
Published online 20 April 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 1
doi: 10.1093/nargab/lqab016

Evolutionary genetic algorithm identifies IL2RB as a
potential predictive biomarker for immune-checkpoint
therapy in colorectal cancer
Matthew Alderdice1,2, Stephanie G. Craig3, Matthew P. Humphries3, Alan Gilmore1,
Nicole Johnston1, Victoria Bingham1,3, Vicky Coyle1, Seedevi Senevirathne1,
Daniel B. Longley1, Maurice B. Loughrey1, Stephen McQuaid1,3, Jacqueline A. James3,
Manuel Salto-Tellez3, Mark Lawler1,2 and Darragh G. McArt 1,2,3,*

1Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland, 2Health
Data Research UK Wales and Northern Ireland and 3Precision Medicine Centre of Excellence, Patrick G Johnston
Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland

Received November 20, 2020; Revised February 17, 2021; Editorial Decision February 19, 2021; Accepted March 26, 2021

ABSTRACT

Identifying robust predictive biomarkers to stratify
colorectal cancer (CRC) patients based on their re-
sponse to immune-checkpoint therapy is an area of
unmet clinical need. Our evolutionary algorithm At-
las Correlation Explorer (ACE) represents a novel ap-
proach for mining The Cancer Genome Atlas (TCGA)
data for clinically relevant associations. We deployed
ACE to identify candidate predictive biomarkers of
response to immune-checkpoint therapy in CRC. We
interrogated the colon adenocarcinoma (COAD) gene
expression data across nine immune-checkpoints
(PDL1, PDCD1, CTLA4, LAG3, TIM3, TIGIT, ICOS,
IDO1 and BTLA). IL2RB was identified as the most
common gene associated with immune-checkpoint
genes in CRC. Using human/murine single-cell RNA-
seq data, we demonstrated that IL2RB was ex-
pressed predominantly in a subset of T-cells associ-
ated with increased immune-checkpoint expression
(P < 0.0001). Confirmatory IL2RB immunohistochem-
istry (IHC) analysis in a large MSI-H colon cancer tis-
sue microarray (TMA; n = 115) revealed sensitive,
specific staining of a subset of lymphocytes and a
strong association with FOXP3+ lymphocytes (P <

0.0001). IL2RB mRNA positively correlated with three
previously-published gene signatures of response to
immune-checkpoint therapy (P < 0.0001). Our evolu-
tionary algorithm has identified IL2RB to be exten-
sively linked to immune-checkpoints in CRC; its ex-
pression should be investigated for clinical utility as

a potential predictive biomarker for CRC patients re-
ceiving immune-checkpoint blockade.

INTRODUCTION

Colorectal cancer (CRC) is one of the world’s leading causes
of cancer-related mortality. Recent advances in our un-
derstanding of the immune landscape in CRC, coupled
with the development of immune-checkpoint therapy has
underpinned improved outcomes for a subset of deficient
mismatch repair (dMMR) CRC patients (1,2). Immune-
checkpoints regulate the host immune response by mod-
ulating activity of immune cells in the tumor microenvi-
ronment (TME), including CD8+ cytotoxic lymphocytes
(CTLs) and natural killer (NK) cells. Dysregulation of
immune-checkpoints results in immune-evasion, one of the
major hallmarks of cancer. The discovery that targeting
costimulatory and inhibitory immune-checkpoints can in-
voke a CTL/NK cell response against tumor cells has
provided the rationale for a new immunotherapy-based
treatment (3,4).

The first immune-checkpoint therapy to receive FDA-
approval was Ipilimumab (anti-CTLA4) in 2011 for ad-
vanced melanoma (5). Since then, an evolving armamen-
tarium of immune-checkpoint compounds have undergone
preclinical and early clinical investigation across many
cancer types including CRC (2,6). Despite rigorous re-
search, to date only CTLA-4 and PD-1 inhibitors have
been FDA-approved for the treatment of dMMR metastatic
CRC (mCRC) previously treated with chemotherapy (7,8).
Clinical indication for PD-1 inhibitors is currently lim-
ited to patients with dMMR and hypermutated tumors
(e.g., microsatellite instability (MSI-H) and POLE muta-
tions). PDL1 expression by immunohistochemistry (IHC)
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is employed for stratification in other tumor types such
as non-small cell lung cancer (NSCLC); however, it is
not routinely used as a predictive biomarker for CRC.
Anti-CTLA4 (NCT03007407) in combination with PD-1
inhibition has reached phase II/III clinical trials, while
other immune-checkpoint inhibitors including anti-LAG-
3 (NCT 02060188), anti-TIM-3 (NCT02817633) and anti-
IDO (NCT 02048709) are currently being trialled in com-
bination or as single agents. However, there is a dearth of
robust predictive biomarkers to inform immune-checkpoint
approaches.

In the era of precision medicine, high-throughput molec-
ular profiling of tumors to identify biomarkers for patient
stratification is requiring more sophisticated computational
analysis. Artificial intelligence (AI) approaches employing
machine learning, neural networks and evolutionary ge-
netic algorithms are starting to address this need in domains
such as disease screening, molecular characterization and
pathological image analysis (9–13). Recently, Ruiz-Bañobre
and Goel highlighted how AI algorithms will be key in de-
ciphering response to immune checkpoints in dMMR gas-
trointestinal tumors (14). We have previously published At-
las Correlation Explorer (ACE), which implements an evo-
lutionary genetic algorithm that extracts associations from
molecular data within The Cancer Genome Atlas (TCGA)
to facilitate biomarker discovery (15). ACE eschews a linear
and computationally intensive approach in favor of a ge-
netic algorithm-based heuristic search method that rapidly
generates succinct feature lists where clinical associations
across analyses can be more easily determined.

