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Abstract

During the development of cell lines for therapeutic protein production, a vector harboring a 

product transgene is integrated into the genome. To ensure production stability and consistent 

product quality, single-cell cloning is then performed. Since cells derived from the same parental 

clone have the same transgene integration locus, the identity of the integration site can also be 

used to verify the clonality of a production cell line. In this study, we present a high-throughput 

pipeline for clonality verification through integration site analysis. Sequence capture of genomic 

fragments that contain both vector and host cell genome sequences was used followed by next-

generation sequencing to sequence the relevant vector-genome junctions. A Python algorithm was 

then developed for integration site identification and validated using a cell line with known 

integration sites. Using this system, we identified the integration sites of the host vector for 31 

clonal cell lines from five independent vector integration events while using one set of probes 

against common features of the host vector for transgene integration. Cell lines from the same 

lineage had common integration sites, and they were distinct from unrelated cell lines. The 

integration sites obtained for each clone as part of the analysis may also be used for clone 

selection, as the sites can have a profound effect on the transgene’s transcript level and the stability 

of the resulting cell line. This method thus provides a rapid system for integration site 

identification and clonality verification.
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INTRODUCTION

Chinese hamster ovary (CHO) cells are one of the most commonly used cell lines used to 

produce therapeutic proteins.1 They acquire the capability to produce these proteins by the 

introduction of a vector carrying the product gene and integration into the genome. After 
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transfection, the resulting cells are heterogeneous and have a wide range of productivity and 

other properties. Single cell cloning is performed, and high producing cell lines are isolated 

as candidates to be the production cell line. To ensure the consistency and quality of the 

products produced by the cells over time, regulatory agencies require the demonstration of 

clonality, i.e. that cells originated from a single transfected ancestor cell.2

After transfection and entry into the nucleus, the vector integrates into the genome of the 

host cell randomly. One cell may have one or more integration events depending on the 

vector used and its dose. The chance of two integration events occurring on the same site, 

either on both alleles of the same chromosome or in the genome of two different cells, is 

extremely low. A characteristic of clonally derived cells is thus that all cells within the 

population should have the same integration site(s) of the vector on the genome. Identifying 

the integration site of the product gene and demonstrating that two sublines of cells have the 

same integration site can thus be taken as evidence that the two originated from the same 

ancestor. Furthermore, the genome context of the integration site can be explored to reveal 

information on epigenetic accessibility, transcriptional activity,3 and even stability of the 

region.4

Several PCR-based assays such as inverse PCR,5 splinkerette-PCR,6 linear amplification 

mediated PCR (LAM-PCR),7 and targeted locus amplification (TLA)8 have been developed 

to identify integration sites of transgenes. These methods can be applied to demonstrate 

clonality. LAM-PCR for integration site identification has been used to analyze and track 

clonal lineages of blood cells following lentiviral gene therapy,9,10 while TLA has been used 

in CHO cells for identification of clones with the same integration sites after pool selection 

and single cell cloning.11

In this study, we established a high throughput method that can be used to support 

monoclonality in different production cell lines generated using random integration of 

plasmids. By designing one set of probes for the common features of the host vector used to 

introduce the gene of interest, selective capture was utilized to simultaneously sequence 

vector-containing DNA from dozens of clonal cell lines from multiple independent vector 

integration events with different product genes. This method also allowed for a relatively 

simple bioinformatic analysis to identify these integration sites through the use of a Python 

algorithm. Cell lines were separable based on their integration sites, and we were able to 

demonstrate the clonality of the original cell populations. This method thus provides a rapid 

and cost-efficient tool for clonality verification and integration site identification in product 

producing CHO cells.

MATERIALS AND METHODS

CELL LINE CONSTRUCTION

The monoclonal antibody producing cell line, SH-87, has been described previously.12,13 

The organization of the tricistronic vector used for introducing the transgene is illustrated in 

Figure 1A.
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Cell lines used for clonality analysis were all derived from the same CHO-K1 host cell line 

using the vector shown in Figure 1B with product gene(s) inserted between the illustrated 

promoters and terminators. After transfection with linearized plasmid by electroporation, 

cells were selected using Puromycin in 96 wells, and surviving clones were isolated after 

monitoring by a CloneSelect Imager (Molecular Devices, San Jose, CA). Subsequent 

subcloning was performed via limiting dilution.

