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There is general agreement that the central nervous system in rodents differs between

sexes due to the presence of gonadal steroid hormone during differentiation. Sex

differences in feeding seem to occur among species, and responses to fasting (i.e.,

starvation), gonadal steroids (i.e., testosterone and estradiol), and diet (i.e., western-style

diet) vary significantly between sexes. The hypothalamus is the center for controlling

feeding behavior. We examined the activation of feeding-related peptides in neurons

in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein

(CREB) is a good marker for neural activation, as is the Fos antigen. Therefore, we

predicted that sex differences in the activity of melanin-concentrating hormone (MCH)

neurons would be associated with feeding behavior. We determined the response of

MCH neurons to glucose in the lateral hypothalamic area (LHA) and our results suggested

MCH neurons play an important role in sex differences in feeding behavior. In addition,

fasting increased the number of orexin neurons harboring phosphorylated CREB in

female rats (regardless of the estrous day), but not male rats. Glucose injection decreased

the number of these neurons with phosphorylated CREB in fasted female rats. Finally,

under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed

phosphorylated CREB. These sex differences in response to fasting and glucose, as

well as under normal conditions, suggest a vulnerability to metabolic challenges in

females.

Keywords: sex differences and hormone effects, feeding behavior, rats, CREB, melanin-concentrating hormone,

orexin, hypothalamus

Introduction

There is general agreement that the central nervous system in rodents differs between sexes due to
the presence of gonadal steroid hormone during differentiation (Phoenix et al., 1959; Gorski and
Barraclough, 1963). The organizing action of prenatally administered testosterone is evident on tis-
sues that mediate mating behavior in female rodents (Arnold and Gorski, 1984). However, sexual
differentiation of the brain is more complicated (McCarthy, 2008; Schwarz and McCarthy, 2008a;
Nugent and McCarthy, 2011; Wu and Shah, 2011; Lenz et al., 2013) than once thought, even in
rodents.
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Sexual Differentiation of the
Hypothalamus: Rodents and Primates

For example, one apparent sexual difference of the hypothalamus
is the mechanism for controlling gonadotropin secretion. Dif-
ferentiation is certainly present in rodents (Butcher et al., 1974;
Kalra and Kalra, 1983); however, in primates, the sexual differen-
tiation of the pituitary function related to gonadotropin secretion
is different from that in rodents (Karsch et al., 1973). Luteiniz-
ing hormone induction due to positive feedback from estrogen is
evident in female, but not male, rodents (Kalra, 1993); although,
in primates, both sexes secrete luteinizing hormone in response
to estrogen (Karsch et al., 1973; Hodges, 1980). Estrogen posi-
tive feedback is capable of inducing luteinizing hormone secre-
tion even in castrated human males, suggesting that exposure of
the human brain to androgen during the early perinatal period
does not completely induce a sexually dimorphic mechanism for
controlling gonadotropin secretion (Barbarino and De Marinis,
1980). Alternatively, the apparent difference in sexual differenti-
ation between primates and rodents may be due to differences
between the hypothalamus- and pituitary-mediated control of
gonadotropin secretion, since Fos is not expressed in response
to gonadotropin-releasing hormone in monkeys (Witkin et al.,
1994) but its expression is essential in rodents (Hoffman et al.,
1990; Lee et al., 1990b,a).

Sex Differences in Feeding Behavior

On the other hand, there seems to be general sex differences in
feeding among species. The hypothalamus is the center for con-
trolling feeding behavior (Hervey, 1959; Bernardis and Bellinger,
1996). According to glucostatic theory, one of the factors control-
ling feeding is glucose (Mayer et al., 1952). As shown in Figure 1,
glucose affects the control of feeding via a mechanism in the
hypothalamus, which includes the ventromedial hypothalamus
and the lateral hypothalamic area (LHA) (Oomura et al., 1964,
1974). Once it was determined that fat tissues secrete feeding
inhibitory hormone in the response to energy consumption, the
mechanism for feeding control drastically changed (Friedman,
2004). The hormone leptin is secreted from fat tissue and strongly
inhibits feeding by controlling the neurons in the arcuate nucleus
of the hypothalamus through its receptors (Friedman, 2009).
Although the feeding control mechanism remains an important
function of the hypothalamus (Anand and Brobeck, 1951; Her-
vey, 1959; Bernardis and Bellinger, 1996; King, 2005; Dietrich and
Horvath, 2011), a recent hypothesis is that the first step involves
the arcuate nucleus of the hypothalamus, which then controls the
LHA and the periventricular nucleus (Koch and Horvath, 2014;
Sousa-Ferreira et al., 2014).