In this study, we have employed ACE to assess com-
mon associations in gene expression across nine immune
co-stimulatory/inhibitory checkpoints within the TCGA
CRC cohort. We hypothesized that commonality of gene
expression across immune checkpoints may allow selec-
tion of one or more overarching biomarkers of patient
outcome and response to immune-checkpoint blockade in
CRC. Our analysis identified Interleukin-2 receptor subunit
beta (IL2RB) as the most common gene associated with
immune-checkpoint gene expression in CRC. IL2RB, also
known as CD122, has been shown to be associated with
not only T-cell expansion, but also T-cell exhaustion (16–
18); it is a promising therapeutic target under investigation
in combination with immune-checkpoint blockade in phase
II/III clinical trials for patients with advanced solid tumors
(19). We have established that expression of IL2RB is asso-
ciated with increased immune infiltrates and is prognostic
at the mRNA level, further validating this finding in an in-
dependent cohort. We demonstrated using publically avail-
able human and murine single cell RNA-seq that IL2RB is
expressed predominantly in a subset of T-cells which are as-
sociated with increased immune-checkpoint expression. We
have optimized digital pathology analysis of IL2RB IHC
to further demonstrate its specific expression on a popula-
tion of tumor infiltrating lymphocytes (TILs). Finally, we
demonstrated that IL2RB mRNA expression is positively
correlated with predictive gene signatures for response to
anti-PD1 and anti-PDL1 therapy. On this basis, we hypoth-
esize that IL2RB expression may yield predictive value in
prospective clinical trials for immune-checkpoint blockade
therapy in CRC.

MATERIALS AND METHODS

Atlas Correlation Explorer (ACE) analysis and gene list in-
tersections

ACE was installed as described in our previous publi-
cation (15). ACE is written in C# and Microsoft Vi-
sual Studio and implemented as a Windows desktop ap-
plication. It can be accessed at GitHub (https://github.
com/AlanRGilmore/ACE). ACE uses TCGA data di-
rectly from the Broad Institute Firehose https://gdac.
broadinstitute.org/. Analysis of immune-checkpoints genes
in the TCGA COAD dataset was performed using the Ag-
ilent microarray (median expression) (n = 153) and RNA-
seq (uncv2.mRNAseq RSEM normalized log2) (n = 457)
pipelines. Each analysis was performed until 100% cov-
erage was achieved and exported feature lists were fil-
tered using a criteria of R2>0.25. The proportion of
overlap/intersections between gene lists was assessed using
Upset plots (20) implemented in R version 3.3.1 (2016–06–
21) – ‘Bug in Your Hair’.

Immune-checkpoint source measures

The following nine immune-checkpoint molecules were
identified from the literature for analysis using ACE and are
described in Table 1; exported gene lists were assessed for
commonality in the CRC TCGA microarray and RNA-seq
data.

Single cell RNA-seq, in silico microenvironment quantifica-
tion and molecular subtyping

CRC cell type specific gene expression of IL2RB was as-
sessed in 363 molecular profiles from 11 CRC patients using
publically available Illumina HiSeq 2000 single cell RNA-
seq dataset GSE81861 (mast cell profile excluded, n = 1).
Publically available Illumina NextSeq 500 MC38 murine
single CD8+ T cell RNA-seq (n = 1192) from colon tu-
mors were accessed from dataset GSE120909. FPKM ex-
pression values were downloaded from Gene Expression
Omnibus (GEO) and log2 transformed with a +1 pseudo
count (log2FPKM+1) and the threshold for IL2RB mRNA
expression was determined as ≥1 log2FPKM+1. The im-
mune and stromal microenvironment was quantified from
CRC TCGA data at the transcript level by employing the
microenvironment cell population (MCP) counter R pack-
age; correlation analysis was performed using the corrplot
and hmsic R packages (28). Consensus Molecular Sub-
typing (CMS) and Colorectal Cancer Intrinsic Subtyp-
ing (CRIS) were performed on the gene expression data
as previously published, using the random forest classi-
fier and nearest template prediction model respectively
(29–31).

Gene expression patient cohorts

Gene expression and clinical data for the CRC TCGA
dataset was extracted from www.cbioportal.org. Both
RNA-seq and Agilent microarray data (probes collapsed
to median expression) were used for gene signature anal-
ysis. The RNA-seq pipeline (RSEM log2 normalized) was
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Table 1. Table displays the gene name and description for each immune checkpoint biomarker analyzed by ACE

Immune checkpoint Description References

PDL1 Programmed death-ligand 1 (PD-L1), also known as CD274, is the ligand for PDCDC1 (1)
PDCDC1 Programmed cell death protein 1 (PD-1) and is the receptor for PDL1 (1)
CTLA Cytotoxic T-lymphocyte-associated protein 4 (4)
LAG3 Lymphocyte-activation gene 3 (21)
TIM3 T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) also known as HAVCR2 (22)
TIGIT T-cell immunoreceptor with Ig and ITIM domains (WUCAM or VSTM3) (23)
ICOS Inducible T-cell costimulatory protein (24)
IDO1 Indoleamine-pyrrole 2,3-dioxygenase (INDO or IDO1) (25)
BTLA B- and T-lymphocyte attenuator (26,27)

matched to clinical data for disease-free survival (DFS)
analysis (n = 322). The publically available gene expres-
sion datasets GSE39582 and GSE103479 were downloaded
from GEO. Patient-matched CD3 and CD8 immunohisto-
chemistry scores were provided for GSE103479 dataset by
author DL as previously published (32).

Immunohistochemistry and digital pathology assessment

A suitable IL2RB IHC antibody was identified, based upon
assessed expression across six tumor types including CRC
from the Human Protein Atlas (https://www.proteinatlas.
org/). Expression of IL2RB was subsequently evaluated in
an established in-house colon cancer TMA using immuno-
histochemistry and image analysis. TMA construction and
clinicopathological characteristics of the stage II/III colon
cancer patients (n = 631) are described elsewhere (33); how-
ever, in this study we only assessed MSI-H tumors (n =
115). Microsatellite instability (MSI) status was assessed
by PCR using the Promega Microsatellite Instability Status
kit of genetic material from the pathology specimens from
which the TMA was generated. The rationale for assessing
only MSI-H tumors relates to the fact that response to im-
mune checkpoint blockade is almost exclusively observed
in this subtype of patients. We hypothesise that both intrin-
sic cancer cell immunogenicity (through MSI-H status) and
tumor microenvironment (as measured by IL2RB expres-
sion) are required for predicting response immune check-
point blockade. Immunohistochemistry was performed for
IL2RB (Polyclonal Anti-IL2RB Antibody; Atlas Antibod-
ies, Voltavägen, Sweden; catalogue number: HPA062657;
1:1000 dilution; 15 min incubation at room temperature) on
the Leica BOND-MAX automated immunostainer (Anti-
gen retrieval: ER2 for 20 min; Detection chemistry: Bond
Polymer Refine Detection and Enhancer). The optimized
protocols for CD3, CD4, CD8, FOXP3, ICOS and PDL1
IHC antibodies are included in Supplementary Table S1.
Slides were scanned using an Aperio AT2 at 40× magnifi-
cation. IL2RB expression for each patient was calculated
as the average number of IL2RB positive cells per mm2

across replicate cores using open-source software QuPath
version 0.1.2 (34). All tissue samples from the Belfast and
the South Eastern Health and Social Care Trust (HSCT)
were obtained under the auspices of the Northern Ireland
Biobank (www.nibiobank.org), which has ethical approval
(ref: 11/NI/0013) to collect, store and distribute samples
to researchers. The present study has ethical approval from
NIB (reference. NIB15–0168)

