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Abstract
Background: To investigate the etiology of MLH1 promoter methylation in mismatch repair (MMR) mutation-negative 
early onset MSI-H colon cancer. As this type of colon cancer is associated with high ages, young patients bearing this 
type of malignancy are rare and could provide additional insight into the etiology of sporadic MSI-H colon cancer.

Methods: We studied a set of 46 MSI-H colon tumors cases with MLH1 promoter methylation which was enriched for 
patients with an age of onset below 50 years (n = 13). Tumors were tested for CIMP marker methylation and mutations 
linked to methylation: BRAF, KRAS, GADD45A and the MLH1 -93G>A polymorphism. When available, normal colon and 
leukocyte DNA was tested for GADD45A mutations and germline MLH1 methylation. SNP array analysis was performed 
on a subset of tumors.

Results: We identified two cases (33 and 60 years) with MLH1 germline promoter methylation. BRAF mutations were 
less frequent in colon cancer patients below 50 years relative to patients above 50 years (p-value: 0.044). CIMP-high was 
infrequent and related to BRAF mutations in patients below 50 years. In comparison with published controls the G>A 
polymorphism was associated with our cohort. Although similar distribution of the pathogenic A allele was observed 
in the patients with an age of onset above and below 50 years, the significance for the association was lost for the 
group under 50 years. GADD45A sequencing yielded an unclassified variant. Tumors from both age groups showed 
infrequent copy number changes and loss-of-heterozygosity.

Conclusion: Somatic or germline GADD45A mutations did not explain sporadic MSI-H colon cancer. Although 
germline MLH1 methylation was found in two individuals, locus-specific somatic MLH1 hypermethylation explained the 
majority of sporadic early onset MSI-H colon cancer cases. Our data do not suggest an intrinsic tendency for CpG island 
hypermethylation in these early onset MSI-H tumors other than through somatic mutation of BRAF.

Background
High frequency of microsatellite instability (MSI-H) is
the hallmark of tumors with a mismatch DNA repair
(MMR) deficiency. This deficiency leads to an accumula-
tion of somatic mutations, especially in repetitive coding
or non-coding DNA sequences (microsatellites) in the
genome. MSI-H in colon cancer is found in the context of

Lynch syndrome, previously known as hereditary non-
polyposis colorectal cancer (HNPCC), in which germline
mutations in one of four mismatch repair genes (primar-
ily in MLH1 and MSH2 [1] and to a lesser extent in
MSH6[2], PMS2 [3] or deletions in EPCAM/TACSTD1
(leading to MSH2 methylation) [4,5] are found. Approxi-
mately 15% of cases are due to somatic biallelic or hemial-
lelic DNA methylation of the CpG-rich MLH1 promoter
sequence, which is associated with gene silencing [6].
Colon cancers with sporadic MSI-H are observed more
frequently in females and are often located proximal to
the splenic flexure [7].
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A clear association between increased age and occur-
rence of sporadic MSI-H colon cancer was described in
2002 by Young et al. [8]. The combination of age at diag-
nosis and three pathological features (tumor heterogene-
ity, peritumoral lymphocytes and tumor-infiltrating
lymphocytes) allowed positive identification of 94.5% of
MSI-H cancers as either Lynch syndrome or sporadic [8].
As normal aging colon mucosa shows global hypomethy-
lation and specific hypermethylation of tumor associated
genes, this epigenetic accumulation can explain the asso-
ciation between sporadic MSI-H colon cancer and older
age [9-11]. The rare sporadic cases diagnosed at a rela-
tively young age can provide insight into the etiology of
sporadic MSI-H. As young patients with sporadic MSI-H
colon cancer are subjected to MLH1 methylation without
this age-associated epigenetic accumulation, a defect of
DNA methylation maintenance or direct targeting of
MLH1 for methylation could be expected.

