
relationship between two genes, in terms of expression behaviour (DEB) or biological
functions (DBB). The distance (DEB and DBB) between two clusters is calculated as the
distance between the medoids (the most central gene located in a cluster) of each cluster.
This process helps to uncover new relationships in terms of cellular functions and biolog-
ical processes in which genes participate; as well as, to understand their interactions, and
cellular regulation. These results can also aid the study of the influence of genes in the
development of diseases, their association in the formation of tissues or groups of genes
that have similar response to a given drug.
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The clustering problem can be naturally address as a muti-objective problem [30],
where we want to improve objectives related to expression similarity and biological
coherence (one or more sources). The multi-objective clustering (MOC) problem can be
described as:

Pt
(
C∗) = min

C∈�
Pt(C), t = 1, . . . ,m. (1)

where � is the set of all feasible clustering solutions, C is a clustering solution, and
Pt , t = 1, . . . ,m is a set of m different objective functions (quality indexes), i.e. that clus-
tering C∗ ⊆ � corresponds to clustering solutions that have the best optimisedm criteria
P [30, 31].
In MOC problems, we have several clustering solutions C∗ that correspond to the opti-

misation of objective functions that tend to be in conflict [32], i.e. improving one objective
involves worsening another. Then, it is required to reach a “tradeoff” where all objective
functions (quality indexes) are satisfied to an acceptable degree which leads to find a set
of best solutions called non-dominated solutions [30].
Non-dominated solutions Given two clustering solutions C1 and C2 ∈ �, solution C1 is

said to dominate solution C2 (denoted as C1 ≺ C2) (minimisation) if and only if:

∀t : Pt (C1) ≤ Pt (C2) ∧ ∃t : Pt (C1) < Pt (C2) (2)

Pareto optimal set Pareto optimal set � is defined as:

� = {C ∈ � :
 ∃C′ ∈ � : C′ ≺ C} (3)

Thus, a Pareto optimal set � corresponds to a set of non-dominated solutions, such that
there is no other solution in � that dominates any of them.
Pareto front The Pareto Front F∗ corresponds to the image of Pareto optimal set �, i.e.

to the vectors of criterion functions (quality indexes) to �.
In the literature it is possible to find multi-objective clustering (MOC) approaches

for clustering expression data. The work presented in [33, 34] used a multi-objective
genetic algorithm along with supervised techniques to perform the clustering process
optimising two cluster quality indexes based on gene expression levels. However, biolog-
ical information about genes is only used as verification and it is not part of the process
of generating clusters. In [35] authors propose a technique for clustering of genes biologi-
cally guided by the interaction of a decision maker (DM). The technique optimises several
cluster quality indexes based on expression level, meanwhile the DM evaluates clustering
solutions based on the relationship in biological terms according to the expert knowl-
edge in the area. Although the approach is interesting, since it considers expression and
biology information, the fact that the formation of clusters is affected by DM expertise
makes the approach limited to experiments with data in a small area where the decision
maker has experience. In these multi-objective clustering approaches for gene expression
data it is observed that only few of them use biological knowledge in spite of works in
[26, 36, 37], which have shown that the inclusion of biological knowledge during the
clustering process allows to find gene clusters with more common biological proper-
ties. In this paper, we present a multi-objective clustering algorithm guided by apriori
biological knowledge. The proposed algorithm is based on Non-Dominated Sorting
Genetic Algorithm (NSGA-II) [38] which includes intensification and diversification
strategies based on both Path-Relinking (PR) [39] and Pareto Local Search (PLS) [40],
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respectively. The main contributions of this work are (1) the integration of informa-
tion of genetic elements regarding their levels of expression and biological functions
during the optimisation of cluster quality indexes, and (2) the proposal of ad-hoc
local search strategies that exploit both the memory mechanism and neighbourhood
principles of Path-Relinking (PR) and Pareto Local Search (PLS) respectively, using
a multi-objective approach. This work is tested against state of the art algorithms
in order to show the benefits of both: using a multi-objective approach to tackle
the clustering of expression data and the method proposed is able to discover clus-
ters with more stronger co-relation and common biological properties than literature
alternatives.

Method
We call our method “Multi-Objective Clustering Guided by aPriori Biological Knowl-
edge” (MOC-GaPBK). The method uses biological knowledge by the means of anno-
tations of genetic elements with Gene Ontology (GO) terms. The integration of this
biological knowledge is performed by the computation of the biology-based (DBB) and
the expression-based (DEB) distances.