PROBE DESIGN

For integration site analysis of cell line SH-87, probes (120bp in length) were focused on the 

ends of the linearized vector (Figure 1A). The first 900bp and the last 400bp of the 

linearized vector had 9x coverage with tiling, with the remainder of the vector having 1x 

coverage.

For clonality analysis of platform cell lines, probes (120bp in length) were designed to 

capture the regions of the linearized vector that are common in all transfected cell lines at 5x 

coverage with tiling (Figure 1B). Sequences specific to individual cell lines, including that 

of the product gene, were thus not included in the probe design. Features in the vector with 

multiple occurrences, including the promoter and terminator, had reduced probe coverage.

EXPERIMENTAL METHODS

An overview of the experimental methods is shown in Figure 1C. Genomic DNA (gDNA) 

from SH-87 was provided courtesy of Dr. Yuansheng Yang and Dr. Dong-Yup Lee from 

ASTAR, Bioprocessing Technology Institute, Singapore. gDNA was sheared to an average 

length of 500bp, and library preparation was performed using an Agilent SureSelectXT 

Reagent kit (Agilent # G9611A, Santa Clara, CA). DNA fragments containing vector 

sequence were captured using the Agilent SureSelect Enrichment system. Briefly, short 

biotinylated RNA probes were hybridized to the pooled gDNA library, and streptavidin 

conjugated beads were used to capture DNA fragments that had hybridized to the probes. 

Captured DNA was eluted, amplified, and sequenced on half a lane of Illumina MiSeq 

(Illumina, San Diego, CA) using 250bp paired end reads for a total of 12.7 million reads.

For all other cell lines, gDNA was extracted using a Qiagen Blood and Cell Culture DNA 

Max Kit (Qiagen #13362, Valencia, CA). 100ng of gDNA from each cell line was sheared 

using a Covaris E220 ultrasonicator (Covaris, Woburn, MA) to obtain fragments with an 

average length of 250bp. Further library preparation was performed using an Agilent 

SureSelect HS Reagent Kit (Agilent #G9702A, Santa Clara, CA). Libraries for all cell lines 

were pooled prior to sequence capture following the Agilent SureSelect system instructions. 

Captured DNA was eluted, amplified, and sequenced on one lane of Illumina MiSeq 

(Illumina, San Diego, CA) using 100bp paired end reads for a total of 25 million reads.

DATA PRE-PROCESSING

Fastq files from sequencing were trimmed to remove adapter sequences using 

Trimmomatic14 (version 0.33). Reads were then mapped to the CriGri-PICR release of the 

Chinese hamster genome15 using BWA-MEM16 (BWA release 0.7.17). The host vector 

sequence was added to the genome sequence as an additional scaffold. Duplicate reads were 
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removed using the MarkDuplicates command in Picard tools 2.18.16. The resulting SAM 

(Sequence Alignment/Map) file, which describes how reads are aligned to the genome, was 

used for further analysis. Samtools17 (version 1.9) was used to create BAM files for 

visualization in IGV18 (version 2.4.19).

RESULTS AND DISCUSSION

DEVELOPMENT OF AN INTEGRATION SITE ANALYSIS PIPELINE

An analysis pipeline was written in Python 3.6.3 to identify integration sites from mapped 

sequencing data (Figure 2A, algorithm is available at https://doi.org/10.13020/9wgm-mj51). 

Sequence capture data from cell line SH-87 was used for validation of the method, as 

integration sites from this cell line had been previously determined using whole genome 

sequencing and confirmed by PCR/Sanger sequencing.13

The algorithm initially utilizes columns 3 and 4 (Scaffold and position) of the SAM file and 

the SA:Z tag added by BWA-MEM for chimeric alignments to identify reads which contain 

a split alignment between the vector and genome (Figure 2B). These alignments were then 

filtered for MAPQ (mapping quality score) > 30 and NM (number of mismatches) < 4. 

