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Abstract

Ab initio assembly of transcriptome sequencing data has been widely used to identify large intergenic non-coding RNAs
(lincRNAs), a novel class of gene regulators involved in many biological processes. To differentiate real lincRNA transcripts
from thousands of assembly artifacts, a series of filtering steps such as filters of transcript length, expression level and
coding potential, need to be applied. However, an easy-to-use and publicly available bioinformatics pipeline that integrates
these filters is not yet available. Hence, we implemented sebnif, an integrative bioinformatics pipeline to facilitate the
discovery of bona fide novel lincRNAs that are suitable for further functional characterization. Specifically, sebnif is the only
pipeline that implements an algorithm for identifying high-quality single-exonic lincRNAs that were often omitted in many
studies. To demonstrate the usage of sebnif, we applied it on a real biological RNA-seq dataset from Human Skeletal Muscle
Cells (HSkMC) and built a novel lincRNA catalog containing 917 highly reliable lincRNAs. Sebnif is available at http://sunlab.
lihs.cuhk.edu.hk/sebnif/.
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Introduction

Recent advances in transcriptome sequencing have led to the

identification of many lincRNA transcripts (.200 nucleotides)

[1,2,3] that localize in the intergenic region of protein coding

genes (mRNAs). These transcripts have very weak or no coding

potential for any protein products; their expression levels are

generally lower than that of mRNAs thus are often mistakenly

considered as transcriptional noises; many of them are transcribed

by Polymerase II (Pol II) and spliced like mRNAs while a

significant portion of them remain as single-exonic transcripts

[3,4]. Emerging evidence suggests that lincRNAs are functional

transcripts in various biological systems under different physiolog-

ical and pathological conditions. In addition, the number of

lincRNAs in mammalian species is estimated to be at least twice

the number of mRNAs [5] with the majority of them are still

undiscovered. Therefore, fervent efforts are being made in

identifying novel lincRNAs in various biological systems.

Whole genome transcriptome sequencing, also known as RNA-

seq, coupled with ab initio assembly has become an effective

approach to discover novel lincRNAs [6]. To this end, RNAs are

converted to cDNAs and subjected to high throughput sequencing;

the obtained raw reads are then aligned to a reference genome and

compared to known gene annotations to generate a list of novel

transcripts. However, a high portion of the assembled transcripts

are artifacts from genomic contamination or alignment bias, which

could be falsely identified as novel lincRNAs. Therefore, the key

issue is how to discriminate bona fide novel lincRNA transcripts

from thousands of assembly artifacts. A widely used approach is to

apply several filters, such as filters of transcript length, expression

level and coding potential, to remove these artifacts step by step

[1,7,8]. This multi-filtering approach has been proven effective in

discovering thousands of novel multi-exonic lincRNAs in various

systems [1,7,8,9]. But a large number of single-exonic transcripts

were often discarded simply due to the lack of effective ways to

discriminate them from thousands of the assembled artifacts. On

the other hand, more and more studies have demonstrated that

single-exonic lincRNAs are indeed functional. Well-characterized

examples include MALAT1 [10], NEAT1 [11], Xist [12],

HOTAIR [13] and Yam-1 [14]. Therefore, single-exonic tran-

scripts should be considered as an important subclass in lincRNA

families; and algorithms towards identification of unknown single-

exonic lincRNA transcripts need to be developed. Furthermore, a

bioinformatics pipeline, which integrates these filtering steps, is not

yet publicly available. To fill these gaps, we designed and

implemented an integrative bioinformatics pipeline named sebnif

(Self-Estimation Based Novel LincRNA Filtering pipeline) to

facilitate the identification of both multi- and single-exonic

lincRNAs. To illustrate its usage and performance, we applied it

on a RNA-seq dataset from Human Skeletal Muscle Cells

(HSkMC) to build a lincRNA catalog. Further analysis of these
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novel lincRNAs reveals their specific genomic distribution pattern

and potential functions.

