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The human microbiome has been implicated in affecting health outcomes in premature
infants, but the ecological processes governing early life microbiome assembly remain
poorly understood. Here, we investigated microbial community assembly and dynamics
in extremely low birth weight infants (ELBWI) over the first 2 weeks of life. We profiled
the gut, oral cavity and skin microbiomes over time using 16S rRNA gene amplicon
sequencing and evaluated the ecological forces shaping these microbiomes. Though
microbiomes at all three body sites were characterized by compositional instability
over time and had low body-site specificity (PERMANOVA, r2 = 0.09, p = 0.001),
they could nonetheless be clustered into four discrete community states. Despite
the volatility of these communities, deterministic assembly processes were detectable
in this period of initial microbial colonization. To further explore these deterministic
dynamics, we developed a probabilistic approach in which we modeled microbiome
state transitions in each ELBWI as a Markov process, or a “memoryless” shift, from
one community state to another. This analysis revealed that microbiomes from different
body sites had distinctive dynamics as well as characteristic equilibrium frequencies.
Time-resolved microbiome sampling of premature infants may help to refine and
inform clinical practices. Additionally, this work provides an analysis framework for
microbial community dynamics based on Markov modeling that can facilitate new
insights, not only into neonatal microbiomes but also other human-associated or
environmental microbiomes.

Keywords: neonatal microbiome, ecological processes, community states, Markov model, microbial community
assembly

BACKGROUND

Preterm birth remains one of the major risk factors for acute as well as long-term adverse
health outcomes. Even in high- and middle-income countries, premature birth has been
estimated to account for over 50% of neonatal deaths (Blencowe et al., 2013). Extremely low
birthweight infants (ELBWI) are at high risk for suffering prematurity-related complications.
Among the most critical complications are necrotizing enterocolitis (NEC) (Samuels et al.,
2017), early- and late-onset sepsis (EOS and LOS, respectively) (Escobar et al., 2014;
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Afonso and Blot, 2017), bronchopulmonary dysplasia (BPD)
(Thekkeveedu et al., 2017), retinopathy of prematurity (ROP)
(Quimson, 2015) and intraventricular hemorrhage (IVH) (Poryo
et al., 2018). These complications are not only an acute risk, but
can lead to lasting neurodevelopmental impairment (Stoll et al.,
2004). Microbial colonization plays a key role in the maturation
and function of the immune system (Geva-Zatorsky et al., 2017).
This is particularly important for extremely preterm infants,
as they are frequently exposed to invasive procedures such as
catheterization, intubation and assisted ventilation, which are
potent sources of nosocomial infections during intensive care
(Ramasethu, 2017).

Extremely low birth weight infants, which harbor lower-
diversity microbial communities compared to neonates with
higher birth weight (Chernikova et al., 2018), are particularly
prone to infections due to their naive immune system, less
effective mucosal and epithelial barriers (Weström et al., 2020),
diminished complement components, and impaired function of
antigen-presenting cells (Sadeghi et al., 2007; Schüller et al., 2013;
Wisgrill et al., 2016; Jong et al., 2017). Early gut colonization
by pathogenic or immunomodulatory bacteria can distort the
fragile immune homeostasis in the premature gut and predispose
neonates to disease (Mazmanian et al., 2008; Wlodarska et al.,
2015). For example, research suggests that NEC, one of the most
severe complications for ELBWI, is preceded by alterations in
the gut microbiome marked by decreased bacterial diversity and
blooms of Gammaproteobacteria and bacilli (Morrow et al., 2013;
Warner et al., 2016). Studies on the initial assembly of the human
microbiota have been mostly focused on the gut community
in term (Palmer et al., 2007; Koenig et al., 2011; Sharon et al.,
2013; Hill et al., 2017) and preterm infants (Rosa et al., 2014;
Ho et al., 2018). Recent efforts to describe spatiotemporal
community dynamics within and across multiple body sites in
premature infants have provided first insights into assembly
patterns (Costello et al., 2013; Olm et al., 2017; Grier et al.,
2018; Younge et al., 2018; Tirone et al., 2019), but the ecological
processes underlying initial community assembly remain poorly
understood. Generally, community dynamics can be described
by four fundamental ecological processes: (1) selection, the
fitness difference between species, (2) drift, stochastic changes
in species abundance, (3) dispersal, the ability of species for
movement across space to new sites, and (4) speciation (Vellend,
2010). Essentially, community assembly can be influenced by
both deterministic and stochastic processes to a degree that is
dependent upon changes of environmental factors over time and
space (Stegen et al., 2012). In this study, we monitored amplicon
sequence variant (ASV) relative abundances on the skin, gut
and oral cavity over the first 2 weeks of life in 15 ELBWI in
order to better understand the process of de novo assembly
of bacterial communities and to determine the relationship
between communities at different body sites. We characterized
bacterial diversity and inferred the ecological processes governing
community assembly. Additionally, we evaluated associations
between microbiome data and clinically relevant parameters such
as gestational age, delivery mode, inflammatory response, and
disease diagnosis. We then developed an analysis framework
that identifies discrete community structures and interprets the

observed temporal microbiome trajectories as a Markov process
of transitions between community states.