Statistical analysis

Patients with a DFS of zero months were excluded from
both discovery and validation cohorts. No further filtering
was performed based upon clinical pathological parame-
ters for either cohort (e.g., all stages, all treatment groups
were included). Missing-indicator method was used to ac-
count for missing clinical data in the patient cohorts for uni-
variate and multivariate survival analysis and forest plots
were performed using survivalAnalysis package in R ver-
sion 3.3.1 (2016–06–21) – ‘Bug in Your Hair’. All parame-
ters that were statistically significant by univariate survival
analysis and clinically relevant were taken forward for mul-
tivariate analysis. Kaplan–Meier curves were generated us-
ing GraphPad Prism 6. The significance threshold was set
at (P < 0.05) for all statistical tests unless stated otherwise.
Welch’s T-test was used to determine the difference between
two groups of unequal variance, Mann–Whitney test for
nonparametric testing and analysis of variance (ANOVA)
for comparing more than two groups. The significance of
the relationship between categorical variables was deter-
mined using the Chi-squared test in R.

RESULTS

ACE identifies IL2RB as associated with immune-checkpoint
expression in CRC

We performed ACE analysis on nine immune-checkpoints
(PD-1, CTLA4, LAG3, TIM-3, TIGIT, BTLA, ICOS, IDO1
and PDL1) in the CRC TCGA RNA-seq and microar-
ray pipelines. Commonality or intersections across the nine
analyses were visualized using UpSet plots and genes were
reported if they were found to overlap in ≥6 lists (Fig-
ure 1A and B). The four common genes observed from
the ACE analyses of the microarray pipeline were IL2RB,
CXCL13, NKG7 and SIRPG and the two common genes
from the RNA-seq analyses were IL2RB and CD3E. IL2RB
was identified as the most common intersection, appear-
ing in both the microarray and RNA-seq ACE analyses of
immune-checkpoints and so was taken forward for further
investigation (see supplementary data for all raw exported
ACE analyses).

Clinical and pathological associations of IL2RB

Given that IL2RB signaling is associated with the expansion
of immune cells (17,18), we quantified the microenviron-
ment cell populations in the TCGA CRC cohort using MCP

https://www.proteinatlas.org/
http://www.nibiobank.org
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Figure 1. Evolutionary genetic algorithm based tool (ACE) highlights
IL2RB as the most common intersection between analyses of nine immune
checkpoint markers in CRC, across both TCGA mRNA microarray and
RNA-seq datasets. (A and B) UpSet plot showing the number of inter-
sections produced by ACE gene lists for each biomarker in both matched
microarray data and RNA-seq data, respectively.

counter, correlating each population with the expression of
IL2RB. We observed that IL2RB has a strong positive cor-
relation with an increased abundance of cytotoxic lympho-
cytes, T-cells, NK cells and B-cells and a weak positive cor-
relation with fibroblasts and endothelial cells (Figure 2A).
Next, we assessed the relationship between IL2RB mRNA
expression and patient-matched CD8 and CD3 IHC expres-
sion in stage II/III CRC dataset GSE103479. We performed
a Welch’s T-test between IL2RB low and high groups (me-
dian split) in stromal regions (SR), invasive front (IF) and
tumor body (TB) for CD3 and CD8 IHC-positive cells. We
observed significantly more CD3-positive immune cells (P
= 0.01) in the SR of patients with high IL2RB compared to
low, and a trend toward significance in the TB region with
CD3 expression. Although not significant, CD8 expression
trended toward being higher in the IL2RB high tumor body
group (Supplementary Figure S1). Representative IHC im-
ages for CD3 and CD8 (×5 magnification) were identified

from the upper and lower quintile of expression in the TB
for both CD3 and CD8 (Figure 2B). Our results indicate
that IL2RB expression may be associated with immune in-
filtrates, indicative of good prognosis. On this basis, we per-
formed survival analysis to assess the prognostic value of
IL2RB expression in the CRC TCGA RNA-seq patient co-
hort. Using a previously published method (35), we deter-
mined the optimal split into high and low IL2RB expres-
sion, based upon DFS, to be the 43rd percentile. Kaplan–
Meier survival analysis demonstrated that patients in the
high IL2RB subgroup had improved DFS compared to pa-
tients in the low IL2RB group. (Figure 2C, n = 322, log-
rank P value = 0.011). We validated the prognostic value
of IL2RB in the large publically available all-stage CRC co-
hort GSE39582, using the same 43rd percentile split. In this
analysis, we also observed that the high IL2RB expressing
group had improved DFS compared to the low expressing
group (Figures 2D and 4A, n = 519, logrank P value =
0.006). Using Chi-squared analysis, we demonstrated that
patients in the IL2RB high expressing group are associated
with dMMR, BRAF mutations, CIMP positivity, CIN neg-
ativity, CMS1 and CRIS-B subtypes (Supplementary Table
S1). Importantly, we observed using multivariate analysis in
GSE39582 that IL2RB was an independent prognostic fac-
tor (Supplementary Figure S2, P < 0.01), when compared
to other clinically and statistically relevant parameters. We
also demonstrate in the TCGA colon cohort that IL2RB
mRNA expression is significantly associated with MSI-H
patients (Supplementary Figure S3, P < 0.0001).