Biology-based distance (DBB) We use the Wang functional similarity (WS) [41]. It is
an information content (IC) based metric which determines the similarity of two Gene
Ontology (GO) terms based on both the location of these terms in the GO graph and
their relation with their ancestor term. Given two elements Gx and Gy annotated by GO
term sets GO1 = {

go11, go12, . . . , go1m
}
and GO2 = {

go21, go22, . . . , go2m
}
respectively,

their WS is represented as WS
(
Gx,Gy

)
with values that can vary between 0 to 1. For

more detail on the computation of Wang similarity refer to [41]. We transform the Wang
similarity into a distance measure using function 4.

DBB
(
Gx,Gy

) = 1 − WS
(
Gx,Gy

)
(4)

Expression-based distance (DEB) We use Pearson correlation coefficient (ρ). It is actu-
ally a measure of similarity indicating how and how strongly level expression of two
elements (Gx, Gy), form different conditions, are related. We compute:

DEB
(
Gx,Gy

) = 1 − ρ (Gx,Gy) (5)

In Fig. 1 we show the incorporation process of the biological knowledge. First, we com-
pute the distance matrices DEB and DBB. Then, each objective function is computed for
two cases: (1) using biology-based distance (DBB) and (2) using expression-based distance
(DEB). Thus, we will be simultaneously optimising expression level similarity and bio-
logical functionality to discover clusters with high levels of co-expression and biological
coherence.

Multi-objective clustering process

Our approach performs the discovery of clusters using NSGA-II algorithm [38] along
with Path-Relinking (PR) [42] and Pareto Local Search (PLS) [43] as intensification and
diversification strategies, respectively.
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Algorithm 1 Pseudo-code of MOC-GaPBK Algorithm
Input: Gene expression data.
Output: Non-dominated clustering solutions.
1: Calculate expression-based distance matrix (DEB) between each pair of genes.
2: Calculate biology-based distance matrix (DBB) between each pair of genes.

� Start multi-objective clustering process
3: Set v = 0.
4: Create initial population |P0| = N .
5: while stopping criteria have not been satisfied do
6: Select parents from Pv.
7: Create an offspring population |Qv| = N .
8: Rv= Pv ∪ Qv.
9: Rv=NON-DOMINATEDSORTING-CROWDINGDISTANCE(Rv)

10: Rv = F1.
� Start intensification and diversification strategy

11: Apply Multi-objective Path-relinking (MOPR) on Rv.
12: Update Rv=NON-DOMINATEDSORTING-CROWDINGDISTANCE(Rv)
13: Apply Pareto Local Search (PLS) on Rv.
14: Update Rv=NON-DOMINATEDSORTING-CROWDINGDISTANCE(Rv)

� End intensification and diversification strategy

15: Create Pv+1 based on Rv as follows:
16: if (| F1 | < N then
17: Create a random population Pr .
18: Set Pv+1=F1 ∪ Pr .
19: else
20: Set Pv+1= F1.
21: end if
22: Set v = v + 1.
23: end while

� End multi-objective clustering process
24: return Non-dominated clustering solutions in Rv.

Algorithm 1 shows the pseudo-code of the MOC-GaPBK algorithm. First, it computes
the expression (DEB) and biological distance (DBB) matrices (lines 1-2) in order to inte-
grate the biological knowledge. Then the algorithm creates an initial population P0 of
size N (line 4). In each generation v, the algorithm creates an offspring population Qv of
N individuals by using a binary tournament selection, the (k-1)point crossover and the
controller-random mutation operations (lines 6-7). A population Rv of size 2N (line 8)
is created by union of Pv and Qv (line 8). Then, a non-dominated sorting and crowding
distance calculation is applied on Rv. Here, solutions are ranked according to their non-
domination level in F1, F2, . . . , Fn., i.e. NSGA-II, label as F1 to non-dominated solutions,
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Fig. 1 Schematic representation of the integration of biological knowledge to MOC-GaPBK

F2 to non-dominated solutions remaining after eliminating those with F1. The process is
repeated until it sorts all solutions in Rv. Then, in Rv, only those non-dominated solutions,
that is, the solutions ranked as F1, are maintained (lines 9-10). The Rv population is used
as input for the intensification and diversification strategies (lines 11-14). The next pop-
ulation Pv+1 is created by selecting the solutions labeled as F1 in Rv (line 20). If |F1| < N ,
the algorithm complements the population with random solutions Pr , Pv+1 = F1 ∪ Pr
(lines 16-18). On each generation the algorithm evaluates whether it reaches either of the
two stopping criteria: (1) when the number of generations is reached and (2) when during
a certain number of generations have passed without changes in the values of the objec-
tive functions of the solutions in the Pareto frontier. Finally, the algorithm returns the set
of non-dominated solutions (Pareto Front) in Rv (line 24).