MATERIALS AND METHODS

Study Cohort and Sampling
We recruited a cohort of 15 ELBWI (defined as having a birth
weight < 1000 g) hospitalized in the neonatal intensive care unit
(NICU) at the General Hospital of Vienna/Medical University
of Vienna. Exclusion criteria were chromosomal aberrations,
congenital malformations, inherent metabolic disorders, and
maternal chronic infections. Due to the high risk of necrotizing
enterocolitis in this high-risk patient cohort, all infants received
pasteurized human donor milk or their own mother’s milk in the
first few weeks of life. Infant nutrition was supplemented with
parenteral nutrition during the study period (Supplementary
Figure 1) and combinations of broad-spectrum antibiotics
(Supplementary Figure 2) were administered prophylactically
during the study period. Patients were sampled at four time
points over the first 2 weeks of life (postnatal days 1, 3–4,
7–8, and 14–16). Stool was collected and chest skin and oral
cavity were sampled using ESwabTM (COPAN diagnostics) swabs.
All samples were immediately stored at −80◦C. The study was
approved by the ethics committee of the Medical University of
Vienna (EK No. 1175/2016).

Clinical Definitions
Bronchopulmonary dysplasia (BPD) was defined as supplemental
oxygen treatment or oxygen plus respiratory support at 36 weeks
postmenstrual age (Higgins et al., 2018). Retinopathy of
prematurity (ROP) was diagnosed and staged according to the
international consensus guidelines (International Committee for
the Classification of Retinopathy of Prematurity, 2005). The
severity of intraventricular hemorrhage (IVH) was defined as
grades 1 to 4 according to the modified Papile classification
(Papile et al., 1978). Statistical analyses relating ROP and IVH
to microbiome data were performed without considering disease
severity due to limited sample size of some disease grades.

Elevated IL-6 was defined as IL-6 > 150 pg/ml. Early-
onset clinically suspected inflammation (CSI) was defined as
IL-6 > 150pg/ml on day 1 or 2 of life, but with negative
blood culture results (i.e., elevated inflammatory markers,
but no clinical diagnosis of sepsis). Late-onset sepsis (LOS)
was defined according to the NEO-KISS protocol (Gastmeier
et al., 2004) for nosocomial infection surveillance for preterm
infants. Clinical LOS as well as LOS with coagulase negative
staphylococcus (CoNS) were defined as an episode with the
following characteristics: > 72 h of life, empiric antibiotic
therapy ≥ 5 days, no apparent infection at another body site,
and additionally fulfilling any two of the following criteria:
temperature > 38◦C or < 36.5◦C, temperature instability,
tachycardia, bradycardia, apnea, hypotension, hyperglycemia,
metabolic acidosis, prolonged recapillarization time or positive
blood infection parameter (C-reactive protein > 2 mg/dl or
IL-6 > 50 pg/ml). Culture-positive LOS was defined as a
clinical infection as described above with the additional growth
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of a pathogen in the corresponding blood culture. Oxygen
supplementation (DOS) was defined as the cumulative number
of days with at least 12 h/day of FiO2 > 21% up to the day of
sampling. Days of mechanical ventilation (DMV) was defined
as the number of days with mechanical ventilation support up
to the day of sampling. Antibiotic administration was measured
as a cumulative index of days of antibiotic given accounting for
parallel antibiotics prescription (antibiotic prescriptions per day
multiplied by the number of days of administration).

16S rRNA Gene Amplicon Sequencing
For nucleic acids extraction, we used 100 mg of stool or 500
ul swab solution for skin and oral samples, after vigorous
vortexing to release cells from the swab. Nucleic acids were
extracted using a phenol-chloroform bead beating protocol
(Griffiths et al., 2000). Barcoded amplicon libraries were prepared
according to a two-step PCR protocol as described previously
(Herbold et al., 2015). Briefly, the extracted DNA was PCR
amplified for 30 cycles in total, using a universal primer pair
S-D-Bact-0341-b-S-17 [5′-CCTACGGGNGGCWGCAG-3′] and
S-D-Bact-0785-a-A-21 [5′-GACTACHVGGGTATCTAATCC-3′]
that targets the V3-V4 hypervariable regions of the 16S rRNA
gene. Amplicon libraries were purified and normalized in equal
molar quantities with the SequalPrepTM Normalization Plate
Kit (Invitrogen, United States) before pooling. The preparation
was performed on an automated liquid handling workstation
(Beckman Coulter, United States). Sequencing on the Illumina
MiSeq platform (2 × 300bp) was performed at Microsynth AG
(Balgach, Switzerland).