IL2RB single cell RNA-seq and IHC

To delineate cell type specific expression of IL2RB, we
utilized 363 publically available single cell RNA-seq pro-
files from 11 CRC patients (GSE81861). We observed that
IL2RB was significantly upregulated in T-cells compared
to all other cell types (Figure 3A, P < 0.0001, ANOVA).
Next, we assessed whether IL2RB expression is associated
with increased immune-checkpoint expression using sin-
gle CD8+ T-cell RNA-seq data (n = 1192) from MC38
colon cancer mouse models, treated with immune check-
point therapy GSE120909. With the exception of PDL1,
we observed that IL2RB positive CD8+ T-cells have signifi-
cantly higher immune-checkpoint expression (Figure 3B, P
< 0.0001, Mann–Whitney test). Using the Human Protein
Atlas, we identified an IL2RB IHC antibody which stains
small populations of immune cells in many tumor types in-
cluding CRC, melanoma, breast, lung, pancreatic and head
and neck (Supplementary Figure S4). We optimized this an-
tibody in-house and assessed the average IL2RB IHC ex-
pression per mm2 in a large cohort of stage II/III MSI-H
colon cancer (n = 115). We optimized digital assessment of
IL2RB IHC using the open source image analysis software
QuPath and detected an average of 22 positive cells/mm2

(Figure 4A and C). We observed sensitive and specific stain-
ing of IL2RB protein expression on a small population
of lymphocytes (Figure 4B). Next, we compared IL2RB
IHC expression to a repertoire of immune markers (CD3,
CD4, CD8 and FOXP3), PDL1 and ICOS expression by
IHC. Using the same 43rd percentile split established for
IL2RB expression in the transcriptomics analysis, we ob-
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Figure 2. Transcriptional quantification of microenvironment and prognostic value of IL2RB mRNA expression in CRC. (A) Correlation of IL2RB ex-
pression with microenvironment cell population (MCP) scores for individual cell types in TCGA CRC microarray data. (B) Representative CD3 and CD8
IHC images generated from an in-house TMA split by median IL2RB mRNA expression using matched transcriptional profiles from GSE103479 (×5
magnification). (C) Kaplan–Meier curve showing improved DFS for patients with higher expression of IL2RB in CRC TCGA RNA-seq dataset (n = 322,
log rank P = 0.011). (D) Kaplan–Meier curve showing improved DFS for patients with higher expression of IL2RB in GSE39582 (n = 519, log rank P
value = 0.0057).

served a trend toward increased PDL1 tumor (Figure 4C,
P = 0.058) and ICOS expression (Figure 4D, P = 0.1956)
in the IL2RBHi patients. We also observed a significant in-
crease in the density of CD3 (Figure 4E, P = 0.0131), CD4
(Figure 4F, P = 0.006) and FOXP3 (Figure 4G, P <0.0001)
immune markers in the IL2RBHih IHC group. The density
of CD8 positive cells was higher in the IL2RBHi compared
to the IL2RBLo patients but was not significant (Figure 4H,
P = 0.2012).

IL2RB as a potential predictive biomarker

Immune checkpoint clinical trials in dMMR CRC patients
such as CheckMate 142 (anti-PD1) show objective response
rates of 31.1% (39). There is therefore a need for a robust
biomarker that identifies this subgroup of dMMR CRC pa-
tients that respond to immune checkpoint therapy. There-
fore, we wished to assess the potential predictive value of
IL2RB for response to immune-checkpoint therapy. Given
the paucity of experimental data and gene signatures cur-
rently available for immune-checkpoint therapy in CRC, we
utilized three gene signatures generated in urothelial can-
cer and melanoma. The durvalumab (anti-PDL1) gene sig-
nature generated in urothelial cancer was shown to have a
strong positive correlation with IL2RB expression in both

the CRC microarray and RNA-seq pipelines (Supplemen-
tary Figure S5A and B, R = 0.87, P < 0.0001 and R = 0.82,
P < 0.0001) (36). The NK cell/Anti-PD-1 signature devised
in melanoma models also strongly correlated with IL2RB
(Supplementary Figure S5C and D, R = 0.77, P < 0.0001
and R = 0.77, P < 0.0001) as did the pembrolizumab sig-
nature from the KEYNOTE-001 phase I clinical trial (Sup-
plementary Figure S5E and F, R = 0.88, P < 0.0001 and
R = 0.84, P < 0.0001) (37,38). Our observations provide
positive evidence that lL2RB is significantly associated with
response to immune checkpoint therapies.

DISCUSSION

A subset of MSI-H/dMMR mCRC patients experience
durable response to immune-checkpoint therapies. Results
from trials such as CheckMate-142 (NCT02060188) indi-
cate that anti-PD1 and anti-CTLA4 therapies could be-
come first-line treatment for this patient group (39). More-
over, exciting preliminary results from phase II clinical
trial NICHE (NCT03026140) for early stage dMMR colon
cancer suggest that a larger proportion of dMMR/MSI-
H stage II/III CRC patients may benefit from immune-
checkpoint therapy than in the metastatic setting (40).
Aside from dMMR/MSI-H, one of the most widely used
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Figure 3. Single-Cell RNA-seq characterisation of IL2RB in CRC. (A) Dot plot showing expression of IL2RB (log2 FPKM +1) in publically available
(GSE81861) single cell RNA-seq profiles from 11 CRC patients compared across cell type (ANOVA,P < 0.0001 (****)). (B) Heatmap comparing log2
FPKM+1 expression of PDCD1, PDL1, LAG3, CTLA4, ICOS and TIGIT in IL2RB+ CD8+ T cells (n = 1192) derived from single cell MC38 Colon
cancer anti-PD1 and anti-GITR treated mouse models RNA-seq dataset (GSE120909).

predictive biomarkers for anti-PD1 therapy is PDL1 IHC;
however, conflicting results from studies regarding defini-
tive cut-off thresholds, tumor/ stromal staining and poor
inter-reader concordance results mean that it is not rou-
tinely used for CRC, thus highlighting that a more ro-
bust predictive biomarker approach is required. Similarly,
biomarker-based stratification beyond MSI-H/dMMR for
other immune-checkpoint therapies is lacking and requires
further investigation (41,42).

In this study, we employed our previously-published plat-
form ACE to extract genes correlated with the expression of
immune-checkpoints currently under investigation or being
employed as therapeutic targets in clinical studies in CRC.
ACE utilizes an evolutionary genetic algorithm rather than
classical correlation analysis. It is an alternative form of
feature selection which has the potential to assess a much
larger combination of correlates across subsets of features
and while performing random sampling of the observa-
tions. We hypothesized that commonality across our ACE
analysis of nine selected immune-checkpoints may reveal a
novel overarching predictive biomarker for certain immune-

checkpoint based therapies. Our analyses of both microar-
ray and RNA-seq TCGA CRC gene expression data re-
vealed IL2RB to be the most common co-expressed gene
(intersection), featuring in 6/9 of immune-checkpoint gene
lists generated by ACE.