MLH1 methylation has been one of the hallmarks of the
CpG island methylator phenotype (CIMP) since the phe-
notype was first described in 1999 [12]. The high levels of
methylation found in CIMP-high colon tumors suggest
that a causative genetic or epigenetic defect influences
the spread and initiation of methylation [13]. Somatic
BRAF mutations, MLH1 methylation and sporadic MSI-
H are associated with CIMP-positive (CIMP-high and
CIMP-low combined) colon tumors in which the bulk of
aberrant methylation can be found [13,14]. Aberrant
methylation in CIMP-high tumors is thought to arise
through an increase in de novo methylation. KRAS muta-
tions have also been associated with elevated levels of
aberrant DNA methylation, although discrepancies
between marker panels and techniques showed variable
levels of methylation. In general, KRAS mutations are
associated with CIMP-low (also annotated CIMP2) colon
tumors, in which increased levels of aberrant methylation
can be detected to some extent, but at lower levels than in
the CIMP-high tumors [13,14].

The underlying causes leading to MLH1 promoter
hypermethylation and subsequently to sporadic MSI-H
colon cancer are still largely unknown. A relatively new
concept in the field of genetics is germline epimutation.
Although rare, multiple studies have described inherited
and de novo germline methylation of MLH1 in patients
with Lynch-like colon cancer [15-21]. Cases with con-
firmed or probable MLH1 epimutations are documented
to have the same range of tumors as described in Lynch
syndrome patients, predominantly early-onset MSI col-
orectal cancer and endometrial cancer. Although possi-
ble, inheritance of the MLH1 epimutation is described as
very weak, as the MLH1 epimutation is unstable in the
germline [17,18,20,21]. Paradoxically, patients suspected
of having a genetic disorder based on a strong family his-

tory may be less likely to carry an epimutation [18]. Ger-
mline epimutations are thus highly suspected in young
patients presenting with an MSI tumor without a clear
family history. Increased risk of MSI-H tumors [22] and
tumor-specific MLH1 methylation [23] might also be
associated with a single-nucleotide polymorphism (SNP)
-93 bp from the MLH1 transcription start site
(rs1800734). This MLH1 G>A polymorphism is associ-
ated with increased age of onset and CIMP and BRAF
mutations in individuals with MSI-H tumors [24].

Another possible factor contributing to aberrant DNA
methylation is inactivation of GADD45A [25], although
this finding was later disputed [26,27]. GADD45A
(growth arrest and DNA-damage inducible protein 45
alpha) is a nuclear protein involved in maintenance of
genomic stability, DNA repair and cell growth suppres-
sion [28,29]. A recent publication has found GADD45A
to be a key regulator of active DNA demethylation in
Xenopus oocytes and cell lines through a DNA repair-
induced mechanism [25]. Specific short interfering RNA
(siRNA)-mediated knockdown of GADD45A and
GADD45B in the colon cancer cell line RKO induced
hypermethylation of MLH1, THBS1 and p16, three genes
known to be involved in carcinogenesis of different types
of tumors by DNA methylation [25].

In contrast to MSI-H colon cancer, chromosomal insta-
bility (CIN) is enhanced and more pronounced in tumors
with a low frequency of microsatellite instability (MSS or
MSI-L tumors). This relationship can also be deduced
from the observation that MSS/MSI-L tumors often are
aneuploid, whereas MSI-H tumors mostly are peri-dip-
loid. Lynch syndrome-associated MSI-H colon cancer
hardly shows chromosomal copy number alterations, and
the few alterations are mainly restricted to copy neutral
LOH (cnLOH) at the mutated locus, especially in MLH1
mutated cases [30]. However, sporadic MSI-H colon can-
cer and MSI-H from patients with unclassified variants in
MMR genes seem to show an enhanced (although subtle)
number of chromosomal aberrations [30-33].

We studied 46 MSI-H colon tumors showing loss of
MLH1 expression and its heterodimer PMS2 and methy-
lation of the MLH1 promoter. Pathogenic germline MMR
mutation were excluded. We have primarily focused on
comparing relatively young patients with patients of older
ages to identify a possible cause for MLH1 methylation in
young individuals with colon cancer. Tumors were char-
acterized for somatic BRAF, KRAS, GADD45A and the
MLH1 -93G>A polymorphism (rs1800734), as these
genetic factors could play a causative role in MLH1 pro-
moter methylation. Whenever material was available,
germline MLH1 methylation status was studied and DNA
sequencing for germline GADD45A mutations was per-
formed. In order to analyze whether the younger patients
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exhibit an intrinsic higher methylation tendency in their
genome, the methylation status of eight CIMP markers
was determined in the tumors. In a selected subset of
young patients, whole genome SNP array analysis was
performed on formalin-fixed, paraffin-embedded (FFPE)
tumor tissue and compared with previously published
data to search for recurrent chromosomal aberrations
involved in MLH1 methylation.