Methods

Pipeline overview
Sebnif is a comprehensive pipeline for the identification of novel

lincRNAs from transcriptome sequencing data. It integrates

several important filtering and annotation steps to eliminate the

assembly noise and enhance the quality of identified lincRNAs. In

practice, it provides an array of options (with optimized default

values, Table 1) to offer great flexibility for analyzing data

according to the given biological question. The typical workflow is

depicted in Figure 1 and elaborated as follows:

Input files
As a downstream pipeline designed to filter assembled transcripts,

sebnif uses the outputs of commonly used assembly software,

Cufflinks [15] and Scripture [9]. No special settings are required

during the assembly procedure, but it must be in ‘‘ab initio’’ mode

when using Cufflinks (both ‘-g’ and ‘-G’ options are not specified; for

more information please refer to the Cufflinks manual at http://

cufflinks.cbcb.umd.edu/manual.html) or in ‘‘segmentation task’’

mode for Scripture (see Scripture manual at http://www.broad

institute.org/software/scripture/Segmentation_task). As input, it

accepts a General Feature Format (GFF) or Gene Transfer Format

(GTF) which is one of the widely accepted standard file formats used

to store the transcript structure and associated annotation

information. Sebnif can use the output of Cufflinks directly since

it is in GFF/GTF format; for Scripture, which outputs files in

Browser Extensible Data (BED) format, sebnif implements a utility

program to convert it to GFF/GTF format. The detailed infor-

mation on these two file formats can be found at UCSC genome

browser (http://genome.ucsc.edu/FAQ/FAQformat.html).

Implementation of filtering steps
Subsequently, we implement multiple filtering steps as key

components of sebnif (Figure. 1):

Step1: Filter of annotated known transcripts. To elimi-

nate annotated known transcripts (both protein coding and

noncoding), sebnif first compares the ab initio assemblies with

reference known gene annotations (Table 1, ‘‘-g’’ and ‘‘-r’’

options). Currently, sebnif provides annotations from: (1) RefSeq

[16] for Homo Sapiens (NCBI37/UCSC hg19) and Mus

Musculus (NCBI37/UCSC mm9); and (2) GENCODE [17] for

Homo Sapiens (NCBI37/UCSC hg19) only. Meanwhile, sebnif

also allows the users to provide their own gene annotation if

available. During the comparison, sebnif eliminates those assem-

bled transcripts with at least one exon overlapping with any

annotated known transcript and those falling into the intron

regions. The remaining unannotated intergenic transcripts are

collected and split into either multi- or single-exonic group which

will then be processed separately in the pipeline (Figure 1).

Step2: Filter of transcript length. Next, sebnif, by default,

filters the transcripts whose lengths are shorter than 200 bp or

unreasonably long (e.g. .10 kbp) resulting from the assembly

artifacts or un-spliced pre-mRNAs. However, to provide more

flexibility, sebnif provides the option for users to set the lower and

upper thresholds based on their requirements. Considering the

length distributions of single- and multi-exonic transcripts are

normally different (multi-exonic transcripts are generally longer

than single-exonic ones [4]), sebnif also allows the users to set

different length thresholds for them (Table 1, ‘‘-m’’ and ‘‘-s’’

options).

Step3: Filter of the transcript expression level. As many

lincRNAs are expressed at a much lower level than the majority of

mRNAs, it is very challenging to find an optimal expression level

threshold to differentiate lowly expressed bona fide lincRNA

transcripts from the assembly artifacts. To overcome this challenge

is the key focus of sebnif. Considering the structure of the multi-

and single-exonic transcripts are very different (single-exonic

transcripts do not have exon-intron chain), sebnif implements two

Figure 1. Schematic overview of sebnif. Key steps and filters are
illustrated. FRFE: Fully Reconstruction Fraction Estimation; STGE: Single-
exonic Transcript Gaussian/Gamma Estimation.
doi:10.1371/journal.pone.0084500.g001

Table 1. Description of the parameters of sebnif and their
default values.

