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ABSTRACT

Objectives: We aimed to gain a better understanding of how standardization of laboratory data can impact pre-

dictive model performance in multi-site datasets. We hypothesized that standardizing local laboratory codes to

logical observation identifiers names and codes (LOINC) would produce predictive models that significantly

outperform those learned utilizing local laboratory codes.

Materials and Methods: We predicted 30-day hospital readmission for a set of heart failure-specific visits to 13

hospitals from 2008 to 2012. Laboratory test results were extracted and then manually cleaned and mapped to

LOINC. We extracted features to summarize laboratory data for each patient and used a training dataset (2008–

2011) to learn models using a variety of feature selection techniques and classifiers. We evaluated our hypothe-

sis by comparing model performance on an independent test dataset (2012).

Results: Models that utilized LOINC performed significantly better than models that utilized local laboratory test

codes, regardless of the feature selection technique and classifier approach used.

Discussion and Conclusion: We quantitatively demonstrated the positive impact of standardizing multi-site lab-

oratory data to LOINC prior to use in predictive models. We used our findings to argue for the need for detailed

reporting of data standardization procedures in predictive modeling, especially in studies leveraging multi-site

datasets extracted from electronic health records.

Key words: hospital readmission, heart failure, logical observation identifiers names and codes, predictive modeling, medical

informatics/standards

INTRODUCTION

The growing repository of available healthcare data has motivated

the healthcare community to improve medical decision-making by

integrating knowledge learned from data-driven analyses.1,2 Often,

these analyses are geared toward enhancing clinical decision support

(CDS) systems with models that predict events of clinical relevance,

such as disease risk or progression.2 Laboratory data are particularly

valuable information in predictive modeling as they can provide in-

VC The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 197

JAMIA Open, 2(1), 2019, 197–204

doi: 10.1093/jamiaopen/ooy063

Advance Access Publication Date: 4 February 2019

Research and Applications

https://academic.oup.com/
https://academic.oup.com/


sight about a patient’s current and potential future clinical state. Un-

fortunately, the secondary use of laboratory data poses challenges

due to the lack of enforced standardization.3 Currently, the only

available standard for lab tests is the logical observation identifiers

names and codes (LOINC), which provides a universal set of struc-

tured codes to identify laboratory and clinical observations.4,5 We

have noticed in the literature, however, that most predictive model-

ing studies utilizing clinical laboratory data provide little to no in-

formation on the standardization processes used.

As an illustrative example of the lack of reporting in the litera-

ture, we considered readmission risk prediction models, which have

grown increasingly popular since the introduction of financial penal-

ties for excess readmissions by the Centers for Medicare and Medic-

aid Services (CMS).6 A number of studies on predicting readmission

risk have utilized laboratory data7–24; however, most multi-site

readmission prediction models using laboratory information provide

limited details on the data standardization procedures used across

sites.8,9,11–13,15,16,23,24 In particular, we found only 1 study that in-

cluded any traceable record of standardizing to LOINC.12 Failing to

report standardization procedures makes it challenging to accurately

reproduce these multi-site predictive models and presents potential

methodological issues in the modeling approach. For example, if a

multi-site study failed to standardize laboratory test names across

sites, it would result in incorrectly treating clinically comparable

laboratory tests from different sites as unique tests in the model.

This could result in poor overall model performance in addition to

potentially mitigating the predictive power of laboratory data. This

risk is especially high for data-driven modeling approaches, which

are gaining popularity in the healthcare domain.25 The potential im-

pact of standardizing laboratory data on prediction performance in

multi-site datasets, however, has been largely ignored and under

reported.