Reads mapping only to the genome, only to the vector, and unmapped reads were identified 

and counted for determining the number of on-target reads from sequence capture. For 

SH-87, there were 2.39 x 106 unique read pairs, and 18.4% of the read pairs mapped to the 

vector (see Table S1 for detailed mapping statistics). The low percentage of on-target reads 

was compensated by the high sequencing depth, providing a sufficient number of split-reads 

for integration site analysis.

Next, the CIGAR (Concise Idiosyncratic Gapped Alignment Report) tag for each alignment 

was used to find the exact vector-genome junction position. The CIGAR string is a compact 

method to report how bases within a read align to the reference genome, specifying which 

bases match, are deleted/inserted, or are clipped (not aligned) in the case of split reads. 

Column 4 of the SAM file format reports the leftmost (smallest number) position that is 

aligned for the read alignment. If the CIGAR string begins with an alignment match (M), the 

length of the match is added to the position to obtain the vector-genome junction (Figure 

2C). Otherwise, if the CIGAR string begins with bases that are not aligned (hard (H) or soft 

(S) clipping), the reported position is the first base that aligns, and thus is the location of the 

vector-genome junction (Figure 2D). Using this method, the position of the junction on the 

vector and genome for each read is identified, and the number of reads supporting each 

unique junction is tabulated. For paired end reads, if both ends of the pair support the 

junction, they were considered as only one count.

Due to the high sequencing depth of SH-87, a minimum of 15 reads or pairs of support were 

required for a vector-genome junction to be called an integration site. Previously, six vector-

genome junctions from integration of the tricistronic vector in cell line SH-87 were 

identified by whole genome sequencing.13 All six junctions were found by the algorithm 

(Table S2). To confirm these results, the genomic integration sites were visualized using 

IGV (Figure 2E). Each integration site has a sharp boundary at the vector-genome junction. 

Additionally, the read pileup depth decreases as the distance from the integration site 
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increases, as would be expected since the probability of a read being captured by vector 

probes diminishes with increasing distance from the junction. By using sequence capture 

and the Python algorithm, we were successfully able to determine the integration sites for 

SH-87 at a much lower sequencing and bioinformatic cost than whole genome sequencing.

APPLICATION OF PIPELINE FOR CONFIRMATION OF CLONALITY

To apply this method to the confirmation of clonality, gDNA of 31 different cell lines 

derived from five independent clonal cell lines (denoted as cell lineages A-E) were used in 

this study. Cell lines characterized from lineages A, B, and E consisted of a clonal parental 

cell line and a set of subclones. Unrelated cell lines C-1 and D-1 were added to the analysis 

to increase the diversity of cell lines examined. Cell line A-1 was run in duplicate (labeled 

A-1 and A-1D) for a total of 32 samples. gDNA from these samples was sheared, and 

fragments containing probed vector regions were captured and sequenced.

After sequencing, the library size (number of unique read pairs) for each sample ranged 

from 0. 46 - 5.6 x 105 (Figure S1A). The percent of on-target reads (reads which mapped 

either entirely or partially to the vector) was greater than 50% for all samples, with the 

majority of samples having >70% of their reads containing vector sequence (Figure S1B). 

This corresponded to an enrichment ratio (reads mapped to vector/reads not mapped to 

vector) of between 1.2 and 18x, depending on the sample.

The library size varied with cell lineage, with the cell lines from lineage E having on average 

significantly more unique reads after sequencing than those from lineage A or B (Figure 3A, 

t-test, p<0.002). Only one cell line was analyzed from each of cell lineages C and D, so 

these were not included in the comparison. The percent of on-target reads mapping to the 

vector also varied. Samples of cell lines from lineage E had a significantly higher percent of 

vector reads on average than lineages A or B (Figure 3B, t-test, p<0.002). There are several 

potential reasons for the bias in on-target read percentage and library size. gDNA from all 

cell lines was pooled at equal amounts after barcoding, so it is likely that inherent 

differences in the genome accounted for this difference. Cell lines from lineage E had three 

integration loci as opposed to the one locus found in populations from lineages A-D, and 

thus gDNA samples from lineage E would have higher vector sequence content. Despite this 

variability, the sequencing depth for each sample was sufficient for integration site analysis.