Parameter Description Default value

-g Specify species Homo

-r Specify reference annotation RefSeq

-m Set length cutoff for multi-exonic transcripts 200

-s Set length cutoff for single-exonic transcripts 200,10000

-F Set FRFE cutoff 0.5a

-E Set STGE cutoff 0.05,0.95

-X Specify the model used in STGE autob

-p Set repeat region filter cutoff 0.05

-n Set iSeeRNA noncoding score cutoff 0.9

-o Set output directory sebnif

a. Set ‘-F auto’ will command sebnif to use the overall balanced threshold.
b. Set ‘-X auto’ will command sebnif to determine the appropriate model.
doi:10.1371/journal.pone.0084500.t001
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separate algorithms to identify the optimal thresholds. For multi-

exonic transcripts, sebnif implements a Fully Reconstruction

Fraction Estimation (FRFE) approach originally described by

Guttman et al. [9]. Briefly, we first divide the multi-exonic

transcripts in reference annotation into N expression quantiles

based on their expression values. At each expression quantile, we

then divide the reference transcript set into two categories based

on the assembly results: (1) fully reconstructed where the

assembled transcripts capture the exact exon-intron chain as the

reference annotation; and (2) otherwise partially reconstructed

transcripts. At each expression quantile, the assembly quality can

be evaluated by the Fully Reconstruction Fraction (FRF) value

which is defined by the proportion of the fully reconstructed

transcripts. Based on the FRF value at each expression quantile,

sebnif determines the optimal FRFE threshold by balancing the

sensitivity and specificity as described in Sun et al. [18]: using the

fully reconstructed transcripts as positive data set and partially

constructed transcripts as negative dataset, at each expression

quantile i, the sensitivity (sens[i]) and the specificity (spec[i]) for that

quantile can be calculated through the proportion of fully and

partially reconstructed transcripts. The overall balanced FRFE

threshold corresponds to the lower boundary of the expression

level of the quantile i that is obtained from minimizing ei in the

following equation:

ei~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{sen½i�)2z(1{spec½i�)2

q

Where i belongs to [1, N] and ei is a measurement of balanced

sensitivity and specificity [18].

Besides using this overall balanced FRFE threshold, sebnif also

provides an option for users to determine the FRFE cutoff based

on the quality of their data (i.e. sequencing depth and performance

of the aligner and assembler as well as their needs of stringency)

(Table 1, ‘‘-F’’ option). Only those with expression level higher

than the threshold corresponding to the user defined FRFE cutoff

will be kept. For instance, a 0.5 FRFE threshold suggests that for

each transcript that passed the FRFE filter, it should have at least

50% probability to be fully reconstructed (Figure 2B).

Since single-exonic transcripts do not have exon-intron chain, it

is impossible to apply FRFE algorithm on them. Sebnif thus

implements a novel approach, named Single-exonic Transcript

Gaussian/Gamma Estimation (STGE), to estimate the optimal

expression threshold. This is based on the fact that the logarithmic

gene expression values often follow a Gaussian distribution (also

known as normal distribution) pattern [19] or a Gamma

distribution [20]. In the STGE algorithm, sebnif first determines

the appropriate model by fitting the expression values of the single-

exonic transcripts in the reference gene annotation. Then based on

the fitted model, a transcript whose expression falls into either tail

of the distribution is considered unreliable and discarded. Users

have an option to select the model in STGE algorithm or leave it

for sebnif to determine (Table 1, ‘-X’ option); and the probability

cutoffs used by the filter can also be decided by the users through

the options provided by sebnif (Table 1, ‘‘-E’’ option). In our

implementation, not only the lower bound but also the upper

threshold could be set independently since the transcripts with

abnormally high expression may not be reliable lincRNAs; they

could result from ribosomal RNAs contamination, potential

pseudo-gene, pre-miRNA or alignment bias towards specific

regions (e.g. repeat regions as discussed below).