Chromosome encoding

We use an integer encoding to represent a solution. Each number represents a cluster
medoid which is the most central element located in a cluster, i.e. whose sum of the dis-
tances to another element of the cluster is minimum [44]. Each chromosome ch has the
same length as the number of clusters K, and each position chi can have an integer value
from 1 to n, n being the number of elements in the dataset. For instance, in case of a
dataset with 100 elements, the chromosome [1 6 19 83 14 3] represents six clusters with
1, 6, 19, 83, 14, and 3 as the centre of each clusters.

Initial population

The initial population is generated as follows: first, the 50% of chromosomes is randomly
created. Second, the remaining 50% is created based on a single genetic algorithm (SGA)
which uses an integer encoding to represent a solution, k-1 point crossover and controller-
randommutation as evolutionary operators. Here, we optimise the PBM [45] index which
is calculated using the distances between the points and their barycenters and the dis-
tances between the barycenters themselves. This initialisation helps the convergence
because it gives to the multi-objective clustering algorithm good initial solutions.

Selection

We use a binary tournament selection along with Pareto ranking and crowding distance.
In order to identify the winner chromosomes of each tournament, the individual belong-
ing to the top Pareto ranking is chosen and in the case of a tie, the one with the highest
crowding distance is selected.
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Crossover andmutation

We use a (k-1)-point crossover, and a controller-random mutation [46] as evolution-
ary operators. In the crossover, k-1 points on both individuals (parents) are randomly
selected. All cluster medoid between those points are swapped between the two individu-
als. In controller-random mutation, a random position is selected from the chromosome
and the corresponding element is replaced by a randomly chosen element that is not in
the chromosome.

Objective functions

Three cluster validity indexes are selected as objective functions: Xie-Beni [47], Over-
all Cluster Deviation [48] and Cluster Separation [49]. They have been chosen
because they are based on medoids and they have been used as objective func-
tions in other multi-objective evolutionary clustering algorithms, since they are able
to measure compactness and separation of the clusters which are the main prop-
erties evaluated in clustering task. They allow the multi-objective evolutionary clus-
tering algorithms to be able to optimise simultaneously multiple characteristics of
the data, while encouraging the formation of more homogeneous clusters and more
higher separation between clusters at the same time. Here, we assumed notations as
in [44]:

• n: Number of elements in dataset.
• K: Number of clusters.
• xi: i th element in dataset, with i = 1, 2, . . . , n
• zk : k th cluster medoid.
• C: Set of all clusters.
• Ck : k th cluster.

Table 1 shows a summary of the three cluster validity indexes used as objective
functions.

Table 1 Cluster validity indexes used as objective functions

Validity index Equation Type

Xie-Beni index (XB) [47] measures XB =
K∑

k=1

n∑

i=1
D2(zk ,xi)

n×mink 
=l{D2(zk ,zl)} Minimisation

the quotient between the total

variance and the minimum

separation of the elements

in the clusters.

Overall cluster deviation (Dev) [48] Dev =
K∑

k=1

∑

xi∈Ck
D(zk , xi) Minimisation

is defined as the overall summed

distances between genes and their

corresponding cluster medoid.

Cluster separation (Sep) [49] is Sep = 2
K(K−1)

K∑

k=1

K∑

j=1,j 
=i
D2(zi , zj) Maximization

defined as inter-cluster distances

between cluster medoids.

ThedistanceD in each formula ismeasured using both expression profiles-based distance (DEB) and biological-based distance (DBB)
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Note that validity indices in Table 1, the distance D is computed using both expression
profiles-based distance (DEB) and biological-based distance (DBB). Thus, each objective
function has two versions: expression-based (EB) and biology-based (BB) indices which
consider Pearson correlation (ρ) and Wang functional similarity (WS) respectively. For
instance, when XB index is used, we have two objective functions: XBEB and XBBB.

Intensification and diversification strategies

MOC-GaPBK algorithm applies intensification and diversification strategies where
promising regions are thoroughly explored. The strategies are based on Path-relinking
(PR) [42] and Pareto Local Search (PLS) [43], respectively.

Multi-objective path-relinking

PR was originally proposed as an approach to integrate intensification strategy in the
context of tabu search or scatter search. PR generates new solutions by exploring trajecto-
ries that connect high-quality solutions. It starts from one of these solutions, called start
solutions, and generates a trajectory in the neighbourhood space that leads toward the
other solutions, called guiding solutions [50]. Our PR strategy is based on the implemen-
tation presented in [51, 52] but we adapted it to multi-objective clustering. Figure 2 shows
a schematic representation for the construction of trajectories in the multi-objective
path-relinking (MOPR).
The algorithm builds trajectories between solutions as follows: Let C1 and C2 be two

solutions obtained from the Pareto front (PF) of the multi-objective clustering process.
The Path-relinking procedure PR(C1,C2) starts with the initial solution C1, and gradually
transforms it into solution C2, by swapping out medoids in C1 and replacing them with
medoids in C2. To choose the initial solutions C1 and C2, the algorithm selects the two
solutions with the lowest Pareto ranking and the highest crowding distance. Then, for