There is a significant sex difference in taste preference (Valen-
stein et al., 1967). The effect of hypothalamic lesions on feeding
also differs according to sex (Valenstein et al., 1969), suggesting
there is a potential sex-specific feeding pattern in rats (Laviano
et al., 1996). Metabolic states profoundly affect reproduction
(Wade et al., 1996), and the responses to factors that alter feed-
ing behavior, such as a high-fat diet (Uhley et al., 1997), fast-
ing (Varma et al., 2001; Gayle et al., 2006), and leptin activity

FIGURE 1 | Schematic of the control of feeding by glucose in the

hypothalamus.

(Loh et al., 2011), are sex related. These sex-based differences
in feeding behavior are probably the result of androgens present
during sexual differentiation (Madrid et al., 1993; Schwarz and
McCarthy, 2008b).

Importantly, these sex differences are also found in humans.
In anorexia nervosa, there is a significant difference in morbid-
ity between sexes (Geary, 2001; Schneider, 2006). The human
hypothalamus is sexually differentiated (Swaab et al., 2001;
Chung et al., 2002), as is food-related behavior in humans
(Schneider, 2006; Zandian et al., 2011). Many behaviors in pri-
mates differ between sexes (Wilson and Davies, 2007; Hines,
2010) and may be related to the hormonal environment during
sexual differentiation (Berenbaum and Beltz, 2011).

Sex Differences in Feeding in Rodents

The sex differences in the feeding behavior in rodents, including
meal frequency and meal duration, were first determined using
an automated feeding pattern analyzer (Meguid et al., 1990; Hyun
et al., 1997). We confirmed that meal duration, but not meal
frequency was significantly shorter in females than in males, as
shown in Figure 2 (Funabashi et al., 2009) thus, there is a signif-
icant sex difference in feeding behavior. Male rodents are larger
than females, in part due to the effects of testosterone (Petersen,
1978; Czaja, 1984; Asarian and Geary, 2006), as illustrated in
Figure 3. On the other hand, estrogen reduces feeding (Eckel,
2004; Acosta-Martinez et al., 2007), probably via the ventrome-
dial hypothalamus (Musatov et al., 2007; Butera, 2010; Xu et al.,
2011) These effects of steroid hormones were demonstrated by
gonadectomies (Kakolewski et al., 1968; Czaja, 1984). The body
weight and food consumption in intact female rats were reduced
when the effects of estrogen and progesterone were large (Tart-
telin and Gorski, 1971). That is, at the time of ovulation when
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estrogen is high (Butcher et al., 1974), food intake was small and,
as a result, body weight decreased in rats (Shimizu and Bray,
1993), bovine (Imakawa et al., 1986), and bamboo (Bielert and
Busse, 1983) and rhesus monkeys (Kemnitz et al., 1989). These
results illustrated that estrogen acts as a reducing factor of eat-
ing; therefore, estrogen is a target for reducing feeding behavior
(Butera, 2010; Xu et al., 2011). Interestingly, malemice weremore
susceptible to high-fat induced obesity, known as experimentally
induced obesity by diet (see review by Lai et al., 2014) than female
mice (Nishikawa et al., 2007; Zammaretti et al., 2007; Hwang
et al., 2010), and this was also the case with rats (Acosta-Martinez
et al., 2007).

On the other hand, the effects of food deprivation in males
and females are complicated. In general, adaption to food
deprivation is important to survival in animals. Thus, rodents
exhibit adaptive biochemical and physiological responses to

FIGURE 2 | Sex difference in feeding behavior, determined with an

automated feeding pattern analyzer. Meal duration, but not frequency, was

significantly shorter in females than in males. *P < 0.05.

food deprivation. For instance, rodents reduce metabolism when
deprived of food (see review by Wang et al., 2006). Of course,
the amount of food consumed after fasting, the rebound eating,
is increased soon after. Although the total amount of food con-
sumption remained higher than that seen in nonfasted rats, the
rate of consumption declined for the next 9 h (Ji and Friedman,
1999). This means that, during starvation, energy expenditure is
decreased and energy efficiency increased when refeeding occurs
soon after fasting has stopped (Robin et al., 2008). Alternatively,
rebound eating after caloric restriction is different among species
(Evans et al., 2005).

Interesting evidence is that sex-specific fasting effects. Fasting
for 12 h increased the total daily food consumption during the
refeeding period in both male and female rats, but female rats
show a greater increase in the first 24 h food intake than males. In
addition, fasting induced a greater increase in plasma ghrelin lev-
els in female rats compared with male rats (Gayle et al., 2006).
Further, there were sex differences in the response to dietary
disruption (Martin et al., 2007). We found that rebound eating
after fasting was more prompt in female rats than in male rats
(Funabashi et al., 2009).