Step4: Filter of repeat regions. Due to the sequence

similarity, large-scale transcriptome analysis is often biased against

repeat elements [21]. This bias has a significant effect on the

results of the ab initio assembly software especially for the single-

exonic transcripts because many individual reads originally from

these regions may sometimes be mapped to multiple positions in

the genome when not using paired-end RNA sequencing. To

minimize this bias, sebnif filters out single-exonic transcripts that

contain high percentage of repeat sequences. This percentage

threshold can be set up with the option provided for the users

(Table 1, ‘-p’ option).
Step5: Filter of coding potential. Finally, to eliminate those

transcripts with high coding potential (i.e. potential protein coding

transcripts), sebnif employs our recently developed software,

iSeeRNA [22]. For each transcript, iSeeRNA reports whether it

is a coding or non-coding transcript with a non-coding score

reflecting the confidence of the prediction. Sebnif filters those

transcripts with an iSeeRNA non-coding score lower than the

user-defined threshold (Table 1, ‘‘-n’’ option).

Further annotation of novel lincRNAs
To further increase the confidence of the lincRNAs identified

from the above steps, sebnif provides several utility programs to

annotate each lincRNA with genomic features around its

promoter and gene body, such as tri-methylation of lysine 4,

and 36 of histone H3 (H3K4me3, and H3K36me3), Expressed

Sequence Tag (EST) and Cap Analysis of Gene Expression

(CAGE) tags; these features are thought to be generally associated

with active or expressed transcripts. The utility programs are

compatible with several widely used file formats such as BED,

SAM (Sequence Alignment/Map), BAM (compressed binary

version of SAM) and GFF/GTF. Additionally, the outputs can

be easily submitted to further filtering steps.

Implementation and availability
Sebnif is implemented in Perl (http://www.perl.org/) and R

[23,24] and runs on most Unix/Linux machines. Source code

package is freely available at http://sunlab.lihs.cuhk.edu.hk/

sebnif/ and distributed under the Boost Software License

(http://www.boost.org/LICENSE_1_0.txt). Sebnif is easy to

install and only depends on iSeeRNA, which has been included

in the package. The package also contains a testing dataset, which

has ,80,000 ab initio assembled transcripts from Human Skeletal

Muscle Cells (HSkMC) RNA-seq data. To demonstrate how to use

sebnif, a shell script is provided to integrate the data analysis

workflow by first configuring iSeeRNA and then running on the

testing dataset. Meanwhile, to facilitate the usage of sebnif,

especially by those wet lab biologists with minimal informatics

background, we also implement sebnif as a user-friendly web

server with free access at http://sunlab.lihs.cuhk.edu.hk/sebnif/

webserver/ (Figure 2A, 2B). Like the stand-alone package, the web

server currently supports two species: Homo Sapiens (UCSC hg19)

and Mus Musculus (UCSC mm9). Users can upload their ab initio

assembled transcripts in GFF/GTF or BED format. All the

parameters of sebnif can be specified by the users through the web

interface (Figure 2A).

Output files
The main output files of sebnif include a standard GFF file

containing a list of novel lincRNA transcripts as well as a text file

with non-coding scores calculated by iSeeRNA. If using sebnif web

server, both files can be downloaded from the output webpage

(Figure 2B). In addition, a text file with important statistics (i.e. the

number of transcripts that passed or failed each filter) and two

figures illustrating the expression filter thresholds of FRFE and

STGE algorithms are also included (Figure 2B). We aim to provide

Sebnif: A Pipeline for lincRNA Identification
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not only the list of identified novel lincRNA loci but also adequate

information for users to evaluate the quality of their data and the

performance of the filtering procedures.