Sequence Data Pre-processing
Reads were demultiplexed using an in-house python script.
A custom pipeline built on Qiime2 (Bolyen et al., 2019) was
developed for processing the sequence data. Specifically, reads
were processed into amplicon sequence variants (ASVs) using
the Divisive Amplicon Denoising Algorithm (DADA2) (Callahan
et al., 2016) without the pooling option. We extracted sequences
from the SILVA database (SILVA 132, 99% OTUs) and trained a
classifier (bayesian module from Qiime2) specific to the amplified
region for taxonomic assignment of ASVs (Bokulich et al., 2018).
Due to the very low read yield of the negative control libraries, no
reads passed the DADA2 pipeline. Thus, we examined libraries
for potential contaminants by taxonomically classifying the raw
reads from negative control samples by best BLAST hit to
the NCBI 16S rRNA database. Genera with > 10 reads were
considered contaminants (and accounted for on average ∼0.8%
of total sequences in the libraries from the patient sample). We
then removed any genus that was highly correlated across the
dataset with the contaminant genera (Pearson r > 0.9), as well
as previously described PCR reagent contaminants (∼11% of
total sequences) (Salter et al., 2014). Additionally, we removed
ASVs that were detected in higher abundance in samples from
other datasets in the same sequencing run as potential cross-
contamination (∼0.13% of total sequences). Libraries were
rarefied to 600 reads per sample for subsequent analysis after
evaluating rarefaction curves to ensure inclusion of the maximum
number of samples given no richness underestimation (Good’s

coverage min = 0.995, max = 1, CI95 = [0.9986984, 0.99918778];
Supplementary Figure 3).

Ecological Statistical Analyses
We measured alpha diversity (Shannon index, evenness, and
richness) with the skbio.diversity.alpha_diversity function
from scikit-bio python module and Beta diversity (Bray-Curtis
dissimilarities) with the scipy.spatial.distance.pdist function
from scipy python module (Virtanen et al., 2020). Differential
abundance analysis was carried out with the MetagenomeSeq R
package (Paulson et al., 2013). For multivariate analysis, we used
the adonis (PERMANOVA, using 1,000 permutations) and envfit
functions from the vegan R package, with permutations
constrained to the patient samples (Dixon, 2003). The
significance between groups was assessed with ANOVA or
the Wilcoxon rank-sum test with the aov and compare_means
functions in R. We applied k-means clustering to partition
samples based on their Bray-Curtis dissimilarities. We then
evaluated clustering efficiency by comparing silhouette scores
for individual clusters to the average Silhouette score (>0.67)
as well as maximization of the Calinski harabasz criterion
(Supplementary Figure 4). We constructed co-occurrence
networks from pairwise spearman correlations that were
calculated from ASV abundances across samples. Only ASVs
present in at least 2 of the respective samples were used for the
analysis. The significance of the calculated correlation coefficients
was estimated by comparison to a null distribution. We obtained
this null distribution by shuffling the ASV abundances across
samples and re-calculating spearman correlations 1000 times.
The resulting p-values were then corrected for multiple
comparisons using the method of Benjamini and Hochberg
(1995) and only observed correlation coefficients with a
p-value < 0.01 were used for further analysis. Correlation
coefficients were calculated using the function cor from the stats
package in R. Network visualization was done with Cytoscape
3.8.0 (Shannon et al., 2003).

Analysis of Ecological Processes
A maximum likelihood phylogenetic tree was reconstructed with
IQ-TREE (Nguyen et al., 2015) based on the TIM3e + R5
DNA model, inferred with ModelFinder (Kalyaanamoorthy et al.,
2017). Distance based RDA and phylogenetic diversity was
calculated in R using the vegan package and ordistep function,
as well as the picante package (Kembel et al., 2010). Null-
model analysis was used to analyze the β-mean-nearest taxon
distance (βMNTD) for all pairwise comparisons within each
body site. The difference between observed βMNTD and the
null model is given in units of standard deviation (of the
null distribution) and termed βNTI (β-nearest taxon index).
We interpret βNTI values according to previously established
criteria (Stegen et al., 2013) as follows: scores greater than + 2
indicate variable selection pressures; scores near zero indicate
dominance of stochastic processes; and scores less than −2
indicate homogeneous selective pressures. In a second step, the
RCBray index was used to characterize stochastic processes.
| RCBray| < 0.95 indicates that in a pairwise comparison,
communities share as many species as expected by chance,
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indicating that drift acts alone. RCBray < −0.95 indicates
homogenizing dispersal, as communities share more species than
expected. RCBray > 0.95 indicates dispersal limitation, as fewer
species than expected are shared.