Fig. 2 Construction of trajectories in Path Relinking procedure: a schematic representation
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the next pair of solutions C′
1 and C′

2, we set C′
1 ← C2 as the current initial solution and

it selects C′
2 as a new solution from the Pareto front with the lowest Pareto ranking and

the highest crowding distance not considered before. This process continues until each
solution in the Pareto front (PF) has been selected.
To gradually transform C1 into C2, only non-repeated medoids are considered as fol-

lows: LetMC1 be the set of medoids in C1. LetMC1 −MC2 be the set of medoids in C1 not
present in C2 and symmetrically, let MC2 − MC1 be the set of medoids in C2 not present
in C1. Let tr0(C1,C2) = C1 be the start solution in the trajectory TR(C1,C2) from C1 to
C2. To obtain the next solution tr1(C1,C2) in the trajectory TR(C1,C2), we remove from
C1 a single medoid zk ∈ MC1 − MC2 , and replace the empty position adding a medoid
zl ∈ MC2 − MC1 . To choose the solution in trn with the best move in each trajectory, we
conducted a non-dominated and crowding distance sorting. After that, we select the top
ranked solution which is the new start solution C1. The procedure is repeated until we
reach the guiding solution C2. Finally, each solution with the best move and original start
and guiding solutions are stored in an set of intermediate pool (IP) solutions.
In our experiments, we apply PR(C1,C2) and PR(C2,C1) for each pair C1 and C2 in PF.

Then, we merge IP and PF solutions and we re-check their non-dominating and crowding
distance levels. The non-dominated solutions labelled as F1 are returned as the output of
the procedure and it corresponds to the new Population R.

Pareto local search

To improve the Pareto solutions found byMOPR procedure, we implement a Pareto Local
Search (PLS) [40] method based on the Pareto dominance criterion. PLS explores the
Pareto neighbourhood of a set of non-dominated solutions until it reaches a local optimal
Pareto front [53]. A schematic representation of PLS is shown in Fig. 3.
Here, the PLS procedure receives a population of non-dominated solutions A0 which

are marked as unexplored. Then they are duplicated in a population A (Fig. 3a). An itera-
tive process of three steps is performed. Selection step randomly selects a solution C from
population A0. After, neighbourhood exploration chooses a medoid zk of C, which is then

Fig. 3 Schematic representation of the Pareto Local Search (a) Population duplication, (b) Iterative
explorarion (c)
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replaced in all neighbouring solutions N(C) = {
C′
1,C′

2, . . . ,C′
n
}
by a medoid zk that has

not been assigned to the current solutions in N(C). Meanwhile, a dominating concept is
used as acceptance criterion step, .i.e. the procedure will evaluate each C′ ∈ N(C) and if
C ⊀ C′ it will mark as unexplored to C′ and the populationA is updated eliminating those
solutions are dominated by C′ (Fig. 3b). Once all C′ ∈ N(C) are evaluated, solution C is
marked as explored and population A0 is updated filling only with the unexplored solu-
tions from population A (Fig. 3c). PLS ends when the population A0 has no solutions, i.e.,
when all the solutions in population A have been explored, and they correspond to the
new Population R.

Selection of a single solution

The MOC-GaPBK algorithm produces a final Pareto front (PF) with a collection of one
or more non-dominated solutions. All of these solutions are high-quality gene expression
data partitions. To compare our results with those available in the literature, we select a
single solution based on Silhouette index (S) [54] using the last non-dominated solutions
set in population R. The solution with the maximum value of S index is selected.
The Silhouette index quantifies the goodness of any clustering solution C measuring

how similar an element is to its own cluster (compactness) compared to other groups
(separation). It is calculated as follows:

S(C) = 1
n

n∑

i=1
si (6)

This index score lies between− 1 and 1, so that values close to 1 indicates better clustering
solutions. To more detail of S(C) equation refer to [44].

Results
All the algorithms used in the experiment were implemented using R [55] version 3.2.5
and computational tests performed on a computer with Intel Xeon E5-2650V4 30 MB,
4 CPUs, 2.2Ghz, 96 cores/threads, 128GB RAM, 4TB. The distance between expres-
sion profiles were calculated using functions of the “amap” library [56]. The distance of
biological functionality using the “GOSemSim” library [57].

Datasets

Datasets used for experiments correspond to four real-life microarray gene expression
datasets: arabidopsis thaliana [58], yeast cell cycle [59], yeast cell sporulation [60], and
human fibroblasts serum [61] which were taken from here [62]. Here, duplicated elements
and missing values of expression levels are removed. Expression levels are normalised so
that each row has mean 0 and variance 1 (Table 2).