OBJECTIVES

In this study, we aimed to gain a better understanding of how the

standardization of laboratory data can impact predictive model

performance. We specifically focused on understanding how stan-

dardizing local laboratory test codes to LOINC impacts predictive

model performance in multi-site datasets. We hypothesized that

standardizing local laboratory codes to LOINC would produce pre-

dictive models that significantly outperform those learned utilizing

local laboratory codes. To test our hypothesis, we performed a case

study using 30-day readmission risk predictive models for adult

heart failure patients, as this population is currently subject to finan-

cial penalties by the CMS.6 Findings from our study were used to

construct an argument for the importance of reporting data stan-

dardization procedures in multi-site predictive modeling studies.

The main contributions of this work included: (1) empirical evidence

to support the need for data standardization in predictive modeling

using multi-site datasets and (2) suggested recommendations for

reporting laboratory data standardization.

METHODS

We extracted laboratory test results for adult heart failure patient

visits from a large, multi-hospital health system. We then cleaned

and standardized test results and mapped local laboratory test codes

to LOINC. We constructed a set of features, and then learned sev-

eral models to predict risk of 30-day hospital readmission using a

variety of feature selection and modeling techniques. We compared

the performance of models learned using local laboratory test codes

to the same models learned using LOINC. These processes are de-

scribed in detail in the following sub-sections. This study was

reviewed and approved by the institutional review board (IRB) at

the University of Pittsburgh (PRO18040108).

Dataset
We utilized an IRB certified honest broker to retrieve all electronic

health records (EHRs) for in-patient visits to 13 individual hospitals

within the University of Pittsburgh Medical Center (UPMC) Health

System from 2008 to 2012. Heart failure-specific visits were identi-

fied using primary discharge ICD-9 codes [428 family (428.XX),

402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91,

404.93]. Visits with in-hospital deaths and any visit without at least

1 valid laboratory test value available were excluded. If a patient

returned to any UPMC hospital within 30 days following discharge

from a visit, then the visit was classified as “Readmitted” (R); other-

wise the visit was classified as “Not Readmitted” (NR). All visit in-

formation was then deidentified by the honest broker and provided

to the research team for analysis. Laboratory test results from each

visit were manually cleaned and standardized, and then were flagged

as normal/abnormal (a detailed report of cleaning and standardiza-

tion procedures is available in the Supplementary Material). Only

data collected prior to discharge from the visit were used to predict

whether the visit would result in a 30-day readmission, that is, only

data from the initial visit were included in the prediction model.

Mapping to LOINC
As part of an ongoing effort to convert to LOINC, 1 UPMC hospital

had previously mapped 456 of the most commonly ordered local

laboratory test codes to LOINC. At the time of this study, this par-

tial mapping was the only available mapping to LOINC across all

13 hospitals. The mapping process was completed manually by 3

coders from the Laboratory Information System (LIS) division who

had more than 20 years of clinical laboratory experience and medi-

cal technologist certifications from the American Society for Clinical

Pathology. Two coders independently mapped local laboratory

codes to LOINC and discussed discrepancies. A third coder (T.G.)

oversaw the process and reviewed discrepancies if the two coders

could not come to an agreement. A supervisor of the UPMC core

laboratory vetted the resulting list of LOINC assignments as a final

technical review. Unfortunately, this list was not originally gener-

ated for research use, therefore the intercoder reliability was not

captured, initial false positive mappings were not racked, and no

formal validation of the mapping process was able to be performed.

UPMC hospitals’ local laboratory test codes consist of a descrip-

tive code for the test and a hospital ID tag indicating the source hos-

pital (e.g, code “K14” represents a serum potassium test for hospital

with ID 14). By removing the hospital ID tags, we were able to use

the list of 456 mapped codes from a single hospital to map local lab-

oratory codes to LOINC for all 13 hospitals. This process yielded 2

datasets for analysis: (1) a “non-standardized” dataset where tests

were identified via the local laboratory codes (ie, no mapping of lab-

oratory codes was performed) and (2) a “standardized” dataset

where tests were identified via LOINC. An example of the mapping

process is illustrated in Figure 1. As only a partial LOINC mapping

was available, we discarded any tests that could not be mapped to

LOINC from both the “non-standardized” and “standardized” data-

sets. This was done to ensure that we compared model performance
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across the same set of laboratory tests to get an unbiased estimate of

the effect of standardizing laboratory codes to LOINC.