Methods
Patient material
Tumor tissues were obtained from 46 sporadic right sided
colon cancer patients analyzed between 1997 and 2006 at
the Leiden University Medical Center (Leiden, The Neth-
erlands). MSI analysis, additional MMR immunohis-
tochemistry (IHC) and MMR germline mutation analysis
were performed due to a relatively young age of onset
and/or a suspected family history of Lynch syndrome. As
we mainly focused on comparing relatively young
patients with patients of older ages, our sample set was
enriched for young patients with MLH1 methylation. Our
sample set contained a high percentage of MLH1 methy-
lated colon cancer patients with an age of onset below 50
years (28%, 13 cases) which is not a reflection the general
age distribution of this of type colon cancer. The present
study falls under approval by the Medical Ethical Com-
mittee of the LUMC (protocol P01-019). Informed con-
sent was obtained according to protocols approved by the
LUMC Medical Ethical Committee (02-2004). Patient
samples were handled according to the medical ethics
guidelines described in the Code Proper Secondary Use
of Human Tissue established by the Dutch Federation of
Medical Sciences http://www.federa.org.

DNA isolation and MSI analysis
DNA was isolated from 0.6 mm FFPE punches after
assessment of corresponding hematoxylin-eosin stained
slides by a pathologist (HM). Standard deparaffination
preceded DNA isolation using the Wizard Genomic DNA
Purification kit (Promega, Madison, WI, US). The micro-
satellite instability status of each of the tumors was deter-
mined using the Promega MSI analysis system (Version
1.2, Promega, Madison, WI, US) following the recom-
mendations of the National Cancer Institute/ICG-
HNPCC [34-36]. Tumors with at least two out of five
mononucleotide markers unstable were classified as MSI-
H.

IHC of MMR proteins
Standard three-step, indirect IHC was performed on 4-
μm tissue sections that had been transferred to glass
slides, including citrate antigen retrieval, blockage of
endogenous peroxidase and endogenous avidin-binding
activity and di-aminobenzidine development. The follow-

ing antibodies were used: anti-MLH1 (clone G168-728;
BD Biosciences, San Jose, CA), anti-PMS2 (clone A16-4;
BD Biosciences), anti-MSH2 (clone GB-12; 1:100; Onco-
gene Research Products, San Diego, CA) and anti-MSH6
(clone 44; 1:400; BD Biosciences). The utilized secondary
antibodies were biotinylated rabbit anti-mouse IgG anti-
bodies (DAKO, Glostrup, Denmark), goat anti-rabbit IgG
antibodies (DAKO, Glostrup, Denmark) and biotiny-
lated-peroxidase streptavidin complex (SABC; DAKO,
Glostrup, Denmark). Loss of expression was assessed by a
complete lack of staining in the tumor cell nuclei with
concurrent staining in normal epithelium, stroma or infil-
trating leukocytes.

Mutation analysis
BRAF V600E mutations were detected using flanking
primers that have been previously described [37]. DNA
sequence analysis of codons 12 and 13 of KRAS was per-
formed as previously described [38]. For direct sequenc-
ing of GADD45A, six exon primer pairs were designed
(encompassing 100 bp of intronic sequence) using the
Primer3 web-tool for the amplification of the four exons
of GADD45A [39]. The utilized primers are listed in
Additional file 1. Primers utilized for sequence analysis of
the MLH1 -93G>A polymorphism were designed to
amplify the region spanning from -231 bp to -51 bp from
the MLH1 transcription start site [39]. PCR products
were purified with the QIAquick PCR Purification kit
(Qiagen, Hilden, Germany). Sequencing was performed
at the Leiden Genome Technology Center (LGTC,
Leiden, The Netherlands) using an ABI 3730 XL (Applied
Biosystems, Foster City, CA). Mutational analysis was
performed using mutational surveyor (SoftGenetics
LLC., State College, PA). Results of all mutational analy-
ses are summarized in Table 1 (extended in Additional
file 2).