IL2RB is part of a receptor signaling complex that also
consists of alpha and gamma receptor subunits and its
functions are highly pleiotropic (43). IL2RB activation via
endogenous IL2 or biased therapeutic stimulation results
in the expansion of anti-tumor immune cells, in partic-
ular CD8+, CD4+ and NK cells. IL2RB was recently
shown to be significantly upregulated in CRC, specifically
in cytolytic-high tumors. Additionally, the Treg marker
FOXP3 were also significantly higher in cytolytic-high
CRCs. In contrast, a number of studies have demonstrated
that IL2RB positive immune cells are associated with im-
mune suppression and T-cell exhaustion. However, their ex-
act function within the context of immune checkpoint ther-
apy remains unclear (16,45–51). The IL2RB-biased engi-
neered cytokine NKTR-214 significantly increases the ra-
tio of CD8 CTLs to immunosuppressive CD4 FOXP3 T-
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Figure 4. Comprehensive comparative assessment of IL2RB IHC and immune markers in stage II/III MSI-CRC (n = 115) from an in-house TMA.
(A) Dot plot showing mean IL2RB positive cells/mm2. (B) Representative image of IL2RB IHC (×20 magnification). (C) Boxplot and representative
images (×5 magnification) comparing PDL1+ tumor cells by IHC in IL2RB high and low patients (P = 0.058). (D) Boxplot and representative images
(×5 magnification) comparing density of ICOS+ cells by IHC in IL2RB high and low patients (P = 0.1956). (E) Boxplot and representative images (×5
magnification) comparing density of CD3+ positive cells by IHC in IL2RB high and low patients (P = 0.0103). (F) Boxplot and representative images
(×5 magnification) comparing density of CD4+ positive cells by IHC in IL2RB high and low patients (P = 0.006). (G) Boxplot and representative images
(×5 magnification) comparing density of FOXP3+ positive cells by IHC in IL2RB high and low patients (P<0.0001). (H) Boxplot and representative
images (×5 magnification) comparing density of CD8+ positive cells by IHC in IL2RB high and low patients (P = 0.2012). Significance determined using
Mann–Whitney test. IL2RB status determined using 43rd percentile from transcriptional analysis

regulatory cells, creating a potent anti-tumor environment,
while also increasing the expression of immune-checkpoints
such as CD274 (PDL1) (18). The ‘molecular stalemate’ pro-
duced by IL2RB stimulation is therapeutically targetable
and on this basis. NKTR-214 is currently under investiga-
tion in combination with anti-PD1 therapy across a range
of solid tumors, with a phase III trial ongoing in advanced
melanoma (NCT03635983). Given the recent resurgence
of IL2-based therapies highlighted by Garber et al., we
decided to comprehensively investigate IL2RB expression
within the context of CRC and immune-checkpoints (19).

First, we demonstrated using transcriptional analysis
that IL2RB mRNA expression is associated with increased
infiltration of immune cells such as T cells and cytotoxic
lymphocytes, which are known to be associated with im-
proved outcomes in CRC patients and the good-prognosis
immune CMS1 molecular subtype. Further support for
a key role for IL2RB is provided by our survival analy-
sis of the CRC TCGA cohort, where patients with higher
IL2RB gene expression had improved DFS versus those
with lower expression levels. We validated this observation
in a large independent cohort and demonstrated that higher
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IL2RB gene expression was an independent prognostic fac-
tor by multivariate survival analysis. It is well-established
that tumors with increased TILs have improved outcomes
and that a primed immune infiltrate is a prerequisite for
immune-checkpoint therapy response. To delineate the cel-
lular origin of IL2RB expression, we interrogated publically
available single-cell RNA-seq profiles from the CRC tumor
and microenvironment of 11 patients and determined that
IL2RB is predominantly expressed on a subset of T-cells.
The exact function of IL2RB-expressing T cells are yet to
be fully elucidated.

T cells are widely known to be one of the main effector
populations of immune-checkpoint therapies, it has been re-
ported that IL2RB expression on CD8+ T cells may play
a role in exhaustion in a variety of contexts including vi-
ral infection and thus this role should also be investigated
within the context of cancer (16,45–53). Our analysis of
single-cell RNA-seq profiles (n = 1192) from the publically
available dataset GSE120909 showed that IL2RB+ CD8 T-
cells in MC38 murine colon cancer models were unequiv-
ocally associated with immune-checkpoint expression. To
visualize the specific cells expressing IL2RB, we performed
IL2RB IHC on a TMA from large cohort MSI-H colon
cancer patients (n = 115). IHC digital assessment indicated
that IL2RB is expressed on a small population of TILs.
Next, we demonstrated that MSI-H CRC patients with in-
creased IL2RB+ immune cells have an increased abundance
of CD3, CD4 and FOXP3 TILs and higher PDL1 tumor
and ICOS expression. Interestingly, CD8 immune cells were
not significantly altered in the IL2RB IHC high patients.
This supports the recent observations that IL2RB expres-
sion is correlated with mRNA expression of FOXP3 in cy-
tolytic (CYT-high) colorectal tumors (44). We hypothesize
that these IL2RB -positive cells represent an important and
distinct subset of immune cells that may influence immune-
checkpoint regulation and an exhausted yet targetable T-
cell phenotype in CRC.

Having established that IL2RB+ T-cells in CRC are asso-
ciated with immune-checkpoint expression, we investigated
whether IL2RB may have utility as a predictive biomarker
for CRC patients receiving immune-checkpoint blockade
therapy. A limitation to this study is the lack of CRC-
specific data currently available for biomarker-informed
evaluation of response to immune checkpoints. As a con-
sequence of the dearth of CRC-specific trial gene expres-
sion data available for this study, we employed three pre-
viously published predictive gene signatures for anti-PD1
and anti-PDL1 therapies, which had been generated in
melanoma, lung and urothelial cancer cohorts (36–38).
We observed strong positive correlation of IL2RB with
predictive gene signatures for pembrolizumab and durval-
umab, across both microarray and RNA-seq in the CRC
TCGA cohorts. Our results from previously published
predictive gene signatures generated in immune hot tu-
mors such as melanoma, lung and urothelial cancers in-
dicate that IL2RB has a strong association with the biol-
ogy that underpins response to immune-checkpoint therapy
and could be extrapolated to immune ‘hot’ MSI-H CRC
tumors. We therefore hypothesize that IL2RB may have
predictive value for patients receiving immune checkpoint
therapy.