Table 2 Gene expression datasets used in experiments

Dataset Samples Original elements Selected elements

Arabidopsis thaliana 8 138 133

Yeast cell cycle 17 6000 384

Yeast sporulation 7 6118 472

Human fibroblasts serum 13 8613 501
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Experimental parameters

The algorithm is executed with the following parameters: number of generations = 100,
population size = 50, crossover probability = 0.80, mutation probability = 0.01, gen-
erations without improvement = 10, number of clusters k = {4, 5, 6}. Evolutionary
parameters and k values, were set up considering similar configurations used by other
MOC algorithms in [34, 35, 63].

Performance evaluation

To evaluate the performance of MOC-GaPBK algorithm, first we determine the
best combination of objective functions regarding the hypervolume (HV ) indicator.
Then, we compare the performance of MOC-GaPBK facing contestant clustering
algorithms, under three aspects: (1) levels of co-expression, (2) biological coher-
ence, and (3) compactness and separation. To carry out that, we use Eisen [64] and
cluster profile [65] plots; annotation enrichment analysis [66]; and Silhouette index,
respectively.

Hypervolume (HV ) It is a unary metric that measures the volume (area in our
case) in the objective function space covered by members of a Pareto set PS [67].
The hypervolume for every solution i ∈ PS computes an area ai regarding a ref-
erence point W. Thus, the union of all areas ai define the hypervolume value as
follows:

HV = area

⎛

⎝
|PS|⋃

i=1
ai

⎞

⎠ (7)

Eisen plot It is a tool used in microarray experiment for visual representation of gene
expression profiles. It is achieved using heat map and colouring values that usually are red,
black and green [65]. Here, Eisen plot is used to show clustering results so that, similar
colours are grouped together, showing that the expression profiles of the genes of a cluster
are similar to each other.

Cluster profile plot This tool shows gene expression of microarray using x, ymatrix rep-
resentation of time points and level expression [65], respectively. Here, the normalised
level expression values (in green) of genes in each cluster are used. Additionally, the
average expression along with the standard deviation (in black) are included.

Annotation enrichment analysis It determines the biological relevance of a cluster
regarding shared functions between those genes within it [68]. It requires functional
annotations to obtain such information, standing out GO. It has three main terms: “bio-
logical process”, “molecular function”, and “cellular component”; containing biological
information from a large list of genes. It uses a cumulative hyper geometric distribution
to determine the degree of functional enrichment (p-value) of overlap between annota-
tions made to a given gene set. Thus, as shown in [34] for a particular GO term, the
probability p of getting k or more genes within a cluster of size n, can be calculated as
follows:
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p = 1 −
k−1∑

i=0

(
f
i

) (
g − f
n − i

)

(
g
n

) (8)

where f represents the total number of genes in a GO category and g the total number
of genes within the genome. Thus, this test measures the degree of overlap between the
genes in each group and the genes in GO category.

Experimental results

Effect of objective functions

To determine the effect of the objective functions during data clustering, we show the best
Pareto front regarding hypervolume values obtained over 20 consecutive runs for each
one in all datasets (Table 3).
To calculate the objective space covered by such objective functions, we use (1, 1) as

normalised reference pointW. Note that higher hypervolume values implies better results
from a multi-objective point of view. In Fig. 4, we show the best Pareto fronts for each
objective functions. Here, further away non-dominated solutions are from the reference
point, a larger size of the solutions space will be covered and then better results will be
achieved.

Effect of local search strategies

Similarly, to determine the effect of local search methods to improve the multi-objective
gene clustering process, in Fig. 5, we compare the best Pareto front obtained by MOC-
GaPBK algorithm and three variations: using only NSGA-II, NSGA-II + Path-Relinking
(PR) and NSGA-II + Pareto Local Search (PLS). To compute it, we consider the best com-
bination (Table 3) of objective functions, i.e., XBEB and XBBB over 20 consecutive runs for
all k values and datasets.