CELL LINES FROM THE SAME LINEAGE HAVE COMMON INTEGRATION SITES

The results of the integration site analysis are shown in Figure 3C and Table S3. As the 

library size for these cell lines was lower, a minimum of five reads or pairs of support were 

required for a vector-genome junction to be called an integration site. Each integration site 

identified was on a different scaffold. Cells from lineage A had one integration locus, and 

both ends of the vector insertion were identified, approximately 30bp apart. One end of a 

single integration locus was called by the algorithm for cells from lineages B, C, and D. This 

may be a result of complex sequence rearrangements, such as concatenations of the 

fragmented vector, at the other end of the vector-genome junction that would prevent proper 

mapping of the integration site. Incomplete mapping would also occur if the vector-genome 

junction was in a location that either was not probed or was not included in the vector 
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sequence for mapping (such as the product gene), preventing the capture or mapping of 

DNA fragments from the integration site region. Three integration loci on different scaffolds 

were called for cells from lineage E, with both ends of the insertion found approximately 

100bp apart for one of the three loci. Importantly, cell lines from the same lineage were 

found to have the same set of integration sites.

Several cell sublines (A-2, E-2, and E-10), had an additional vector-genome junction on the 

same scaffold as the integration site, either 1kbp (Site 1C for A-2, Figure 3C) or 4.7kbp (Site 

6C for E-2 and E-10, Figure 3C) downstream of the main integration locus. As these 

additional vector-genome junctions were very close to the prevalent integration locus, it is 

highly unlikely that these are independent integration events. Rather, this could be the result 

of a genomic rearrangement or duplication in that scaffold that resulted in an additional 

integration junction, even though amplification was not performed during cell line 

development. Genomic heterogeneity has been previously shown after subcloning, with 

different subclones presenting a gain or loss of transgene copies.4

Each integration site was visualized in IGV (Figure 4A–G). The vector-genome junctions 

are the same at the base by base level for all cell lines from the same lineage, with the read 

pileup depth decreasing as the distance from the integration site increases.

Only one side of the vector insertion was called by the algorithm for cell line C-1, but on the 

IGV pileup, both ends are visible, less than 50bp apart (Figure 4C). Upon further 

investigation, it was determined that the vector side of the split reads at this locus resides in 

the terminator element that is duplicated in the vector (Figure 1B). Since the vector part of 

these reads maps identically to two different locations on the vector, BWA was not able to 

assign an alignment, and these reads were only mapped to the genome. This however does 

not affect the capacity of the algorithm to verify clonality by integration site analysis; such a 

site would not map properly in any of the clones. Additionally, not every integration site 

needs to be identified to show clonality, as the likelihood that two independently derived cell 

lines would have even a single shared integration site is low. A longer sequencing read 

length may help avoid these types of non-unique mapping events in the future.

The algorithm did not find integration locus 6b in cell line E-1 (Figure 3C). This integration 

locus is present in this cell line, as can be seen in Figure 4F, on the right side of the read 

pileup. The read depth at the integration junction was below the set threshold of five reads, 

and so the algorithm did not qualify this location as a true integration site. Increased read 

depth for this sample would have given more confidence in this integration locus.

In this study, we used our method to verify that each subclone had originated from its clonal 

parent. This workflow can also be used to test clonality or detect non-clonal cells by 

sequencing a large number of subclones; the presence of subclones with non-consensus 

integration site(s) would suggest possible non-clonality.