In conclusion, we demonstrate how our platform ACE
which utilizes an evolutionary genetic algorithm can be
integrated within a biomarker discovery pipeline. Using
ACE, we have highlighted IL2RB expression is unequivo-
cally linked with immune-checkpoint genes in CRC. We be-
lieve IL2RB may represent an important player in the im-
mune landscape of CRC and should continue to be investi-
gated as a predictive biomarker with potential clinical utility
for CRC patients receiving immune-checkpoint blockade.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We acknowledge support from the Health Data Research
Wales Northern Ireland Substantive Site and DATA-CAN,
the UK’s Health Data Research Hub for Cancer. The
Molecular Pathology Program, previously the Northern
Ireland Molecular Pathology Laboratory, was responsi-
ble for construction of tissue microarrays, slide staining,
and scanning, acknowledges support from Cancer Research
UK, the Experimental Cancer Medicine Centre Network,
the Health and Social Care Research, and the Develop-
ment Division of the Public Health Agency in Northern Ire-
land, the Sean Crummey Memorial Fund, the Tom Simms
Memorial Fund and the Friends of the Cancer Centre. The
research leading to these results has also received funding
from Invest Northern Ireland.
The samples used in this research were received from the
Northern Ireland Biobank which has received funds from
HSC Research and Development Division of the Public
Health Agency in Northern Ireland and the Friends of the
Cancer Centre.
Author Contributions: Study concept and design: M.A.,
S.M.Q., M.S.T., J.A.J., M.L., D.M. Acquisition of data:
M.A., A.G., D.L., M.B.L., S.M.Q., J.A.J., D.M. Analysis
and interpretation of data: M.A., S.C., M.H., N.J., V.C.,
S.S., D.L., M.L., D.M. Drafting of manuscript: M.A., D.L.,
M.B.L., S.M.Q., M.L., D.M. Technical support: V.B., A.G.,
S.M.Q.

FUNDING

Medical Research Council [MR/S003789/1]; Cancer Re-
search UK [C11512/A20256].
Conflict of interest statement. M.L. has received Grant Sup-
port and honoraria from Pfizer for research unrelated to this
work. D.L. is currently an Innovate UK scholar seconded to
Almac Discovery for research unrelated to this work. D.M.
and S.S. are founders of, and M.A. an employee in, Sonrai
Analytics and is unrelated to this work. M.S.T has recently
received honoraria for advisory work in relation to the fol-
lowing companies: Incyte, QuanPathDerivatives and MSD.
He is part of academia-industry consortia supported by the
UK government (Innovate UK). These are all unrelated to
this work. All other authors have no conflicts of interest to
declare.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab016#supplementary-data


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 9

REFERENCES
1. Asaoka,Y., Ijichi,H. and Koike,K. (2015) PD-1 blockade in tumors

with mismatch-repair deficiency. N. Engl. J. Med., 373, 1979.
2. Galon,J., Mlecnik,B., Bindea,G., Angell,H.K., Berger,A., Lagorce,C.,

Lugli,A., Zlobec,I., Hartmann,A., Bifulco,C. et al. (2014) Towards
the introduction of the ‘Immunoscore’ in the classification of
malignant tumours. J. Pathol., 232, 199–209.

3. Pardoll,D.M. (2012) The blockade of immune checkpoints in cancer
immunotherapy. Nat. Rev. Cancer, 12, 252–264.

4. Wei,S.C., Duffy,C.R. and Allison,J.P. (2018) Fundamental
mechanisms of immune checkpoint blockade therapy. Cancer Discov.,
8, 1069–1086.

5. Goozner,M. (2012) Drug approvals 2011: focus on companion
diagnostics. J. Natl. Cancer Inst., 104, 84–86.

6. Galon,J. and Bruni,D. (2019) Approaches to treat immune hot,
altered and cold tumours with combination immunotherapies. Nat.
Rev. Drug Discov., 18, 197–218.

7. Lemery,S., Keegan,P. and Pazdur,R. (2017) First FDA approval
agnostic of cancer site - when a biomarker defines the indication. N.
Engl. J. Med., 377, 1409–1412.

8. U.S. Food and Drug Administration. Silver Spring (2019)
Combination of Immunotherapy Drugs Approved for Metastatic
Colorectal Cancer. https://www.fda.gov/drugs/informationondrugs/
approveddrugs/ucm613227.htm, (01 November 2019, date
lastaccessed).

9. Urban,G., Tripathi,P., Alkayali,T., Mittal,M., Jalali,F., Karnes,W.
and Baldi,P. (2018) Deep learning localizes and identifies polyps in
real time with 96% accuracy in screening colonoscopy.
Gastroenterology, 155, 1069–1078.

10. Gulshan,V., Peng,L., Coram,M., Stumpe,M.C., Wu,D.,
Narayanaswamy,A., Venugopalan,S., Widner,K., Madams,T.,
Cuadros,J. et al. (2016) Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA, 316, 2402–2410.

11. Frohlich,H., Balling,R., Beerenwinkel,N., Kohlbacher,O., Kumar,S.,
Lengauer,T., Maathuis,M.H., Moreau,Y., Murphy,S.A.,
Przytycka,T.M. et al. (2018) From hype to reality: data science
enabling personalized medicine. BMC Med., 16, 150.

12. Esteva,A., Kuprel,B., Novoa,R.A., Ko,J., Swetter,S.M., Blau,H.M.
and Thrun,S. (2017) Dermatologist-level classification of skin cancer
with deep neural networks. Nature, 542, 115–118.

13. Bailey,M.H., Tokheim,C., Porta-Pardo,E., Sengupta,S., Bertrand,D.,
Weerasinghe,A., Colaprico,A., Wendl,M.C., Kim,J., Reardon,B. et al.
(2018) Comprehensive characterization of cancer driver genes and
mutations. Cell, 174, 1034–1035.

14. Ruiz-Banobre,J. and Goel,A. (2019) DNA mismatch repair deficiency
and immune checkpoint inhibitors in gastrointestinal cancers.
Gastroenterology, 156, 890–903.

15. Gilmore,A.R., Alderdice,M., Savage,K.I., O’Reilly,P.G., Roddy,A.C.,
Dunne,P.D., Lawler,M., McDade,S.S., Waugh,D.J. and McArt,D.G.
(2019) ACE: A workbench using evolutionary genetic algorithms for
analyzing association in TCGA data. Cancer Res., 79, 2072–2075.