Methylation analysis
Methylation of the 5' regulatory MLH1 region at -200 bp
(from the transcription start site) was analyzed by using
Methylation-Specific PCR (MSP) primers that have been
previously described [40]. Sample DNA (100 ng) was
mixed with carrier DNA (salmon sperm DNA, 400 ng)
followed by bisulfite conversion using the EZ DNA Meth-
ylation Gold kit (Zymo Research, Orange, US) and the
standard protocol provided by the manufacturer. Ampli-
fied fragments were analyzed by electrophoresis through
a 2% agarose gel and on an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA). The utilized
primers are listed in Additional file 1.

Contamination of the carcinoma tissue by stromal or
inflammatory cells was unavoidable in some cases,
despite use of micro-dissection, and tumors with a par-
tially methylated phenotype were scored as methylated.

http://www.federa.org
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Methylation of MINT1, MINT2, MINT12, MINT31,
RIZ1 and TIMP3 was determined by MSP [14]. Primers
and conditions are listed in Additional file 1. MINT27
and Megalin methylation was determined by Combined
Bisulfite Restriction Analysis (COBRA) [41]. Tumors
were determined to be CIMP-high when four or more
markers besides MLH1 showed methylation, and tumors
were determined to be CIMP-low when containing three
or fewer methylated markers besides MLH1. For valida-
tion of our CIMP marker set, methylation of IGF2,
SOCS1, NEUROG1, RUNX3, CACNA1G was determined
by MSP in the cases with an age of onset less than 50
years [42,43].

SNP array analysis, copy number changes and loss of 
heterozygosity (LOH) assessment
Single nucleotide polymorphism array analysis, copy
number change and loss of heterozygosity (LOH) assess-
ment were performed as previously described [30]. For
each sample, four SNP panels (linkage panel, LP), LP1-4,
were tested. All LP panels were combined for testing of
the entire genome. LP1 covers chromosomes 1 to 3 and
22, LP2 covers chromosomes 5 to 9, LP3 covers 10 to 15
and 21, and LP4 covers chromosomes 4, 16 to 20, X and
Y. Each panel was separately analyzed on a bead array.
Due to the limited availability of archival tumor tissue,
some of the LPs could not be analyzed. In two cases two
LPs and in one case one LP could not be analyzed. To
assess the fraction of the genome altered, the number of
chromosome cytobands that were altered was divided by
the total number of cytobands tested.

Statistical analysis
Differences in mutation and MSI frequencies between
groups were analyzed using Fisher's exact and Chi-Square
tests. A p-value below 0.05 was considered to indicate
statistical significance. Yates' correction was used when-
ever a value lower than 5 was used in the Chi-Square test.

Results
We characterized 13 MSI-H colon cancer cases with
MLH1 promoter methylation from patients with an age
of onset below 50 years and compared these data with
those obtained from 33 MSI-H cases of patients over 50
years of age. Based on the Bethesda guidelines, which rec-
ommend MSI testing for all colorectal cancers in patients
diagnosed before 50 years of age, we used the cutoff age
of 50 for our comparisons [36]. The mean age of the study
cohort was 61 years (SD is 31 years). The majority of
tumors originated from the proximal colon (n = 36, 78%
of total), while a low percentage (n = 5, 11%) of MSI-H
tumors originated distal from the splenic flexure. All
tumors showed loss of expression of nuclear MLH1 and
its heterodimer PMS2, confirming the deleterious effect
of MLH1 promoter methylation. Both MSH2 and MSH6
stained positive and pathogenic germline mutations in
any of the four mismatch repair genes were identified in
none of the patients.

Two patients identified with germline MLH1 epimutation
For seven MSI-H patients with an age of onset below 50
years and 13 patients aged above 50 years, normal colonic
epithelium and/or leukocyte DNA was available for ger-
mline methylation analysis of MLH1. Two female patients
were identified as having germline MLH1 promoter
methylation as both normal colonic epithelium and leu-
kocyte DNA tested positive. The first patient (ID60, Fig-
ure 1) presented with a right sided colon cancer at the age
of 33 and endometrial cancer at age 52. Her family history
showed a sister with endometrial cancer at the age of 37.
Apart from a maternal grandfather with colon cancer at
the age of 90 years and a maternal niece with duodenum
cancer at 39 years, no other tumors from within the
Lynch syndrome spectrum were seen. The second patient
with germline methylation (ID36) does not have a family
history with characteristics of Lynch syndrome. She was
diagnosed with colon cancer at age 60 (MSI-H with a

Table 1: Numeric overview: Occurrence of BRAF mutations, SNP rs1800734 in relation to age and MLH1 methylation status.