Estimation of Conditional Probabilities
For each infant, we estimated the conditional probability of
detecting an ASV at a certain body site conditioned upon its
detection at another body site, as follows:

P(s1|s2) =
P(s2|s1) P(s1)

P(s2)

where, s1 is one body site and s2 is another. Similarly, we
obtained the transition probability between community states
for each body site by estimating the probability of a current
community state, conditioning upon the community state at the
previous time point.

Markov Modeling
Markov models are stochastic models that assume that each
future state depends solely on the current state. This assumption
is reasonable for systems with frequent disturbances. We
constructed a Markov chain from the previously estimated
transition probabilities between community states and
estimated their stationary frequencies. These are estimates
of a future converging point in the process where the probability
distributions will no longer change. Using these stationary or
steady state frequencies, we can predict the equilibrium point
of our transition model across community types. States in a
Markov chain are categorized into transient and recurrent
states. Recurrent states are those which are estimated to have a
probability of one for returning to this state, whereas transient
states do not. We used the functions steadyStates and summary
from the markovchain package in R (Spedicato, 2017) in order to
construct the Markov chain, estimate steady states, and explore
their characteristics.

RESULTS

Description of the Cohort
In our ELBWI cohort, the mean gestational age (GA) was
24.67 (± 1.12) weeks and the mean birth weight was 731
(± 116) g. Patient characteristics and the frequency of short-
term morbidities are summarized in Table 1. The same probiotic
supplementation (Antibiophilus

R©

- Lactobacillus casei) as well
as parenteral and enteral feeding regimens were applied to
all patients over the entire study period. Sampling was not
synchronized across infants, although there were overlaps in
hospitalization.

Diversity of the Extremely Low Birth
Weight Infants Microbiome
Skin, oral cavity, and gut microbiome composition was obtained
by amplicon sequencing of the V3-V4 regions of the 16S
rRNA gene at four time points over the first 2 weeks after

TABLE 1 | Summary of cohort characteristics.

Mean ± SD

Gestational age (weeks) 24.67 ± 1.12

Birth weight (g) 731 ± 116.19

N (%)

Gender

Female 8 (53)

Male 7 (47)

Mode of delivery

Cesarean section 11 (73)

Vaginal birth 4 (27)

IVH

No 10 (67)

Stage 1 4 (27)

Stage 2 1 (6)

BPD

No 10 (67)

Yes 5 (33)

ROP

No 4 (27)

Grade 2 8 (53)

Grade 3 3 (20)

NEC

No 15 (100)

LOS

No 8 (53)

Yes 7 (48)

CSI

No 2 (13)

Yes 13 (87)

IVH, intraventricular hemorrhage; BPD, bronchopulmonary dysplasia; ROP,
retinopathy of prematurity; NEC, necrotizing enterocolitis; LOS, late onset sepsis;
CSI, clinically suspected inflammation.

birth. In this period, ELBWI were colonized by low diversity
microbial communities on all tested body sites. Firmicutes
and Proteobacteria were the most abundant phyla across
all body sites, predominantly due to the abundance of the
genera Staphylococcus, Escherichia/Shigella and Lactobacillus
(Figures 1A,B). Staphylococcus was on average four times
more abundant (Cohen’s d skin-gut = 1.5) in skin samples
compared to gut samples and twice as abundant (Cohen’s d
skin-oral cavity = 0.64) compared to oral cavity samples, whereas
Lactobacillus and Escherichia/Shigella were three times more
abundant in gut communities compared to the skin (Cohen’s
d gut-skin = 0.67, Cohen’s d gut-skin = 0.55, respectively).
While Escherichia/Shigella was detected in similar abundance
in gut and oral samples (Cohen’s d gut-oral cavity = 0.08),
Lactobacillus abundance remained half as low in oral samples
(Cohen’s d gut-oral cavity = 0.5) (ANOVA - Staphylococcus;
p < 0.001, Escherichia/Shigella; p = 0.003, Lactobacillus; p = 0.027,
respectively). However, similar communities were found at all
body sites, and body site was only able to explain a minor, though
statistically significant, fraction of the microbiome variation
across the entire dataset (PERMANOVA: r2 = 0.09, p = 0.001).
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FIGURE 1 | Skin, oral cavity, and gut microbiome composition of ELBWI. (A) Relative abundances of bacterial genera across body sites. Genera with >0.2 relative
abundance in at least one sample are shown. Circle size and color indicates genus prevalence in the dataset. (B) Relative abundances of phyla across body sites.
(C) Association of microbiome composition with clinical parameters and disease outcome (using the envfit function. Pearson correlation coefficient [r2] on X-axis).
DoL, days of life; elevated IL-6 = IL-6 > 150 pg/ml in the time window of 2 days before to 2 days after sampling; DOS, number of days with at least 12 h per day of
FiO2 > 21% up to the day of sampling; DMV, days with mechanical ventilation support till the day of sampling. Antibiotics = cumulative index for days of antibiotic
administration accounting for different compounds per day; GA, gestational age; DM, delivery mode; ROP, retinopathy of prematurity; IVH, intraventricular
hemorrhage; BPD, bronchopulmonary dysplasia. *p-value < 0.01.
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FIGURE 2 | Diversity and body-site-specificity of microbiomes. (A) Alpha diversity metrics over patient days of life. Linear regression Pearson r and p-values are
shown within each subplot. (B) Bray-Curtis (BC) dissimilarities of samples from the same body site compared to samples across body sites for each infant. Wilcoxon
Rank-sum test, adjusted p-values * < 0.01, ** < 0.001. (C) Progression of Bray-Curtis (BC) dissimilarities (Y-axis) in ELBWI with increasing distance over time
(X-axis). Smoothed lines result from locally estimated scatterplot smoothing (LOESS) and indicate trends of development.