Eisen and cluster profile plots

The best hypervolume value is reached when the objective functions XBEB and XBBB are
optimised. In Figs. 6, 7, 8 and 9, we show the Eisen and cluster profile plots of the solution
with the best silhouette value found byMOC-GaPBK. In Eisen plot, clusters are separated
using a white line and genes are ordered according to the group to which they belong.
In Eisen plots, we can see that each cluster has similar color patterns, denoting that
expression profiles throughout the samples of the genes within each cluster are similar to
each other. In the same way, the cluster profile plots show how the curve that represents
the expression profiles of genes along the samples are similar within cluster. However,
expression profiles inter clusters differ from each other. Hence, both plots show that our

Table 3 Best hypervolume values achieved by objective functions over 20 runs in all datasets

Objective functions Arabidopsis Cell cycle Sporulation Serum

XBEB - XBBB 0.9989 0.9978 0.9993 0.9998

DevEB - DevBB 0.9018 0.9258 0.9307 0.9449

SepEB - SepBB 0.7913 0.8823 0.8625 0.7922

In italics, we highlight the highest values
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a b

c d

Fig. 4 Comparison of objective functions based on expression (DEB) and biological (DBB) informations
optimised byMOC-GaPBK algorithm. Pareto fronts for a Arabidopsis Thaliana, b Yeast Cell Cycle, c Yeast
Sporulation and d Human Fibroblast Serum

algorithm, with objective functions XBEB and XBBB, achieves superior performance to
obtain co-expressed genes.

Annotation enrichment analysis

To demonstrate the biological coherence of clusters yield byMOC-GaPBK algorithm, we
use the FatiGO [69] web tool. It applies a functional enrichment test that evaluates the
number of genes in each cluster annotated to a particular GO term. We consider the
gene-annotation tables based on the biological process GO term at 1% of significant level.
Table 4 contains the threemost significant GO terms along with their p-values measured
by the cumulative hypergeometric distribution.

Discussion
We evaluate the performance of MOC-GaPBK algorithm using three combination of
objective functions regarding hypervolume indicator. Table 3 provides information of the
effect of them in clustering process which reveals the effectiveness of using XBEB - XBBB
since it achieves the best values of hypervolume in all datasets. Such information can also
be observed in Fig. 4, where the Pareto front of both XB criteria (cross symbol) dominates
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a b

Fig. 5 Comparison of MOC-GaPBK algorithm and its variations regarding hypervolume indicator with
Expression Index (DEB) and Biology Index (DBB). The best Pareto fronts for a Arabidopsis Thaliana, b Yeast Cell
Cycle, c Yeast Sporulation and d Human Fibroblast Serum

most of the solutions in the Pareto optimal set of the other objective functions, due to
being further away from the reference point. In the same figure, the gray area represents
the objective space covered only by the objective functions XBEB and XBBB. Such situa-
tions show that they are the best combination to perform the gene clustering process with
ourMOC-GaPBK algorithm.

a b

Fig. 6 Clustering solution yield byMOC-GaPBK algorithm in Arabidopsis Thaliana. a Eisen plot b Cluster
profile plots
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a b

Fig. 7 Clustering solution yield byMOC-GaPBK algorithm in Yeast Cell Cycle. a Eisen plot b Cluster profile plots

We also compare the performance of multi-objective optimization process regarding
the incorporation of local search strategies. Figure 5 shows the best Pareto frontiers
yield by MOC-GaPBK and its variations on each of the four datasets. Generaly speak-
ing, the use of local search improves the solutions found by the NSGA-II, but it is not
conclusive since for all datasets there are solutions found by NSGA-II that dominates
some of the solutions produced when a single local search strategy is used. However,
the Pareto frontier produced by MOC-GaPBK mostly dominates the Pareto frontiers

Fig. 8 Clustering solution yield byMOC-GaPBK algorithm in Yeast Sporulation. a Eisen plot b Cluster profile
plots
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Fig. 9 Clustering solution yield byMOC-GaPBK algorithm in Human Fibroblasts Serum. a Eisen plot b Cluster
profile plots

produced by the other algorithms. In particular, for the case of the Yeast Cell Cycle
data set (Fig. 5b), our proposal dominates all the solutions of the other algorithm,
while in the other cases (Fig. 5a, c and d) there are only a few solutions that are non
dominated. Also, MOC-GaPBK always dominates all the solutions found by NSGA-II.
In all of the figures the gray area shows the space that is being covered by MOC-
GaPBK and not by the others. These results show the positive effect in the NSGA-II of
including local search strategies, which has been reported on other works, but it also
shows that our algorithm overcome simple combinations of NSGA-II and local search
strategies.
We show the performance of MOC-GaPBK algorithm optimizing XBEB - XBBB com-

pared with Semi-FeaClustMOO [70],MO-fuzzy [63],MOGA [34], SOM [71] andAverage
linkage [72] clustering techniques. All results are exposed for four real life gene expres-
sion data sets, i.e., Arabidopsis Thaliana, Yeast Cell Cycle, Yeast Sporulation, and Human
Fibroblasts Serum.
To evaluate the compactness and separation of clustering solutions, in Table 5, we

show mean values of silhouette index over 20 runs of different algorithms for the four
datasets. Here, values in bold represent maximum silhouette index values, revealing that
our method achieves better results than existing techniques in all datasets.
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Table 4 The most significant GO terms in datasets