Feature construction
Due to the asynchronous, time-series nature of laboratory data, we

defined a fixed set of features to summarize test results for each pa-

tient visit. The features are listed in Table 1. Many of these features

were part of a laboratory data feature set originally described by

Hauskrecht et al.,26 but we also derived some new features. In Ta-

ble 1, we have identified the Hauskrecht et al.26 features with super-

script ‘H’s. To summarize the results for all laboratory tests that

occurred during a patient visit, we defined 3 features (Table 1, col-

umn 1): (1) the average number of test results received per day (de-

fined as number of tests divided by length of stay), (2) the

percentage of most recent test results that were flagged as abnormal,

that is, the percentage of abnormal results when considering only

the most recently recorded result from each test, and (3) the percent-

age of all test results that were flagged as abnormal. For each cate-

gorical lab test, results were summarized using the results from the 2

most recent tests, the result from the first test, and the baseline result

across all tests, which was defined as the mode of all test results ex-

cluding the most recent test (Table 1, column 2). For each continu-

ous lab test, results were summarized using the percentage of all test

results that were flagged as abnormal, the results from the 2 most re-

cent tests, the result from the first test, the baseline result across all

tests (defined as the mean of all test results excluding the most recent

test), the nadir (min) and apex (max) results from all tests, and sev-

eral features aimed to summarize result trends over time, such as the

difference, percent change, and slope between the 2 most recent test

results (Table 1, column 3). To reduce the amount of missing data

generated in constructing the feature set, some features were only

constructed for a given test if the median number of results per pa-

tient for that test was greater than 1 or 2. For example, for a cate-

gorical test for which most patients only have 1 test result, we

would only use the most recent test result as a feature. Features were

constructed for both the “non-standardized” and “standardized”

datasets. All numeric constructed features were discretized using the

minimum description length criterion discretization method.27

Model learning and evaluation
To learn and validate predictive models, we split each of the “non-

standardized” and “standardized” datasets into a training dataset

Figure 1. Example of LOINC mapping for potassium laboratory tests. A manual mapping from 1 hospital (left) was extended to map local laboratory test codes

from 13 hospitals to LOINC. After mapping, we had an “non-standardized” dataset, where laboratory tests were identified via the unmapped, local laboratory test

codes and a “standardized” dataset, where laboratory tests were identified via a LOINC code.
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(data from 2008 to 2011) and a test dataset (data from 2012). We

used the training datasets to learn models utilizing a variety of popu-

lar feature selection techniques and model types. We examined 2

popular strategies for feature selection: (1) correlation-based feature

subset (CFS)28 selection which aims to find a set of features that

have high correlation with the target class but low intercorrelation

with each other, that is, a set of non-redundant, highly informative

features and (2) information gain (IG) filter with a threshold greater

than 0, which results in selecting features that contain at least some

information with respect to the target class. For models, we exam-

ined logistic regression, naı̈ve Bayes, and random forest classifiers,

which are three popular models within the medical domain. We

used the WEKA (Waikato Environment for Knowledge Acquisition)

version 3.829 implementation of all algorithms. We adopted the de-

fault algorithm settings provided by WEKA, except for treating

missing values as a separate category in our feature selection

approaches, which had been previously shown to improve model

performance,30 and learning a larger number of trees (500) in the

random forest classifier. For each feature selection and classifier

pair, we learned a predictive model based on the “non-stand-

ardized” and “standardized” datasets. The learned models are sum-

marized in Table 2.