Clinical parameters such as delivery mode and gestational age
at birth also explained little of the observed variability in the
composition of the microbiome (Figure 1C), though the low
number of patients delivered by spontaneous birth and the small
range of gestational ages of study patients (24.67± 1.12) must be
considered when interpreting these results. Strikingly, duration
of mechanical ventilation was associated with changes in skin
microbiome (r2 = 0.24, p = 0.007). Considering clinical diagnosis,
BPD and IVH were significantly associated with gut and
oral cavity microbiome composition, respectively (Figure 1C).
However, we did not identify any ASVs consistently associated
with disease diagnosis, suggesting that there were no robust
ASV-level markers for disease in this cohort.

Microbial community diversity remained low at all body sites
over the first 2 weeks of life, with no significant trend for
increasing ASV richness, evenness, or Shannon diversity during
this period (Figure 2A). As previously mentioned, we observed
a subtle association between microbial communities and body
sites. However, only four of the 15 infants had significantly more
similar communities within each body site compared to between
body sites over the sampling period (Figure 2B). Additionally, we
find no indication of community succession within this timespan,
with no increase in Bray-Curtis distance of communities over
time compared to the founder community within this period
(Figure 2C). These data indicate that habitat filtering is largely
overwhelmed by stochastic disturbance events.

Ecological Processes Affecting
Microbiome Assembly
To characterize the ecological drivers of microbiome assembly
in different body sites, we compared the observed phylogenetic
diversity to ecological null models and determined the

contributions of selection, dispersal, drift, and dispersal
limitation to community turnover in ELBWI using an approach
established by Stegen et al. (2013) and (Table 2). We observed
that stochastic processes (βNTI < | 2|) dominated community
assembly across all body sites, but that deterministic processes
were higher in the oral cavity than the other body sites
(Figure 3A; ANOVA, p < 0.0001, Tukey post hoc: oral-gut and
oral-skin p < 0.001). Analysis of the specific processes revealed
that ecological drift dominated all body sites, but that there was
elevated homogenizing dispersal in the gut (Chi-square test,
p < 0.001), variable selection in the oral cavity (Chi-square test,
p < 0.001), and homogenizing selection on the skin (Figure 3B;
Chi-square test, p < 0.001). Canonical correlation analysis (CCA)
revealed that mechanical ventilation, oxygen supplementation
and antibiotic administration were significantly associated with
βNTI values, though they only explained a small percentage of
the observed variation (Figure 3C).

The detection of distinct community types that were not
body-site-specific suggested limited dispersal limitation and/or
environmental filtering of bacteria across body sites. In order
to more deeply characterize the extent of habitat specificity of
microbes and potential dispersal of microbes between body sites,
we calculated the probability of detecting an ASV at a body site
given that it is detected on another body site of the same patient
(i.e., conditional probability). We found that very abundant ASVs
are likely to be present in all sampled sites from the same
patient, which is consistent with the neutral theory of community
assembly (Volkov et al., 2003). However, the majority of ASVs
were detected sporadically, and in some cases were exclusive to
certain neonates (Supplementary Figure 5). Interestingly, ASVs
were more likely to be detected in the gut if they were detected
in the oral cavity (Posterior probability = 0.55), and vice-versa
(Posterior probability = 0.56) compared to the other body site
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TABLE 2 | Glossary of ecological terms.