MLH1 methylation BRAF MLH1-93G>A

Type n M pM Mut G/G G/A A/A NA

Adenoma 2 2 0 1 0 1 1 0

Carcinoma 44 33 11 24 12 20 7 5

Age

Total <50 13 9 4 4 4 7 2 0

Total ≥ 50 33 26 7 21 8 14 6 5

BRAF mut 25 23 2 25 7 12 4 2
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BRAF V600E somatic mutation) and pancreatic cancer at
age 62 (scored as MSS).

BRAF mutation shows an age-dependent trend in MSI-H 
tumors
Somatic BRAF V600E mutations were found in 25 out of
the 44 tested tumors, whereas no KRAS codon 12/13
mutations were found (Table 1; extended information in
Additional file 2). The majority of the BRAF mutations
were identified in patients over 50 years of age (n = 21,
65.6% of patients over 50). Comparison with the patient
group under 50 years of age (n = 4, 31% of patients under
50) showed a significant difference between the two
groups (p-value: 0.044).

GADD45A somatic and germline DNA mutation analysis
GADD45A was successfully sequenced for 38 samples (17
normal epithelium samples and 21 tumor samples). Exon
1 was successfully studied for 37 samples and did not
reveal any alterations. We identified 5 cases with an SNP
(rs3783466, c.45-23C>T) present in the first intron. Exon
2 was studied for 38 samples and did not reveal any alter-
ations. Exon 3 was sequenced for 38 samples and revealed
a variant that was not previously described (in ID70).
This heterozygous C>T transition resulted in a neutral
amino acid change from proline to serine (p. Pro119Ser)
and was predicted by the Sorting Intolerant From Toler-
ant (SIFT) prediction software to be a tolerated mutation
[44]. Exon 4 was studied for 37 samples and did not reveal
any alterations.

No association between age, BRAF and GADD45A
mutation status or the MLH1 -93G>A polymorphism was
observed. An overview of the GADD45A mutation data is
given in extended information in Additional file 2.

MLH1 -93G>A polymorphism analysis
We screened 41 out of 46 (13 below 50, 28 above) samples
successfully for the MLH1 -93G>A polymorphism
(rs1800734), by sequence analysis. The G/G genotype
was found in 12 samples (29.3%), G/A in 21 (51.2%) and
the A/A genotype in 8 (19.5%). No significant differences
between tumors grouped by age (with either 50 or 60
years as a cutoff for early onset colon cancer), BRAF or
GADD45A mutational status were observed in our
patients. An association between the G>A polymorphism
and ages of onset above 50 years (p = 3.5 × 10-5) was
found in comparison with published control samples
(Table 2) [24]. This association was lost (p = 0.19) when
comparing younger patients with corresponding pub-
lished control samples (Table 2) [24]. However, grouping
of the A/A and G/A genotypes provided lower p-values
when comparing both age groups to controls. A similar
distribution of the A allele was found in the young age
group as for the patients above 50 years. In this compari-
son the association between the A allele and the group
with an age of onset below 50 years was significant (p =
0.035), although the significance was lost after the
required Yates' correction (p = 0.068, Table 2). A numeric
overview of the MLH1 -93G>A polymorphism sequence
data is given in Table 1 (extended information in Addi-
tional file 2 and Table 2).