We used the respective test datasets to evaluate the learned pre-

dictive models. All evaluation metrics were computed using the

pROC package31 version 1.13.0 in R version 3.4.32 Evaluation met-

rics for each model included the area under the receiver-operating

characteristic curve (AUC) and the 95% confidence interval (CI)

computed using 2000 stratified bootstrap replicates (see pROC

package documentation for details on bootstrapping approach).33

DeLong’s 1-sided comparisons34 with Bonferroni multiple-

hypotheses correction35 were used to compare AUCs of the models

based on the “non-standardized” and “standardized” datasets.

RESULTS

Figure 2 summarizes the coverage of the mapping process and pro-

vides a description of the training and test datasets. Table 2 summa-

rizes the models learned to predict 30-day hospital readmission for

adult heart failure patients, including the number of features used

based on each feature selection technique, the AUC with 95% CI,

and the P-values of the model comparisons. Complete lists of fea-

tures selected by the CFS method for each dataset are provided in

Table A1 of the Supplementary Material. As indicated by the bold-

faced P-values in Table 2, nearly all models learned on the

“standardized” dataset (ie, where tests were identified via LOINC)

performed significantly better than models learned on the “non-

standardized” dataset (ie, where tests were identified via local labo-

ratory codes).

DISCUSSION

We examined the effect of standardizing local laboratory test names

to LOINC on predictive model performance in multi-site datasets.

More specifically, we evaluated this effect in a case study on predict-

ing 30-day hospital readmissions for a multi-site cohort of adult

Table 1. Features constructed to summarize laboratory test results each patient visit

Included features

Summary of results for

All lab tests

Each categorical

lab test

Each continuous

lab test

Average # of tests per day (# tests/length of stay) X

% Abnormal tests for most recent testsa X

% Abnormal testsa X X

Flag (normal/abnormal) for most recent test X

Most recent test result XH XH

Second most recent test result (if median test count >1) XH XH

First test result (if median test count >2) XH X

Baseline result (mean/mode of values prior to most recent) (if median test count>1) X XH

Nadir (min) result (if median test count>2) XH

Apex (max) result (if median test count>2) XH

Difference between most recent test result and. . .. Second most recent test result XH

First test result X

Apex result XH

Nadir result XH

Baseline result XH

% change between most recent test result and. . . Second most recent test result XH

First test result X

Apex result XH

Nadir result XH

Baseline result XH

Slope between most recent test result and. . . Second most recent test result XH

First test result X

Apex result XH

Nadir result XH

Baseline result XH

X: feature was derived for dataset; H: feature was originally described in Hauskrecht et al.26

aTests with “NA” flags were not included in these computations.
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heart failure patients. To the best of our knowledge, this is the first

study to examine this effect. Our results in Table 2 demonstrated

that standardizing local laboratory codes to LOINC for multi-site

datasets consistently resulted in models that achieved significantly

higher predictive performance, regardless of the feature selection

technique and classifier approach used. The final AUCs of our mod-

els were modest; however, the goal of this study was not to build a

high-performing model, but rather to determine whether standardi-

zation of laboratory test names to LOINC improved model perfor-

mance. We noticed significant improvement in performance even

Table 2. 30-Day heart failure readmission model descriptions, evaluations, and comparisons. Prior to feature selection, there were 10,032

and 1881 features from non-standardized dataset (local codes) and standardized dataset (LOINC) respectively.

# Feature selection Classifier Dataset Number of features AUC (95% CI) P-value

1 Information gain Logistic regression Non-standardized (Local codes) 1154 0.538 (0.516–0.559) 0.001

2 Standardized (LOINC codes) 388 0.573 (0.551–0.594)

3 Naı̈ve Bayes Non-standardized (Local codes) 1154 0.560 (0.539–0.582) 5.3e-5

4 Standardized (LOINC codes) 388 0.603 (0.583–0.624)

5 Random forest Non-standardized (Local codes) 1154 0.590 (0.570–0.612) 0.036

6 Standardized (LOINC codes) 388 0.605 (0.585–0.626)

7 Correlation-based

feature selection

Logistic regression Non-standardized (Local codes) 57 0.566 (0.545–0.587) 2.3e-4

8 Standardized (LOINC codes) 46 0.601 (0.580–0.622)

9 Naı̈ve Bayes Non-standardized (Local codes) 57 0.571 (0.550–0.592) 8.9e-6

10 Standardized (LOINC codes) 46 0.607 (0.586–0.628)

11 Random forest Non-standardized (Local codes) 57 0.561 (0.539–0.582) 2.5e-4

12 Standardized (LOINC codes) 46 0.602 (0.581–0.622)

Note: Bolded P-values indicate significant differences in model performance.