Speciation The creation of new species (Vellend, 2010)

Ecological drift A stochastic element of the changes in the composition and diversity of species, due to their ecological equivalence (Vellend,
2010)

Environmental/habitat filtering/selection Environmental factors which increase fitness of particular species (Vellend, 2010)

Dispersal limitation The limitation of a species ability to spread/move across space, resulting in local communities that altogether define a
metacommunity (Vellend, 2010)

Homogenizing dispersal High levels of species dispersal which are able to homogenize community composition (Stegen et al., 2013)

Homogenizing selection Strong selection that reduces compositional turnover for communities exposed consistently to the same environmental
pressures (Stegen et al., 2015)

combinations. The oral cavity and skin had somewhat fewer
ASVs with a high conditional probability of detection (Posterior
probability = 0.42 and 0.37, respectively), and between skin
and gut that was even lower (Posterior probability = 0.29 and
P = 0.29, respectively) (Figure 3D). This suggests that either
physical proximity between body sites or the relative similarity
of environmental conditions (e.g., O2 levels, water content, or
immune factors) could influence establishment of certain ASVs.

Extremely Low Birth Weight Infants
Microbiomes Have Distinct Community
Structures
Principal coordinates analysis (PCoA) revealed clear clustering
of samples (Figure 4A), though this clustering was not driven
primarily by body site, age, or patient (Supplementary Figure 6).
To further define and characterize these discrete community
structures, we performed a cluster analysis optimization based
on silhouette score maximization (Arumugam et al., 2011).
This revealed four community structures (all clusters were well-
supported, having an average silhouette score = 0.67), which were
driven largely by differences in the relative abundance of the three
most dominant ASVs in the dataset. Specifically, we identified
three mono-dominated clusters (SC, EC, and LC), in which
ASV_3: Staphylococcus [SC, mean = 0.61, CI95% = (0.55,0.68)],
ASV_1: Escherichia/Shigella [EC, mean = 0.6, CI95% = (0.51,0.69)]
and ASV_2: Lactobacillus [LC, mean = 0.91, CI95% = (0.86,0.95)]
were predominant, respectively (Figure 4B). We also observed
a cluster of samples (IC) that had comparatively intermediate
relative abundance for the above-mentioned ASVs, as well as
a higher overall bacterial diversity (Figure 4C). The identified
microbiome structures were unequally present at the studied
body sites: we detected the LC cluster mainly in the gut, EC more
frequently in the gut and less in the oral cavity, whereas SC was
enriched in skin samples. Interestingly, the IC cluster appeared
more evenly across all body sites (Figure 4D). The structural
differences between those clusters were also reflected in their
co-occurrence networks, which show distinct topologies and
cluster-specific correlation patterns of ASVs (Supplementary
Figure 7).

A Probabilistic Framework to
Characterize Microbiome Dynamics
It has been suggested that initial microbial community
assembly in low-birth-weight neonates is a stochastic process

(Costello et al., 2013). As our data indicated that deterministic
processes also play a role in assembly and that there are distinct
microbiota compositional states, we next applied a probabilistic
analysis framework to gain a deeper understanding of the
observed dynamics. We modeled how the microbiome at each
sample site changes over time as a Markov process, using
conditional probabilities estimated from the data. Specifically, we
estimated the probability of observing a certain state (community
structure), conditioning on the state at the preceding time
point, for each body site and each patient separately. This
approach revealed new aspects of early-life microbiome dynamics
(Figure 5A). In the gut, community structures were the most
stable (mean prob. = 0.62) compared to the other body sites.
Specifically, EC, IC, and LC were stable clusters (prob. > 0.5),
while SC had equal probability to transition to other community
structures. In contrast, SC was more stable in the oral cavity,
and there was a higher net transition probability from IC to SC
communities. LC appeared sporadically in the oral cavity and
transitioned only to EC or IC. For the skin, we observed an overall
lower community stability compared to other body sites (mean
prob. = 0.21). However, there was a higher transition probability
to the SC cluster from all other clusters. These results suggest
that microbiomes at different body sites have different levels
of community stability and characteristic transitions between
community states.

In order to better understand the implications of these
community state transitions, we next evaluated the long-term
consequences of these dynamics by calculating their steady-state
probabilities using Markov chain theory. Briefly, Markov chains
are “memoryless” processes in which the transition from one
discrete state to another depends solely upon the present state,
but not the past. This assumption is reasonable for systems with
frequent disturbances, such as would be expected considering
the intensive clinical care practices administered to ELBWI.
States can be classified into recurrent or transient, based on
their presence or absence at steady-state (i.e., equilibrium). At
all body sites, all clusters were found to be recurrent states.
However, their steady-state frequencies differed across body sites
(Figure 5B). EC and IC shared similar frequencies in the gut and
oral microbiomes at steady state, while LC was higher in the gut
and SC higher in the oral cavity. Notably, SC comprised∼70% of
the communities at steady state in the skin.