Novel lincRNA validation by RT-PCR
To validate the identified novel lincRNA transcripts from

HSkMC, we used RNAs extracted from human skeletal myoblasts

(Life Technology). In summary, total RNAs were extracted using

Trizol reagent (Invitrogen) according to the manufacturer’s

protocol and treated with DNase I (1 U/ ml; Invitrogen) to

remove possible contaminating genomic DNA. cDNAs were then

reverse transcribed from DNA-free RNAs using M-MLV Reverse

Transcriptase (Invitrogen) and diluted 5-fold for further PCR

analysis. For validation of the target transcripts, primer sets were

designed using web-based tool Primer-Blast (http://ncbi.nlm.nih.

gov/tools/primer-blast) and specificity was checked with human

RefSeq mRNA. Semi-quantitative RT-PCR was performed using

ABI Prism 7900HT Sequence Detection System in a total volume

of 5 ul in each well containing 2.5 ul of Power SYBR Green PCR

Master Mix (Applied Biosystems), 1 ul cDNA, 1 ul primers (2uM

each) and 0.5 ul nuclease-free water. Amplification conditions

were as follows: 2 min at 50uC, 10 min at 95uC followed by 35

cycles of 15 s at 95uC and 1 min at 60uC. After amplification,

PCR products were separated by electrophoresis on 1.5% agrose

gels.

Results

Computational requirements of sebnif
To measure the computational requirements of sebnif, we

investigated the running time and the memory usage by applying it

on the testing dataset, a typical Cufflinks ab initio assembly output

which contains around 80,000 assembled transcripts. On our

Linux server using an Intel Xeon X5675 CPU with single thread,

sebnif finished the data processing within five minutes. The peak

memory usage was less than 600 MB. These results indicate that

sebnif is suitable to run on most of the desktop computers.

Identification of novel lincRNAs in HSkMC
To illustrate the usage and performance of sebnif on real

biological data, we applied sebnif on a publicly available RNA-seq

dataset from HSkMC. Raw RNA-seq data (FASTQ reads) was

downloaded from the Encyclopedia of DNA Elements (ENCODE)

project [25]. This dataset comprises a total of ,425 million

paired-end reads from two samples sequenced by Illumina Hi-seq

2000. After downloading the sequenced fragments, we first

trimmed the adapters, removed the duplicated reads (pre-

processing) using in-house programs, and then aligned the

remaining fragments to the reference human genome (hg19) using

Tophat (version 2.0.6) [26] guided by the GENCODE gene

annotation (version 16) (the ‘-G’ option). We performed the ab initio

assembly on the aligned fragments using Cufflinks (version 2.1.1)

(Figure 3A) using all the default parameters to generate 82,745

transcripts, which were then processed through sebnif with all the

default parameters (Table 1) (For more details, please refer to the

README file of sebnif at http://sunlab.lihs.cuhk.edu.hk/sebnif/

README). As aforementioned, sebnif applied multiple filters on

these transcripts (Figure 3B). First, it removed the assemblies

overlapping with transcripts annotated in RefSeq. This led to the

removal of more than 80% assembled transcripts that are either

reconstructed protein coding transcripts or annotated known non-

coding transcripts. Since we are interested in the non-coding

transcripts in intergenic regions, it also removed those transcripts

partially overlapping with exons or introns of the annotated known

transcripts (Figure S1). This filter resulted in the identification of

15,812 novel intergenic transcripts (Figure. 3B), among which 526

and 15,286 are multi- and single-exonic transcripts respectively.

For both categories, those shorter than 200 were removed; single

exonic transcripts longer than 10,000 nucleotides were also

removed. After passing this length filter, 515 multi- and 14,684

single-exonic transcripts remained. Next, to remove the unreliable

assembled transcripts with extremely low expression level, we

applied the expression filter on 15,199 novel transcripts. For 515

multi-exonic transcripts, sebnif applied a FRFE threshold of 0.5.

For single-exonic transcripts, sebnif used STGE to model the

transcript expression profiling and selected the expression levels

corresponding to the probabilities of 0.05 and 0.95 as lower and

upper probability cutoffs. With these cutoffs, single-exonic

transcripts with too low (below 5%) or too high (above 95%)

expression level were eliminated. The final numbers of transcript

after these filters are 36 and 12,504 transcripts for multi- and

single-exonic respectively. When applying repeat region filter to

remove single-exonic transcripts that have more than 5% of its

sequence overlapping with the repeat regions, 6.8% (852 of

12,504) failed to pass this filter, leaving a total number of 11,625

transcripts. Next, iSeeRNA was used to calculate the non-coding

score for each transcript and those with a non-coding score lower

than 0.9 (i.e. potential protein coding transcripts) were removed.