16. Li,S., Xie,Q., Zeng,Y., Zou,C., Liu,X., Wu,S., Deng,H., Xu,Y.,
Li,X.C. and Dai,Z. (2014) A naturally occurring CD8(+)CD122(+)
T-cell subset as a memory-like Treg family. Cell Mol. Immunol., 11,
326–331.

17. Charych,D.H., Hoch,U., Langowski,J.L., Lee,S.R., Addepalli,M.K.,
Kirk,P.B., Sheng,D., Liu,X., Sims,P.W., VanderVeen,L.A. et al. (2016)
NKTR-214, an engineered cytokine with biased IL2 receptor
binding, increased tumor exposure, and marked efficacy in mouse
tumor models. Clin. Cancer Res., 22, 680–690.

18. Charych,D., Khalili,S., Dixit,V., Kirk,P., Chang,T., Langowski,J.,
Rubas,W., Doberstein,S.K., Eldon,M., Hoch,U. et al. (2017)
Modeling the receptor pharmacology, pharmacokinetics, and
pharmacodynamics of NKTR-214, a kinetically-controlled
interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS
One, 12, e0179431.

19. Garber,K. (2018) Cytokine resurrection: engineered IL-2 ramps up
immuno-oncology responses. Nat. Biotechnol., 36, 378–379.

20. Lex,A., Gehlenborg,N., Strobelt,H., Vuillemot,R. and Pfister,H.
(2014) UpSet: Visualization of Intersecting Sets. IEEE Trans. Vis.
Comput. Graph., 20, 1983–1992.

21. Zhou,G., Noordam,L., Sprengers,D., Doukas,M., Boor,P.P.C., van
Beek,A.A., Erkens,R., Mancham,S., Grünhagen,D., Menon,A.G.
et al. (2018) Blockade of LAG3 enhances responses of
tumor-infiltrating T cells in mismatch repair-proficient liver
metastases of colorectal cancer. Oncoimmunology, 7, e1448332.

22. Zhang,Y., Cai,P., Liang,T., Wang,L. and Hu,L. (2017) TIM-3 is a
potential prognostic marker for patients with solid tumors: A
systematic review and meta-analysis. Oncotarget, 8, 31705–31713.

23. Johnston,R.J., Comps-Agrar,L., Hackney,J., Yu,X., Huseni,M.,
Yang,Y., Park,S., Javinal,V., Chiu,H., Irving,B. et al. (2014) The
immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T
cell effector function. Cancer Cell, 26, 923–937.

24. Zhang,Y., Luo,Y., Qin,S.L., Mu,Y.F., Qi,Y., Yu,M.H. and Zhong,M.
(2016) The clinical impact of ICOS signal in colorectal cancer
patients. Oncoimmunology, 5, e1141857.

25. Liu,M., Wang,X., Wang,L., Ma,X., Gong,Z., Zhang,S. and Li,Y.
(2018) Targeting the IDO1 pathway in cancer: from bench to bedside.
J. Hematol. Oncol., 11, 100.

26. Inoue,T., Sho,M., Yasuda,S., Nishiwada,S., Nakamura,S., Ueda,T.,
Nishigori,N., Kawasaki,K., Obara,S., Nakamoto,T. et al. (2015)
HVEM expression contributes to tumor progression and prognosis in
human colorectal cancer. Anticancer Res., 35, 1361–1367.

27. Torphy,R.J., Schulick,R.D. and Zhu,Y. (2017) Newly emerging
immune checkpoints: promises for future cancer therapy. Int. J. Mol.
Sci., 18, doi:10.3390/ijms18122642.

28. Becht,E., Giraldo,N.A., Lacroix,L., Buttard,B., Elarouci,N.,
Petitprez,F., Selves,J., Laurent-Puig,P., Sautès-Fridman,C.,
Fridman,W.H. et al. (2016) Estimating the population abundance of
tissue-infiltrating immune and stromal cell populations using gene
expression. Genome Biol., 17, 218.

29. Guinney,J., Dienstmann,R., Wang,X., de Reyniès,A., Schlicker,A.,
Soneson,C., Marisa,L., Roepman,P., Nyamundanda,G., Angelino,P.
et al. (2015) The consensus molecular subtypes of colorectal cancer.
Nat. Med., 21, 1350–1356.

30. Isella,C., Brundu,F., Bellomo,S.E., Galimi,F., Zanella,E.,
Porporato,R., Petti,C., Fiori,A., Orzan,F., Senetta,R. et al. (2017)
Selective analysis of cancer-cell intrinsic transcriptional traits defines
novel clinically relevant subtypes of colorectal cancer. Nat. Commun.,
8, 15107.

31. Alderdice,M., Richman,S.D., Gollins,S., Stewart,J.P., Hurt,C.,
Adams,R., McCorry,A.M., Roddy,A.C., Vimalachandran,D.,
Isella,C. et al. (2018) Prospective patient stratification into robust
cancer-cell intrinsic subtypes from colorectal cancer biopsies. J.
Pathol., 245, 19–28.

32. Allen,W.L., Dunne,P.D., McDade,S., Scanlon,E., Loughrey,M.,
Coleman,H., McCann,C., McLaughlin,K., Nemeth,Z., Syed,N. et al.
(2018) Transcriptional subtyping and CD8 immunohistochemistry
identifies poor prognosis stage II/III colorectal cancer patients who
benefit from adjuvant chemotherapy. JCO Precis. Oncol., 2018,
doi:10.1200/PO.17.00241.

33. Gray,R.T., Cantwell,M.M., Coleman,H.G., Loughrey,M.B.,
Bankhead,P., McQuaid,S., O’Neill,R.F., Arthur,K., Bingham,V.,
McGready,C. et al. (2017) Evaluation of PTGS2 expression, PIK3CA
mutation, aspirin use and colon cancer survival in a population-based
cohort study. Clin. Transl. Gastroenterol., 8, e91.

34. Bankhead,P., Loughrey,M.B., Fernandez,J.A., Dombrowski,Y.,
McArt,D.G., Dunne,P.D., McQuaid,S., Gray,R.T., Murray,L.J.,
Coleman,H.G. et al. (2017) QuPath: Open source software for digital
pathology image analysis. Sci. Rep., 7, \16878.