CONCLUSIONS

The method presented here allows for rapid verification of clonality or common lineage 

between different cell lines. Use of sequence capture increases the relevant information 
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extracted from sequencing, and the bioinformatic analysis is rapid for processing the low 

number of reads required from each sample. Additionally, through the use of capture probes 

targeting common regions of the host vector, future clones can easily be added to the 

analysis without the need for new probe design. In general, a longer sequencing read length 

and an increased library size for each sample may have improved this dataset and would be 

helpful for detecting rarer integration events. The library size may be increased either 

through reducing the number of samples pooled before capture, or by increasing the input 

DNA from each sample to reduce PCR duplicates from library preparation. Despite some of 

these issues in sequencing, the pipeline was robust in its ability to distinguish cell lines of 

different lineages based on their integration sites. This method is thus a valuable, accessible 

tool to address clonality verification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of sequence capture method used. Probe coverage for SH-87 vector (A) and host 

vector from clonality analysis (B). The vector maps are shown at the top, with key features 

illustrated. The probe coverage at each location of the vector is shown below the vector map 

as a pileup ranging from zero to nine (A) or zero to five (B), and individual probe locations 

are denoted by short blue dashed lines below the pileup. Vector description for (A): A CMV 

promoter (black solid angled arrow) drives expression of Immunoglobulin G Light Chain 

(IgG LC, red arrow), Immunoglobulin G Heavy Chain (IgG HC, red arrow), and Neomycin 
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resistance (NeoR, blue arrow), all linked by IRES elements (grey boxes), and followed by a 

SV40 early polyadenylation signal (grey solid t-shaped bar). The bacterial resistance marker 

(Ampicillin resistance, green arrow) is at the end of the vector next to the linearization site. 

Vector description for (B): The vector is linearized at the bacterial resistance marker (green 

arrow) and contains two sets of identical promoters (black solid angled arrows) and SV40 

late polyadenylation signal terminators (grey solid t-shaped bars), as well as puromycin-N-

acetyltransferase for selection (blue arrow). The product gene(s) are inserted between the 

promoters and terminators (red arrows). (C) Overview of experimental and bioinformatic 

methods used for integration site identification.
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Figure 2. 
Integration site analysis pipeline and validation. (A) Procedure to identify integration sites. 

(B) SAM file alignments for a split read from mapped SH-87 sequence capture data. 

Primary and secondary alignments for the read are shown, along with select columns. (C) 
Illustration of primary alignment from (B) to Chinese Hamster genome. Vector-genome 

junction position is adjusted to account for portion of read aligned to genome. (D) 
Illustration of secondary alignment from (B) to SH-87 vector. Vector-genome junction does 

not need to be adjusted and is equal to the position listed in the SAM file. (E) IGV read 

pileups of identified integration sites for SH-87. Scale bar represents 50bp.
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Figure 3. 
(A) Average number of unique reads for cell lines from each cell lineage (Number of cell 

lines for each lineage: A, n=14; B, n=3; C, n=1; D, n=1; E, n=14). *** p < 0.002, t-test. (B) 
Average percent of reads mapped to the vector for different cell lineages (*** p < 0.002, t-

test). (C) Result of integration site identification. Each unique vector-genome junction is 

represented as an integration locus (numbered 1-7), and integration loci are colored by 

scaffold. The scaffolds and corresponding chromosomes are labeled below the chart.
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Figure 4. 
IGV read pileup of identified integration sites for each cell subline. Scale bar represents 

50bp and read pileups are colored by scaffold. Loci are listed from left to right as they 

appear on the pileup. (A) Integration loci 1a & 1b on Scaffold T (Chromosome 1) for cells 

from lineage A. (B) Integration locus 2 on Scaffold U (Chromosome 2) for cells from 

lineage B. (C) Integration locus 3 on Scaffold V (Chromosome 6) for cell line from lineage 

C on the left and unidentified integration locus on the right. (D) Integration locus 4 on 

Scaffold W (Chromosome 5) for cell line from lineage D. (E) Integration locus 5 on 
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Scaffold X (Chromosome 3) for cells from lineage E. (F) Integration loci 6a & 6b on 

Scaffold Y (Chromosome 4) for cells from lineage E. (G) Integration locus 7 on Scaffold Z 

(Chromosome 4) for cells from lineage E.
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