Finally 9,812 novel transcripts were obtained as a provisional

catalog of lincRNA loci in HSkMC (Dataset S1).

Annotating of novel lincRNA loci with genomic features
associated with transcriptional activation

To further annotate our novel lincRNA transcripts and gain

more confidence of the above filtering, a total of 13.3 and 55.8

million aligned reads from H3K4me3 ChIP-seq experiment and

CAGE tags were downloaded from ENCODE project and used to

annotate each novel lincRNA using the utility program provided

by sebnif (Figure 3C). Only those with at least 10 H3K4me3 reads

and 5 CAGE tags in their promoter regions (i.e. 2 kbp upstream to

1 kbp downstream of transcript start site (TSS)) were kept. As a

result, a total of 917 novel lincRNAs were identified as the final list

(Table S1).

Validation of the novel lincRNAs
To validate the identified novel lincRNA loci especially the

single-exonic ones, we randomly selected 26 single-exonic

transcripts and tested their presence via RT-PCR in human

skeletal myoblasts. 20 out of 26 were found to be expressed at a

detectable level (Figure 4A and Table S2). The 6 failed transcripts

were among the lowest expressed by RNA-seq (Cufflinks FPKM

(Fragments Per Kilobase of transcript per Million mapped reads)

,1) (Table S2). These results indicate that sebnif can indeed

produce high quality list of novel lincRNAs. To further validate

our lincRNA findings, we also compared our list with the

NONCODE v3.0 database [27] which contains 33,818 human

Figure 2. Snapshots of sebnif web server. (A) The data upload page. All the parameters of sebnif could be specified by the users through this
page. (B) The result page showing the report of novel lincRNAs identified in Human Skeletal Muscle Cells. The final list of novel lincRNAs in standard
GFF format and the iSeeRNA noncoding score for each transcript can be downloaded directly; statistic numbers during the filtering steps and the
FRFE Profile and STGE Profile generated by FRFE and STGE algorithms were also provided for users to evaluate the quality of the data.
doi:10.1371/journal.pone.0084500.g002
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long noncoding RNAs (lncRNAs) collected from the published

literatures. 299 (32.6%) were found in NONCODE v3.0 and 6

have the exact same transcript structure (Figure 4B, Table S3),

further indicating that sebnif identified lincRNAs are highly likely

to be bona fide lncRNAs.

HSkMC lincRNAs are less conserved and lowly expressed
To study the characteristics of the newly identified HSkMC

lincRNAs, we first calculated the conservation scores (PhastCons

score [22,28]) for three types of genomic loci: (1) novel lincRNA

loci identified from this study; (2) RefSeq annotated protein coding

loci; and (3) randomly selected genomic loci within intergenic

regions. When comparing the conservation scores, we found novel

lincRNA loci displayed moderate conservation which is lower than

that of the protein coding gene loci but slightly higher than that of

the randomly selected genomic loci (Figure 5A). When comparing

the expression levels, both novel and annotated known lincRNAs

displayed similar levels which were generally lower than protein

coding mRNAs (Figure 5B). These results are consistent with the

findings from previous studies [4,7,9,29].

Promoter associated lincRNAs
When further inspecting the genomic distribution, we discov-

ered that many (57%) of the HSkMC lincRNAs are originated

within 2 kbp upstream region of the TSSs of known protein

coding genes (Figure. 5C), in keeping with previous report that a

large fraction of lncRNA transcripts are promoter associated

transcripts that originate from divergent transcription at promoters

of active protein-coding genes [30]. Among the 20 validated

lincRNAs, 8 are annotated as promoter associated lincRNAs

(Figure. 4A). We further performed Gene Ontology (GO) analysis

on those protein coding genes paired with lincRNAs using DAVID

[31,32]. The result shows a strong enrichment of GO terms

including ‘‘nucleus’’ and ‘‘transcriptional regulation’’ (Figure 5D

and Table S4).