We then evaluated the contribution of each community
type to the observed deterministic processes in each body
site (Figures 3A,B). This revealed that in the gut EC clusters
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FIGURE 3 | Ecological processes and microbiome assembly. (A) βNTI (beta Nearest Taxon Index) per body site. βNTI greater than + 2 standard deviations from the
null-model indicate variable selection pressures; scores near zero indicate dominance of stochastic processes; and scores less than -2 standard deviations indicate
homogeneous selective pressures. (B) Fraction of ecological processes predicted for each body site. (C) Canonical correlation analysis (CCA) plot, showing the
relative proportion of βNTI variance explained by DMV, DOS, Elevated IL-6, Antibiotics, and DoL (proportion of constrained variance = 0.04). DoL, days of life;
Elevated IL-6, IL-6 > 150 pg/ml in the time window of 2 days before to 2 days after sampling; DOS, number of days with at least 12 h per day of FiO2 > 21% up to
the day of sampling; DMV, days with mechanical ventilation support till the day of sampling. Antibiotics = cumulative index for days of antibiotic administration
accounting for different compounds per day. (D) Heatmap of conditional probability to detect an ASV at a body site when present at another (left). Distribution of
values for each row (center). Heatmap for ASV prevalence in each body site (right).
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FIGURE 4 | Cluster analysis reveals distinct community states. (A) Principal
coordinates analysis ordination of Bray-Curtis dissimilarities. K-means
clustering analysis indicates four community types based on Silhouette score
- Calinski harabasz maximization. KDE plot (bottom right) displays sample
density on the first two principal components. (B) Relative abundance of the
dominant ASVs in the respective clusters, Wilcoxon Rank-sum test
****p-value < 0.0001. (C) Alpha diversity measured with the Shannon index
across community types. Wilcoxon Rank-sum test ***p-value < 0.001,
****p-value < 0.0001. (D) Representation of community types (clusters) in the
gut, skin, and oral cavity respectively, as percentage of the total number of
samples assigned to each cluster. Blue and red color gradients indicate
positive or negative deviation, respectively, from a uniform cluster distribution
across body sites (i.e., 33%).

contributed significantly to deterministic assembly [Odds ratio:
3.3, 95% CI = (1.4,7.9)], whereas in the oral cavity IC and
SC contributed to deterministic assembly [Odds ratio: 2.5,
95% CI = (1.1,6.0) and Odds ratio: 2.8, 95% CI = (1.3,6.4),

respectively], and in the skin SC contributed to deterministic
assembly [Odds ratio: 9.3, 95% CI = (1.3,69.2); Figure 5C]. These
results are largely in line with the Markov modeling results,
suggesting that community state stability is governed in part by
deterministic ecological processes.

DISCUSSION

Previous studies of gut microbiome assembly in preterm and
term infants have suggested that over the course of months to
years there is a succession in microbial communities (Koenig
et al., 2011; Rosa et al., 2014; Hill et al., 2017; Stewart et al., 2018).
However, studies that have focused on early-life microbiome
development at multiple body sites in preterm infants have
concluded that there are stochastic dynamics and lack of body-
site-specificity in the initial community assembly in the first 2
weeks of life (Costello et al., 2013; Olm et al., 2017). As extremely
preterm infants are highly vulnerable to inflammation, infections
and associated adverse outcomes for which the microbiome is
known to play a role (Dobbler et al., 2017; Younge et al., 2019), we
sought to develop an improved framework to better understand
early microbiome assembly and to identify ecological factors
driving this process.

In this study, we show that the initial colonization of the
gut, oral cavity, and skin in ELBWI is dominated by Firmicutes
and Proteobacteria in the first 2 weeks of life. This is reflected
in the abundances of three predominant ASVs classified as
Escherichia/Shigella, Staphylococcus, and Lactobacillus genera,
respectively (Figure 1A). These taxa are commonly observed
in human microbiome studies in neonates as well as adults
(Schloissnig et al., 2013; Sharon et al., 2013). Over the first 2
weeks following birth, alpha diversity of microbiomes across all
body sites was variable and did not have an increasing trend,
suggesting limited enduring microbial succession in this time
period (Figure 2A). Only four of the 15 infants had body-
site specific microbiomes across the time course, indicating
extensive colonization of similar microbes at different body sites
for most patients. Interestingly, after evaluating Silhouette score
maximization to define clusters, we found that microbiomes
could be classified into four distinct community types that could
be observed at all body sites, three of which were dominated by
either Escherichia/Shigella, Staphylococcus or Lactobacillus, and a
fourth which was more diverse and included all three of these
prevalent genera at similar levels (Figure 4).