Dataset Cluster Significant GO term p-value

Arabidopsis Cluster 1 Response to wounding(GO:0009611) 3.63E-16

Cellular biogenic amine metabolic process(GO:0006576) 1.00E-14

Cellular amine metabolic process(GO:0044106) 1.62E-14

Cluster 2 Lipid catabolic process(GO:0016042) 1.91E-09

Response to wounding(GO:0009611) 9.68E-09

Phenylpropanoid metabolic process(GO:0009698) 7.61E-08

Cluster 3 Response to organonitrogen compound(GO:0010243) 5.36E-11

Response to chitin(GO:0010200) 9.51E-10

Jasmonic acid mediated signaling pathway(GO:0009867) 3.03E-09

Cluster 4 Jasmonic acid biosynthetic process(GO:0009695) 7.76E-04

Jasmonic acid metabolic process(GO:0009694) 1.08E-03

Lipid oxidation(GO:0034440) 1.35E-03

Cell cycle Cluster 1 Positive regulation of transport(GO:0051050) 1.84E-04

Regulation of transport(GO:0051049) 2.93E-03

Regulation of localization(GO:0032879) 3.39E-03

Cluster 2 Cell cycle(GO:0007049) 8.13E-17

Cell division(GO:0051301) 3.26E-16

Cell cycle process(GO:0022402) 2.30E-14

Cluster 3 Cell cycle phase(GO:0022403) 2.34E-10

Mitotic interphase(GO:0051329) 2.71E-10

Interphase(GO:0051325) 2.71E-10

Cluster 4 DNA replication(GO:0006260) 1.24E-16

DNA metabolic process(GO:0006259) 4.36E-16

Cell cycle(GO:0007049) 1.29E-11

Sporulation Cluster 1 Glucose metabolic process(GO:0006006) 3.69E-08

Carbohydrate metabolic process(GO:0005975) 1.04E-07

Hexose metabolic process(GO:0019318) 2.49E-07

Cluster 2 Oxoacid metabolic process(GO:0043436) 1.76E-05

Organic acid metabolic process(GO:0006082) 1.80E-05

Monocarboxylic acid transport(GO:0015718) 4.42E-05

Cluster 3 Cell cycle process(GO:0022402) 2.76E-19

Cell cycle(GO:0007049) 5.83E-19

Anatomical formation in morphogenesis (GO:0048646) 6.88E-19

Cluster 4 Translation(GO:0006412) 1.03E-28

Ribosome biogenesis(GO:0042254) 1.84E-08

Ribonucleoprotein complex biogenesis(GO:0022613) 6.70E-08

Serum Cluster 1 Mitotic recombination(GO:0006312) 1.55E-11

G2/M transition of mitotic cell cycle(GO:0000086) 1.68E-09

Chromosome segregation(GO:0007059) 1.74E-09

Cluster 2 Cellular response to zinc ion(GO:0071294) 5.25E-08

Striated muscle cell differentiation(GO:0051146) 5.98E-07

Response to zinc ion(GO:0010043) 1.26E-06

Cluster 3 Cholesterol metabolic process(GO:0008203) 7.46E-14

Cholesterol biosynthetic process(GO:0006695) 1.39E-13

Sterol biosynthetic process(GO:0016126) 2.95E-13

Cluster 4 Multi-multicellular organism process(GO:0044706) 8.55E-16

Regulation of smooth muscle cell proliferation(GO:0048660) 1.50E-14

Smooth muscle cell proliferation(GO:0048659) 1.84E-14

We consider p-values < 0.01 across all tests to be totally against the null hypothesis and are remarkably significant. It means that
most of the genes belonging to a cluster have the same biological function detailed in the GO term
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Table 5Mean values of Silhouette index over 20 runs of different algorithms

Algorithm Arabidopsis Cell cycle Sporulation Serum

MOC-GaPBK 0.49 0.63 0.80 0.58

Semi-FeaClustMOO 0.46 0.50 0.70 0.44

MO fuzzy 0.41 0.43 0.59 0.40

MOGA 0.40 0.42 0.58 0.38

SOM 0.23 0.38 0.58 0.34

Avg. link. 0.32 0.44 0.50 0.36

In italics, we highlight the highest values

To detect whether MOC-GaPBK and the competitive clustering techniques operate
similarly or not from statistical point of view, we carry out the Friedman test [73]. In this
sense, in Table 6 we perform a ranking to each clustering method regarding the mean
silhouette index in each dataset.
The test verifies whether the measured average ranks are significantly different from