Discussion

Sebnif is one of the first bioinformatics pipelines designed and

implemented as a publicly available web server as well as a stand-

alone application to facilitate the novel lincRNA discovery. It

implements key filtering steps to eliminate low quality and protein

coding transcripts. The most unique feature of sebnif lies in its

differential treatment of multi- and single-exonic transcripts.

Firstly, it implements FRFE algorithm that allows the users to

use FRFE threshold for filtering multi-exonic transcripts. Com-

pared with the commonly used expression level (FPKM value) or

read coverage of the transcript [1,7], FRFE threshold is a direct

and consistent measurement of the overall assembly quality across

different samples. For example, an expression level of FPKM = 1

may correspond to FRFE threshold of 80% in one dataset but only

60% in another, leading to inconsistency of the overall filtering

quality. In addition to employing a balanced FRFE cutoff, it also

allows users to set up FRFE value cutoff manually, which is very

useful when the sequencing data quality is not ideal. Secondly,

sebnif is the first bioinformatics pipeline specifically designed for

filtering single-exonic transcripts by implementing the STGE

algorithm. Emerging evidence show the existence of a large

proportion of functional single-exonic lincRNAs, thus omitting

them to simplify the identification pipeline will affect the

completeness of the lincRNA catalog. Through the STGE

algorithm, a complete catalog of lincRNAs can be obtained which

will facilitate the associated functional studies.

To further demonstrate the usage of sebnif, 917 high confidence

novel lincRNAs were identified from HSkMC. A large portion of

these lincRNAs are single-exonic, again demonstrating the

prevalence of single-exonic transcripts in biological systems. It is

also interesting to find out that more than half of the identified

lincRNAs are divergent lincRNAs originated from the promoter

region of protein coding transcript. This finding is in line with

several recent studies [30,33] demonstrating the prevalence of

divergent lincRNA/protein coding gene pairs. Functionally these

lincRNAs may regulate their neighboring protein coding genes in

cis by flagging the chromatin region and recruiting regulatory

complex through their RNA-protein binding activities. The

enrichment of ‘‘transcription’’ related GO terms indicates that

these lincRNAs may be involved in transcriptional regulation

Figure 3. Identification of novel lincRNA catalog in HSkMC. (A)
The raw RNA-seq data was pre-processed, aligned with Tophat and
assembled using Cufflinks in ab initio mode. (B) Sebnif filtering on the
assembled transcripts. The numbers in parentheses represent the
number of transcripts after each filtering step. (C) Annotating and
further filtering of the novel lincRNAs with H3K4me3 and CAGE data.
doi:10.1371/journal.pone.0084500.g003
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through interaction with their associated protein coding genes. It

will be an interesting direction to explore in the future.

We also noticed that although a significant proportion (32.6%)

of our lincRNAs can be found in the NONCODE v3.0 database,

there was little overlapping with the list of lincRNAs identified by

Hangauer et al. [34] from HSkMC (data not shown). This

inconsistency may largely due to the fundamental differences in

the identification pipelines. For example, merged reads from 23

tissues were used as a starting point in their study such that the

lincRNAs specifically expressed in HSkMC sample may be

considered lowly expressed across all tissues thus discarded during

the filtering; also, the filtering criteria for both single and multi-

exonic transcripts are drastically different from ours.

In conclusion, the approach described herein, coupled with

available ab initio assembly software has the potential to

dramatically speed up the identification of novel lincRNAs and

represents an important step in the development of high-

throughput lincRNA discovery platform. LincRNA catalog

obtained through sebnif provides researchers a list of high quality

lincRNAs for further experimental validation and functional study.
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Figure S1 Overview of the ab initio assembled tran-
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Ontology (GO) annotations of the associated protein
coding genes.
(XLSX)
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