Figure 2. LOINC mapping coverage and description of training and test datasets. “R” and “NR” stand for the classification as “Readmitted” or “Not Readmitted”,

respectively.
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with the limited predictive ability of our models, and we believe that

higher performing models using additional data would also benefit

from standardization of laboratory data. This could lead to better

overall predictive models to be used in CDS systems, especially since

previous work has shown that standardization of data tends to lead

to better outcomes for CDS systems.36 Given the potential impact

standardizing laboratory data might have on predictive model per-

formance, we find it alarming that many multi-site predictive model-

ing studies fail to include details on laboratory data standardization.

The low quality of reporting of prediction model studies in the

healthcare domain has been previously identified as an issue, and it

presents challenges in reproducing models and assessing the poten-

tial bias and usefulness of the models.37 Efforts have been made to

develop recommendations for researchers when reporting the devel-

opment and validation of models, such as the Transparent Reporting

of a multivariate prediction model for Individual Prognosis or Diag-

nosis (TRIPOD) statement.37 The TRIPOD statement is an excellent

guideline for transparent model reporting and has been used to de-

scribe machine learning modeling approaches,38 but it provides lim-

ited consideration for data-driven approaches that utilize multi-site

datasets. Specifically, it offers no guidance for reporting data stan-

dardization procedures. As our study has demonstrated, the stan-

dardization procedures used can have a profound impact on model

performance and reproducibility when employing an EHR data-

driven approach to prediction. Thus, detailed reporting on standard-

ization procedures seems crucial to critically evaluate such models.

These aspects will become an increasingly important part of predic-

tive model reporting as EHR data-driven approaches to prediction

gain popularity. Therefore, we argue that current predictive model

reporting recommendations should be expanded to consider some of

the unique challenges present when modeling with multi-site data-

sets extracted from EHRs. In particular, we argue for explicit rec-

ommendations pertaining to the reporting of data standardization

procedures across sites.

Specific attention should be given to developing recommendations

for reporting standardization procedures for laboratory data. Al-

though LOINC is the accepted standard for reporting laboratory test

names, it is a highly specific coding system and there is no standard

procedure for mapping to LOINC. This presents a granularity prob-

lem when performing LOINC mapping.5,39–46 Therefore, wide varia-

tion in mapping specificity exists across institutions,39,47,48 which may

pose significant challenges in predictive modeling on multi-site data-

sets. In a dataset with multiple mapping approaches performed by dif-

ferent institutions, effects on model performance due to varying levels

of mapping specificity may be comparable to those observed in our

study. We therefore recommend that multi-site studies evaluate and

report on any differences in LOINC mapping processes used across

sites. When possible, studies should report the level of agreement be-

tween LOINC mappings from different institutions.

Several prior studies specifically point out the need for lower res-

olutions of LOINC (eg, code groups or hierarchical structuring) to

promote accurate data sharing and analysis across institu-

tions.39,43,46,48 This need will become increasingly prevalent as

more initiatives are undertaken to create and analyze networks of

healthcare data across multiple institutions, such as the National

Patient-Centered Clinical Research Network.49 The new LOINC

Groups project by the Regenstrief Institute aims to address this need

by creating sets of clinically similar codes. When completed, LOINC

Groups could prove to be an invaluable tool for grouping the

LOINC mappings in large multi-institutional datasets in a clinically

meaningful way.50 As suggested by the findings of our study, these

groupings may improve the quality and performance of predictive

models learned from these networks of data. Without detailed

reporting of the data standardization procedures used, however, it

may be challenging to critically appraise and reproduce predictive

models learned from these large, multi-institutional datasets. We

therefore recommend that as part of laboratory data standardization

reporting requirements, future studies should include any LOINC

aggregation procedures used. In particular, we suggest that once the

LOINC Groups project is completed, it should be recommended as

the standard approach for aggregating codes.