CpG island DNA methylation is more frequent in older 
patients and is highly correlated with BRAF mutation in 
younger colon carcinoma patients
We examined the methylation status of 31 samples (11
below 50 years, 20 above) using six CIMP markers
(MINT1, MINT2, MINT12, MINT31, RIZ1 and TIMP3)
with MSP and two CIMP markers (MINT27 and Mega-
lin) with COBRA. Results of the analysis are presented in
Additional file 3: Table S1. Although all samples in this
sub-selection of our MSI-H study group contain MLH1
methylation, a clear age-related trend of methylation was
observed. Out of the 11 tested patients that were below
50 years of age and had MLH1 methylated colon cancer,
only four were shown to be CIMP-high. Remarkably, all
of these young CIMP-high cancers showed BRAF muta-
tions, whereas such mutations were not detected in sam-
ples with less extensive methylation. A higher frequency
of CIMP-high (20/20 vs. 4/11, p = 3.1 × 10-4 (Yates' cor-
rected)) was observed for colon cancer patients above the
age of 50, concomitant with the higher number of BRAF
mutations found in these patients.

The methylation status of our early onset cases were
validated by use of 5 additional CIMP markers (IGF2,
SOCS1, NEUROG1, RUNX3, CACNA1G). All validated
samples showed similar levels of methylation in both
marker sets (Additional file 3: Table S1). Although sample
ID1 showed methylation of 3/5 additional markers, the

Figure 1 Lab-on-chip results of a MLH1 MSP performed on nor-
mal tissue and peripheral blood from patient ID60. Lane one con-
tains the lab-on-chip DNA marker. Partial methylation of both normal 
colon mucosa (ID60N) and peripheral blood (ID60P) was observed as 
they show products produced by the primer pairs amplifying unmeth-
ylated (UM) and methylated (M) template DNA. Negative (Neg) and 
Positive (Pos) controls represent unmethylated (Neg) and methylated 
(Pos) controls, respectively. The first lane is a visualization of the Agilent 
DNA 1000 Marker 15/1500 in base pairs (bp)



van Roon et al. BMC Cancer 2010, 10:180
http://www.biomedcentral.com/1471-2407/10/180

Page 6 of 10
cumulative amount of markers still led us to determine
this sample as CIMP-low.

Genomic profiling of MSI-H colon carcinomas
For a sub-selection of 15 MSI-H carcinomas (5 below and
10 above 50 years of age) for which sufficient DNA was
available, genome-wide profiles of copy number abnor-
malities and copy neutral LOHs (cnLOHs) were obtained
using SNP arrays suitable for analysis of archival FFPE tis-
sue (Additional file 4: Table S2). Chromosomal copy
number changes were observed in 7/15 samples. Physical
chromosomal loss was a rare event (on average of 0.2% of
the genome) and was only found in 3/15 carcinomas, in

which small telomeric regions on chromosomes 1q, 4q,
8p and 18q were deleted. An overview of the events in all
tested samples is given in Figure 2. Four chromosomal
regions showed cnLOH in more than one tumor: chr
2q23.1-37.3 (n = 2, ID50 and ID59), 3p21.31-26.3 (n = 2;
ID18 and ID39, containing MLH1), 9p21.2-24.3 (n = 2;
ID3 and ID36) and 11p15.1-15.5 (n = 2; ID20 and ID59).

Discussion
Since CpG island hypermethylation (including MLH1) in
colon mucosa is considered to be age-related [9], the find-
ing of hypermethylation of MLH1 at a younger age is
unexpected. Since 2002, several manuscripts pointed to

Table 2: Genotype frequencies of MLH1 -93G>A polymorphism in sporadic MSI-H colon cancer with an age of onset below 
and above 50 years.

Genotype frequency (%)

n GG GA AA Chi-square DF P-value

Age at 
diagnosis <50

13 4(31) 7(54) 2(15)

Controls 1 929 554(59.5) 331(35.5) 44(5) 6.0 2 0.19427123*

Controls 2<60 501 287(57) 175(35) 39(8) 3.8 2 0.34061584*

Age of 
diagnosis ≥ 50

28 8(29) 14(50) 6(21)

Controls 1 929 554(59.5) 331(35.5) 44(5) 20.5 2 0.00003502

Controls 2>60 1462 883(60) 513(35) 66(5) 22.6 2 0.00001209

GG GA+AA Chi-square DF P-value

Age at 
diagnosis <50

13 4(31) 9(69)

Controls 1 929 554(60) 375(40) 4.4 1 0.06890141*

Controls 2<60 501 287(57) 214(43) 3.6 1 0.10499389*

Age at 
diagnosis ≥ 50

28 8(29) 20(71)