Phosphorylation of CREB in the
Hypothalamus

We sought to determine whether feeding-related peptides in
neurons in the hypothalamus were activated. The Fos antigen
(Sheng et al., 1990) and phosphorylation of cyclic AMP response
element-binding protein (CREB) (Mayr and Montminy, 2001;
Lonze and Ginty, 2002; Carlezon et al., 2005) are good markers
for neural activation. Increasing cyclic AMP induced robust feed-
ing (Gillard et al., 1998), suggesting that upregulation of a cyclic
AMP-mediated cascade induces feeding. Indeed, neuropeptide
Y acts as an orexinergic peptide, increasing CREB activity in
the rat hypothalamus (Sheriff et al., 1997; Gillard et al., 1998)

FIGURE 3 | Effects of gonadectomy and gonadal steroid hormones

on feeding. Males (♂) eat more than females (♀), but gonadectomy (\) had

the opposite effect: castration of males resulted in weight loss because of

decreased eating, while castration of females increased body weight due to

hyperphagia. These changes were restored by testosterone (T) and estrogen

(E) replacement, respectively.
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and downregulation of CREB induction attenuates leptin inhi-
bition in neurons expressing neuropeptide Y (Shimizu-Albergine
et al., 2001). Thus, CREB phosphorylation is a reliable marker for
neuronal activity related to feeding behavior (Gayle et al., 2006;
Martin et al., 2007; Funabashi et al., 2009).We attempted to atten-
uate CREB activity in the hypothalamus and evaluated the sex
difference.

Melanin-Concentrating Hormone and
CREB Phosphorylation in the LHA

Melanin-concentrating hormone (MCH) neurons in the LHA
(Bittencourt et al., 1992) are involved in feeding behavior (Qu
et al., 1996; De Lecea et al., 1998). Mice lacking MCH neu-
rons are hypophagic (Shimada et al., 1998), and MCH recep-
tor antagonists decrease feeding (Kowalski et al., 2004). There-
fore, we predicted that sex differences in the activity of MCH
neurons would be associated with feeding behavior. We deter-
mined the response to glucose of MCH neurons in the LHA
using phosphorylated CREB as a marker of neural activity (Mogi
et al., 2005). Intact male rats and female rats at various days
of the estrous cycle were fasted for 48 h and injected with glu-
cose. Thereafter, the rats’ brains were analyzed by immunohisto-
chemistry for MCH and phosphorylated CREB. Fasting for 48 h
increased the percentage of MCH neurons in the LHA harbor-
ing phosphorylated CREB in both sexes, but glucose injection
decreased the ratio of these double-stained cells more promptly
in females than in males. Gonadectomy enhanced and attenuated
the response of MCH neurons in males and females, respectively.
Furthermore, steroid-hormone replacement in both males and
females restored the response of MCH neurons to glucose. These
results suggested that MCH neurons play an important role in

sex differences in feeding behavior. It was later demonstrated
that MCH stimulates feeding behavior and its receptor antago-
nist attenuates it in relation to palatability (Morens et al., 2005).
Thus, MCHmay be an important regulator of the intake of palat-
able foods such as sweet sugar water (Sakamaki et al., 2005; Baird
et al., 2008; Fukushima et al., 2014), and MCH neurons are likely
more active in females than in males. Estradiol may attenuate
the feeding-stimulated effects of MCH in females (Messina et al.,
2006), which vary during the estrous cycle (Santollo and Eckel,
2008).

Orexin and CREB Phosphorylation in the
LHA

Since orexin neurons are also involved in feeding (Broberger
et al., 1998; Sakurai et al., 1998; Bayer et al., 2005; Burdakov
et al., 2005), we looked for a possible sex difference in the
response of orexin neurons in the LHA to fasting (Funabashi
et al., 2009). The experimental procedures were similar to those
indicated above. Fasting increased the number of orexin neu-
rons harboring phosphorylated CREB in female rats (regardless
of the estrous day), but not in male rats; thus, there was a signif-
icant sex difference. Importantly, the action of orexin in feeding
behavior is distinct from MCH. Glucose injection in fasted rats
decreased the number of orexin neurons expressing phosphory-
lated CREB in female rats. These sex differences in the response
of orexin neurons to fasting suggest a higher sensitivity of female
hypothalamus to metablic cues. We also performed experiments
under normal spontaneous food intake and found theMCH neu-
rons, but not orexin neurons, expressed phosphorylated CREB.
Again, attenuation seemed to occur faster in females than in
males.

FIGURE 4 | Schematic of sex differences in MCH and orexin neuronal activity related to feeding control in the hypothalamus.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2015 | Volume 9 | Article 88

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Fukushima et al. Sex differences in feeding behavior

Conclusions and Future Directions

We hypothesized that MCH neurons respond to nutrition-
related feeding, but the feeding-related activity of orexin neurons
is not evident unless hunger is accompanied by a bad emotion,
such as that caused by fasting (Figure 4). Thus, the desire to eat
under normal conditions does not drive orexin neurons, but it
does drive MCH neurons. In line with this hypothesis, orexin
inhibited pulsatile luteinizing hormone secretion under emo-
tional conditions, but this effect was absent if food was available
(Furuta et al., 2010). Future studies should determine what kind

of emotion is associated with fasting and the neural basis for this
mechanism.
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