Recently, an argument was made against the need for EHR data

standardization and harmonization due to advancements in deep

learning approaches to modeling, which are capable of achieving

high performance when using large sets of messy data.51 Although

our work did not explore deep learning approaches, it is worth dis-

cussing the idea as it contradicts our argument for the need for

reporting data standardization procedures. The deep learning ap-

proach is a promising avenue for achieving high performance mod-

els based on raw EHR data, but these approaches have not yet been

validated on multi-site datasets where the lack of data standardiza-

tion presents significant challenges. Moreover, due to the demand

for model interpretability in healthcare,52 it is likely that more tradi-

tional approaches to modeling will remain relevant. Thus, we assert

that it is still essential to develop better recommendations for report-

ing data standardization procedures used when modeling with

multi-site datasets extracted from EHRs.

Limitations
This study had several limitations that should be addressed in future

work. First, as the LOINC mapping utilized was part of an ongoing

project at UPMC, only a partial LOINC mapping was available at

the time of this study. Therefore, we chose to exclude from our anal-

ysis any laboratory tests that did not have a LOINC mapping. This

allowed for a fair comparison of model performance with and without

standardization to LOINC across the same set of laboratory tests. Al-

ternatively, we could have utilized the local laboratory test codes

when a LOINC mapping was unavailable, but we felt that this ap-

proach would introduce too much bias against LOINC standardiza-

tion due to the partially complete mapping. This alternative approach

would be appropriate to utilize once the UPMC team has finished the

LOINC mapping process. Thus, our conclusions are based only on a

subset of laboratory data; however, this subset captured a large por-

tion of all laboratory test results in our dataset (�64% of all test

results). We therefore believe that an analysis based on a complete

LOINC mapping would yield similar results, but plan to evaluate this

idea in future work when a complete mapping is available.

Additionally, as the partial mapping was not originally generated

for research purposes, intercoder agreement and false positive map-

pings were not tracked. Thus, a formal validation of the mapping

process was unable to be performed. It would be beneficial to vali-

date our claims using more rigorously tested mapping approaches;

however, it would take significant time and expertise to complete

such mappings. Moreover, the two coders on the mapping team

were highly qualified, thoughtfully selected subject matter experts

and the accuracy of these individuals working together to map codes

was expected to be high. The mapping team subjectively estimated

that less than 5% of the initial codes resulted in discrepancies that

needed to be reviewed, and they were confident in the accuracy of

their approach (ie, it was unlikely that false positive mappings

would have occurred).
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Finally, our definition of readmission included both planned and

unplanned visits and we only examined a single prediction task for a

specific patient population. We note that our claims may not be

valid for other patient populations or for other prediction tasks. Fu-

ture studies examining the impact of standardizing to LOINC on

prediction performance should include in a variety of population

and prediction tasks and utilize all available laboratory test results.

The impact of standardizing other EHR data types on predictive

model performance should be also explored. Such studies could pro-

vide further support for the need for detailed reporting on standardi-

zation procedures in predictive modeling studies.

CONCLUSION

This study investigated the impact of standardizing local laboratory

codes to LOINC on predictive model performance in a multi-site

dataset. We quantitatively demonstrated that standardizing to

LOINC significantly improves predictive performance across a vari-

ety of feature selection and modeling techniques. Based on our find-

ings, we have argued for the need for detailed reporting of data

standardization procedures in predictive modeling, especially in

studies leveraging multi-site datasets extracted from EHRs.
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