Controls 1 929 554(60) 375(40) 10.8 1 0.00100409

Controls 2 >60 1462 883(60) 579(40) 11.6 1 0.00066844

n: Total number
Chi-square: Value of the chi-square test
DF: Degrees of freedom
Control samples are adapted from literature. Percentages are given in brackets. (Raptis et al., for controls 1 and Samowitz et al. for controls 2 
[22,24]). P-values with a * are Yates corrected.
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the existence of MLH1germline methylation [15-21].
More recently, MSH2 methylation due to an inherited
deletion in the 3'end of EPCAM/TACSTD1 was also dis-
covered [4]. Methylation of MLH1 can also be found in
addition to a germline MMR mutation, as described by
Rahner et al. [45]. We studied 13 MMR germline muta-
tion-negative patients with MSI-H colon cancer (mostly
right-sided) at ages of onset under 50 years. These data
were compared with those obtained from a control group
of 33 patients with an age of onset above 50. The presence
of (somatic) promoter methylation of MLH1 in the
tumors made Lynch syndrome unlikely. We identified
two female patients with ages of onset of 33 and 60 years
harboring germline MLH1 methylation. Relatively young
patients without a strong family history who present a
MSI-H tumor with loss of MLH1 and PMS2 protein
expression are suggested as candidates for MLH1 ger-
mline epimutation screening [17,21]. We identified one
patient with germline MLH1 methylation in seven tested
cases who were less than 50 years of age, giving a fre-
quency of ~14%. Although the low number of tested sam-
ples in this study makes this percentage not
representative, this number is not significantly higher
than the frequency range of 0.6-13% described in studies
screening for germline MLH1 methylation in Lynch syn-
drome-suspected patients [5]. The discovery of germline

MLH1 methylation in a patient aged 60 years at diagnosis
is surprising, as the patients with germline MLH1 methy-
lation described prior to this study (n = 25) have a mean
age of diagnosis of 37 years with a range of 17-46 [5].

In contrast to the group with an age of onset above 50
years, only some (4/11) of the MLH1 methylated MSI-H
tumors from patients below 50 years showed high levels
of CIMP marker methylation (CIMP-high). For the
patient group with an age of onset below 50 years the
CIMP-high status completely overlapped with BRAF
mutations. As both BRAF and KRAS mutations have
been observed in the earliest identified colonic neo-
plasms, and recent papers have provided evidence that
induction of the ras oncogenic pathway will result in
DNA hypermethylation, a causative effect of BRAF/KRAS
mutations is likely [24,46-50]. Instead of widespread CpG
island methylation in non-BRAF mutated tumors in the
early onset patient group, methylation seems to be largely
restricted to the MLH1 locus. Although the existence of
locus-restricted methylation may be a reflection of the
Gaussian curve of methylation patterns in relation to age,
this finding may suggest a distinct, non-BRAF associated
mechanism of MLH1 methylation. However, all tumors
here were selected upon MLH1 promoter methylation
which may explain the fact that MLH1 is methylated
more frequent than all other CIMP genes. As the methy-

Figure 2 Chromosomal events per chromosome arm in 15 sporadic MSI-H carcinomas. Bars indicate the percentage of the tested sporadic MSI-
H carcinomas containing a chromosomal aberration or copy neutral LOH per chromosomal arm.
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lation mechanism is (at least partly) age related, and pro-
gressive, a similar selection of tumors methylated on one
of the other CIMP markers would have also shown more
frequent methylation on these than other CIMP markers
including MLH1 and occurring in tumors not reaching
the CIMP-high classification yet. A progressive methyla-
tion and CIMP appearance according to age similar as
that shown in Additional file 3: Table S2 favors the argu-
ment that MLH1 methylation in these young patients is a
reflection of the Gaussian curve of methylation patterns
in relation to age.