We observed that community assembly was driven largely by
ecological drift, but that the oral cavity had elevated variable
selection, which may be due to differences in oral immune
factors among patients that impose different selection pressures.
Homogenizing selection was highest for the skin, which may
be due to the presence of Staphylococcus as a well-adapted skin
bacterium. The gut had the lowest dispersal limitation, which
may be because the gut has a higher number of bacterial cells
compared to other body sites, which increases their dispersal
probability. Our results suggest that deterministic assembly
processes are detectable in the first 2 weeks of life, but that they
are largely overwhelmed by stochastic processes. Indeed, chaotic
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FIGURE 5 | Microbial transmission and community dynamics. (A) Schematic representation of transition probabilities across body sites. (B) Community types
steady-state frequencies across body sites. (C) Contribution of each community type comparisons to deterministic processes (i.e., bNTI values > | 2|). The heatmap
shows the odds ratio of each comparison to contribute to observed deterministic processes for each body site. Significant values (i.e., when the lower bound of the
95% confidence interval was above 1) are indicated by an asterisk.

microbiome dynamics may occur due to the many possible
environmental disturbances encountered immediately after birth
such as antibiotic administration, mechanical ventilation or
nutrition (Aujoulat et al., 2014; Stewart et al., 2016, 2018).
Despite the known beneficial role of breastfeeding in term
infants (Bäckhed et al., 2015; Stewart et al., 2018), in part
due to the enrichment of bifidobacteria (Makino et al., 2013;
Lawson et al., 2020), we find that the amount of enteral feeding
(mother or donor pasteurized milk) had no detectable effect on
microbiome composition. This is in line with previous findings
in preterm infants where nutritional exposures did not shape the
microbiome within the first weeks (Gregory et al., 2016). The
absence of bifidobacteria from our study could be attributed to
the effect of broad-spectrum antibiotics administered throughout
the study period, and also to the microaerobic conditions in the
preterm intestine, which favors facultative anaerobes compared
to strict anaerobes such as bifidobacteria (Arboleya et al., 2012).
Similarly, delivery mode, which is a determinant of microbial
colonization in term infants (Dominguez-Bello et al., 2010), had a
minor effect in preterm infants, and it has been suggested that the
NICU environment plays more of a role for shaping preterm gut
microbiome (Brooks et al., 2017). Strains transmitted from the
mother might also be unable to establish due to administration

of antibiotics (Brooks et al., 2014). Inconsistencies between the
results of different studies on preterm infant microbiota may
result in part from differences in cohort inclusion criteria, such as
range of patient gestational age or birth weight (Chernikova et al.,
2018), as well as local differences in environmental microbial
pools driven by factors such as seasonality or NICU hygiene
practices (Taft et al., 2014).

In the initial microbial colonization of ELBWI, disturbances
may also dramatically influence microbiome composition and
make interpreting microbiome dynamics more challenging. In
fact, the intermediate disturbance hypothesis posits that the
magnitude and frequency of ecosystem disturbances can impact
biological diversity (Hall et al., 2012), species dispersal, and
colonization efficiency (Castorani and Baskett, 2020). In order
to better understand initial assembly and succession processes
in the face of these chaotic dynamics, we applied a probabilistic
approach and analyzed state transitions through Markov chain
modeling on our time-course data. Markov processes are widely
used in many fields of science, from thermodynamics to
phylogenetic inference and genome evolution (Erez et al., 2008;
Kaehler et al., 2015; Sampid et al., 2018; Dhar et al., 2020;
He et al., 2020), but have rarely been applied in microbial
ecology (DiGiulio et al., 2015) and have not yet been used to
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evaluate longitudinal transitions in microbiome composition in
an individual. Despite the large influence of stochastic processes,
this analysis revealed distinctive microbiome dynamics, as well as
community stability, for each body site (Figure 4).

CONCLUSION

Moving forward, larger clinical studies are needed to establish
the extent to which mono-dominated communities are associated
with adverse outcomes and additional research is necessary
to determine the mechanisms underlying this association. As
sequencing technology now enables profiling of microbiomes
within a few hours (Leggett et al., 2020), routine monitoring
of neonate microbiomes coupled with time-integrated analysis
of community diversity, structure and resilience, may prove to
be a valuable complement to current diagnostic measurements.
In summary, we have identified ecological factors determining
the initial microbiome composition of oral cavity, gut, and skin
samples of ELBWI and proposed a methodological framework
for the analysis of microbiome dynamics based on Markov chain
modeling. This framework has the potential to complement and
refine existing clinical practices aimed at minimizing adverse
outcomes in premature neonates.
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