35. Chang,C., Hsieh,M.K., Chang,W.Y., Chiang,A.J. and Chen,J. (2017)
Determining the optimal number and location of cutoff points with
application to data of cervical cancer. PLoS One, 12, e0176231.

36. Higgs,B.W., Morehouse,C.A., Streicher,K., Brohawn,P.Z., Pilataxi,F.,
Gupta,A. and Ranade,K. (2018) Interferon gamma messenger RNA
signature in tumor biopsies predicts outcomes in patients with
non-small cell lung carcinoma or urothelial cancer treated with
durvalumab. Clin. Cancer Res., 24, 3857–3866.

37. Barry,K.C., Hsu,J., Broz,M.L., Cueto,F.J., Binnewies,M.,
Combes,A.J., Nelson,A.E., Loo,K., Kumar,R., Rosenblum,M.D.
et al. (2018) A natural killer-dendritic cell axis defines checkpoint
therapy-responsive tumor microenvironments. Nat. Med., 24,
1178–1191.

38. Ribas,A., Robert,C., Hodi,F.S., Wolchok,J.D., Joshua,A.M.,
Hwu,W.-.J., Weber,J.S., Zarour,H.M., Kefford,R., Loboda,A. et al.

https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm613227.htm


10 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

(2015) Association of response to programmed death receptor 1
(PD-1) blockade with pembrolizumab (MK-3475) with an
interferon-inflammatory immune gene signature. JCO, 33,
3001–3001.

39. Overman,M.J., McDermott,R., Leach,J.L., Lonardi,S., Lenz,H.J.,
Morse,M.A., Desai,J., Hill,A., Axelson,M., Moss,R.A. et al. (2017)
Nivolumab in patients with metastatic DNA mismatch
repair-deficient or microsatellite instability-high colorectal cancer
(CheckMate 142): an open-label, multicentre, phase 2 study. Lancet
Oncol., 18, 1182–1191.

40. Helwick,C. (2019) Neoadjuvant Immunotherapy Yields Major
Response in Colon Cancer Subset. ASCO post.
http://www.ascopost.com/issues/november-25-2018/neoadjuvant-
immunotherapy-yields-major-response-in-colon-cancer-subset/, (03
May 2019, date last accessed).

41. Udall,M., Rizzo,M., Kenny,J., Doherty,J., Dahm,S., Robbins,P. and
Faulkner,E. (2018) PD-L1 diagnostic tests: a systematic literature
review of scoring algorithms and test-validation metrics. Diagn
Pathol, 13, 12.

42. Yi,M., Jiao,D., Xu,H., Liu,Q., Zhao,W., Han,X. and Wu,K. (2018)
Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol.
Cancer, 17, 129.

43. Valle-Mendiola,A., Gutierrez-Hoya,A., Lagunas-Cruz Mdel,C.,
Weiss-Steider,B. and Soto-Cruz,I. (2016) Pleiotropic effects of IL-2 on
cancer: its role in cervical cancer. Mediators Inflamm., 2016, 2849523.

44. Zaravinos,A., Roufas,C., Nagara,M., de,L., Moreno,B.,
Oblovatskaya,M., Efstathiades,C., Dimopoulos,C. and
Ayiomamitis,G.D. (2019) Cytolytic activity correlates with the
mutational burden and deregulated expression of immune
checkpoints in colorectal cancer. J. Exp. Clin. Cancer Res., 38, 364.

45. Wang,L.X., Li,Y., Yang,G., Pang,P.Y., Haley,D., Walker,E.B.,
Urba,W.J. and Hu,H.M. (2010) CD122+CD8+ Treg suppress
vaccine-induced antitumor immune responses in lymphodepleted
mice. Eur. J. Immunol., 40, 1375–1385.

46. Vieyra-Lobato,M.R., Vela-Ojeda,J., Montiel-Cervantes,L.,
Lopez-Santiago,R. and Moreno-Lafont,M.C. (2018) Description of
CD8(+) Regulatory T lymphocytes and their specific intervention in
graft-versus-host and infectious diseases, autoimmunity, and cancer.
J. Immunol. Res., 2018, 3758713.

47. Dai,Z., Zhang,S., Xie,Q., Wu,S., Su,J., Li,S., Xu,Y. and Li,X.C.
(2014) Natural CD8+CD122+ T cells are more potent in suppression
of allograft rejection than CD4+CD25+ regulatory T cells. Am. J.
Transplant., 14, 39–48.

48. Villarreal,D.O., Allegrezza,M.J., Smith,M.A., Chin,D., Luistro,L.L.
and Snyder,L.A. (2017) Targeting of CD122 enhances antitumor
immunity by altering the tumor immune environment. Oncotarget, 8,
109151–109160.

49. Qiu,F., Liu,H., Liang,C.L., Nie,G.D. and Dai,Z. (2017) A new
immunosuppressive molecule emodin induces both CD4(+)FoxP3(+)
and CD8(+)CD122(+) regulatory T cells and suppresses murine
allograft rejection. Front. Immunol., 8, 1519.

50. Liu,J., Chen,D., Nie,G.D. and Dai,Z. (2015) CD8(+)CD122(+)
T-Cells: A newly emerging regulator with central memory cell
phenotypes. Front. Immunol., 6, 494.

51. Akane,K., Kojima,S., Mak,T.W., Shiku,H. and Suzuki,H. (2016)
CD8+CD122+CD49dlow regulatory T cells maintain T-cell
homeostasis by killing activated T cells via Fas/FasL-mediated
cytotoxicity. Proc. Natl. Acad. Sci. U.S.A., 113, 2460–2465.

52. Liu,H., Wang,Y., Zeng,Q., Zeng,Y.Q., Liang,C.L., Qiu,F., Nie,H. and
Dai,Z. (2017) Suppression of allograft rejection by
CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated
killing of effector T cells versus Fas-mediated own apoptosis.
Oncotarget, 8, 24187–24195.

53. Wang,L.X., Li,Y., Yang,G., Pang,P.Y., Haley,D., Walker,E.B.,
Urba,W.J. and Hu,H.M. (2010) CD122+CD8+ Treg suppress
vaccine-induced antitumor immune responses in lymphodepleted
mice. Eur. J. Immunol., 40, 1375–1385.

http://www.ascopost.com/issues/november-25-2018/neoadjuvant-immunotherapy-yields-major-response-in-colon-cancer-subset/