An alternative hypothesis concerning the association
between BRAF mutation and DNA methylation is that
promoter methylation and silencing of specific target
genes such as IGFBP7 by promoter methylation could
favor the selection of activating BRAF mutations, since
the oncogenic effect of activated BRAF would be
enhanced in the absence of IGFBP7's inhibitory function
[51]. Since promoter hypermethylation is partly age
related the occurrence of IGFBP7 hypermethylation and
BRAF mutation would also explain the diminished occur-
rence in the young sporadic MSI-H patient group [50].
This role of BRAF in aberrant methylation initiation will
have to be elucidated in the future. The locus-specific,
non-BRAF associated mechanism of MLH1 methylation
suggested in our study should be addressed in a larger
group of early onset sporadic colon cancer patients with
MLH1 methylation to provide additional insights.

In patients of older ages, there is an association
between somatic MLH1 methylation and the MLH1 -
93G>A polymorphism [22,24,49]. Indeed, when we com-
pared our group of patients above 50 years of age with the
published control groups of Raptis et al., and Samowitz et
al., we observed an enrichment of the A allele. We
explored the possibility that the A allele was more preva-
lent in the sporadic MSI-H at early ages. However a simi-
lar distribution in both age groups was found, no
significant enrichment could be found for the cases under
50 years. The hypothesis of Samowitz et al., which sug-
gests an increased likeliness of MLH1 methylation in the
presence of a CIMP/BRAF mutation background and a
MLH1 -93 G>A polymorphism, excludes young onset
patients because of low levels of BRAF mutations [24].
Although Samowitz did find a significant difference in A
allele distribution between MSI-H colon cancer age
groups, our cohort of sporadic MSI-H colon cancer
patients with MLH1 methylation excluded patients with a
germline MMR gene mutation, which might explain the
difference found between our studies.

Knockdown and overexpression experiments of
GADD45A in Xenopus laevis led to the suggestion that
deregulation of GADD45A's role in active DNA demethy-
lation could give rise to aberrant methylation [25]. The

absence of pathogenic somatic and germline mutations in
human GADD45A observed in our study and data pub-
lished during this study [26,27] suggest that a role for
GADD45A mutations in aberrant hypermethylation in
human colon tumors is unlikely.

In a subset of tumors (including five with an age of
onset under 50 years), whole genome SNP array analysis
of FFPE tumor tissue was used to assess possible caus-
ative loci for MLH1 methylation. Our copy number and
cnLOH analysis identified patterns in agreement with lit-
erature describing limited chromosomal instability in
sporadic MSI-H colon tumors with MLH1 methylation.
The extent of copy number abnormalities (CNA) identi-
fied here is in agreement with that found by Trautman et
al. and by van Puijenbroek et al. [30,33]. In patients under
50 years, no specific genomic pattern was identified,
although two cases showed overlapping alterations at
chromosome 4q. The smallest region of overlap (region
4q35.1-4q35.2) encompasses the cancer associated genes
TLR3, CDKN2AIP, ING2, CASP3 and SORBS2, none of
which are thought to cause aberrant DNA methylation.
The four regions of cnLOH that showed infrequent over-
lap in the 15 tumors tested are not known as such. The
cnLOH of 3p21.31-26.3, found in a 44 and a 62 year old,
encompasses the 3p22.2 region where MLH1 is located.
Such cnLOH is not typical for sporadic MSI-H colon car-
cinomas, but is more readily found in tumors containing
pathogenic MLH1 mutations [30]. We can not rule out
that the identified cnLOH regions may harbor loci
involved in MLH1 methylation. However, the odds are
against such a suggestion.

Conclusion
Although our study did not identify a cause for MLH1
methylation in sporadic MSI-H colon cancer with an age
of onset below 50 years, we observed methylation to be
almost restricted to the MLH1 locus in patients without a
BRAF mutation. We show that this early onset group con-
sists of two sub-groups: those which are CIMP-high and
contain a BRAF mutation (resembling sporadic MSI-H in
the older age group to a great extend) and those with
wild-type BRAF and limited methylation in addition to
MLH1 methylation.

Genomic analysis did not provide recurrent aberrations
leading to identification of a possible cause of MLH1
methylation in the cases under 50 years. Lastly, we
excluded a role for somatic and germline GADD45A
mutations in the tumorigenesis of early onset sporadic
MSI-H colon cancer.

Additional material

Additional file 1 Primer table. All primers used in the current study listed.

http://www.biomedcentral.com/content/supplementary/1471-2407-10-180-S1.PDF
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