the mean silhouette rank. The method obtains a p-value of 0.0033 indicating that the
difference in the mean silhouette rank obtained by MOC-GaPBK algorithm is signif-
icant. In fact, our proposed method has an average rank of 1 since it always obtains
the best silhouette values in the experimental datasets, while its closest competitor
is Semi-FeaClustMOO algorithm with an average rank of 2. Clearly, it indicates that
our approach obtains groups with better values of compactness and separation than
competitive clustering techniques.
To visually demonstrate that clusters yield by MOC-GaPBK have high co-expression

patterns, we use Eisen and cluster profile plot. To do this, first we determine the best
solution (regarding silhouette index), comparing all solutions yield by our method. So, we
observe thatMOC-GaPBK has determined that four is the best number of clusters k for all
datasets. Such number of clusters k matches with some values of competitive algorithms
[34, 74]. In Figs. 6, 7, 8 and 9, we plot clustering solutions with best silhouette index. For
instance, for Yeast Sporulation dataset (Fig. 8a), MOC-GaPBK identifies as appropriate
partitioning k = 4. In such figure, it is evident that expression profiles of the genes in each
cluster have similar expression profiles generating similar colour patterns throughout the
samples. We can also see (Fig. 8b) that expression patterns of the four clusters of genes
differ from each other, while the patterns within a cluster are very similar. So, for example,
while cluster 1 has high expression level in the first samples and low in the last ones, the
cluster 3 behaves in the opposite way. Similarly, cluster 2 presents low expression levels
in first samples but high in remaining ones meanwhile the cluster 4 behaves in opposite
way. The other three datasets have similar results. Such situations reveal that genes in the
groups found by our algorithm are highly co-expressed.

Table 6 Friedman test ranking result for comparingMOC-GaPBK algorithm with other state of the art
single and multi objective clustering techniques

Dataset MOC-GaPBK Semi-FeaClust MO fuzzy MOGA SOM Avg. link.

Arabidopsis 0.49 (1) 0.46 (2) 0.41 (3) 0.40 (4) 0.23 (6) 0.32 (5)

Cell cycle 0.63 (1) 0.50 (2) 0.43 (4) 0.42 (5) 0.38 (6) 0.44 (3)

Sporulation 0.80 (1) 0.70 (2) 0.59 (3) 0.58 (4) 0.58 (4) 0.50 (6)

Serum 0.58 (1) 0.44 (2) 0.40 (3) 0.38 (4) 0.34 (6) 0.36 (5)

Avg. rank (1) (2) (3.25) (4.25) (5.5) (4.75)

In brackets we show the ranking of the algorithm. Last row shows the average ranking of each algorithm
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To establish the biological relevance and coherence of a cluster, we performed
an annotation enrichment analysis. In Table 4, we reported to each cluster the
three most significant GO terms shared by the genes with their p-value. It
reveals that all the clusters of the solutions found by MOC-GaPBK have obtained
p-values less than 0.01, i.e., each cluster has associated biological processes and
thus, they are biologically significant and functionally enriched. In this aspect,
MOC-GaPBK outperforms competitive algorithms since they fail in finding biologically
related clusters in some cases. For instance, in Yeast Sporulation dataset, MOGA, FCM,
SOM and Average linkage present at least one cluster without biological significance [63].

Conclusions
In this paper we have presented a multi-objective gene clustering algorithm called
MOC-GaPBK. It includes external biological knowledge during the objective functions
optimisation and it integrates intensification and diversification strategies based on both
multi-objective Path-Relinking and Pareto Local Search.
Results show that MOC-GaPBK yields higher quality solutions than other clustering

techniques considered here for comparison purposes. It is mainly to the strength of inte-
grating a-priori biological knowledge with a multi-objective clustering approach and the
use of intensification and diversification strategies. The first one allows having partitions
with higher co-expression levels and biological coherence since cluster quality indexes
are used to optimise simultaneously gene relationships at expression level and biological
functionality. The other aims to improve the clustering solutions to yield higher quality
clustering solutions regarding to compactness and separation and to avoid fall into local
optima.
The effectiveness of MOC-GaPBK was demonstrated quantitatively and visually using

statistical comparison test and cluster visualisation tools respectively. Results of silhouette
tests, visualisations and annotation enrichment analysis show that the proposed method
is able to discover compact, well separated, co-expressed and biologically significant
clusters.
To perform the multi-objective clustering process we have used a chromosome

representation based on clusters medoid. As a future work we would like to explore a
clustering technique based on graph theory to tackle in a better way with datasets where
non-convex groups are present. Furthermore, because we use a multi-objective approach,
our algorithm provides a set of solutions, all identically relevant from clustering style
point of view. However, for biologists can be more appropriate to have a single solution
for clustering of genes or otherwise have a subset of genes that appear grouped together
most times. Due to that, in future we would like to develop a voting or ranking technique
to identify the set of genes that appear most often in the same clusters, and so facilitate
the inference of knowledge by biologists.
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