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Abstract: The increase in osteoporotic fracture worldwide is urging bone tissue engineering research
to find new, improved solutions both for the biomaterials used in designing bone scaffolds and
the anti-osteoporotic agents capable of promoting bone regeneration. This review aims to report
on the latest advances in biomaterials by discussing the types of biomaterials and their properties,
with a special emphasis on polymer-ceramic composites. The use of hydroxyapatite in combination
with natural/synthetic polymers can take advantage of each of their components properties and
has a great potential in bone tissue engineering, in general. A comparison between the benefits
and potential limitations of different scaffold fabrication methods lead to a raised awareness of the
challenges research face in dealing with osteoporotic fracture. Advances in 3D printing techniques
are providing the ways to manufacture improved, complex, and specialized 3D scaffolds, capable
of delivering therapeutic factors directly at the osteoporotic skeletal defect site with predefined
rate which is essential in order to optimize the osteointegration/healing rate. Among these factors,
strontium has the potential to increase osseointegration, osteogenesis, and healing rate. Strontium
ranelate as well as other biological active agents are known to be effective in treating osteoporosis due
to both anti-resorptive and anabolic properties but has adverse effects that can be reduced/avoided
by local release from biomaterials. In this manner, incorporation of these agents in polymer-ceramic
composites bone scaffolds can have significant clinical applications for the recovery of fractured
osteoporotic bones limiting or removing the risks associated with systemic administration.

Keywords: bone; biomaterial scaffolds; 3D printing; osteoporosis; strontium ranelate

1. Introduction

Bone grafting is a common surgical method used to improve bone regeneration in
orthopedic practice. In the case of considerable diminution of bone mass, bone grafts are
essential because the self-healing process would be slow or the could entirely fail [1]. At
an estimated total of 2,000,000 bone graft procedures carried out every year, bone repair
frameworks remain a promising line of research because of the continuously growing
request for it and the reduced stock of bone substitutes [1,2]. Bone tissue engineering
aims at delivering novel methods for treating bone tissue deficiencies often resulting from
polytrauma, pathological fractures, and osteonecrosis [2] as there is an increasing need to
provide functional replacement grafts for the patients [3].
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Progresses in medicine have raised both life expectancy globally and age-connected
illnesses liable for declining life quality of the elderly [4], with one of the most common
and wide-spread skeletal disease being osteoporosis [5], with an increase in osteoporotic
fracture in both genders with age [6]. Each year, almost 200,000,000 patients are confirmed
as osteoporotic and around 9,000,000 osteoporotic fractures happen globally [5], with a
rising number of elderlies being prone to fragility fractures [7]. Bone lesions are difficult
for the elderly and can lead to morbidity and substantial socioeconomic costs creating a
demand for new and efficient regenerative strategies and better results for patients [4] as
the incidence of osteoporosis is predicted to further rise worldwide [5]. This emphasizes
the importance and value of preclinical bone repair frameworks capable to transfer into
suitable clinical use even more [2].

Bone tissues display inherent regrowth and self-repair features to some extent, but
the capacity of the injured bones for the natural process of healing and restore load-
bearing function is often insufficient, resulting in fracture nonunion [2]. Larger defects,
referred to as critical-size defects, demand clinical interventions in order for the bone to
repair or regenerate itself [8]. The ways in which large bone injuries are treated consist of
autografts, allografts, and scaffolds [1,4] but currently none of them are adequate because
of their specific limitations for instance reduced bioactivity, possible pathogens spreading,
inflammation, supplementary surgery, restricted supply, unfit shape and size, and donor
site related morbidity [4].

This review reports on the latest advances in biomaterials containing biologically ac-
tive agents used for their ability to enable osteointegration and osteogenesis in osteoporotic
skeletal defect sites. The loco-regional delivery is especially useful because they can assure
the desired level of these agents at the bone level, to assure a higher bioavailability and thus
to minimize the probability of implant rejection and faster osteointegration and healing.
Most of these drug delivery systems are designed to be used as grafting materials to restore
the normal ratio between resorption and bone formation and to counteract the effects of
osteoporosis.

2. Bone Tissue

Bones are living organs constantly modeling and remodeling throughout life and serve
as reservoir for calcium, phosphate and many other bodily elements, thereby, assuring
their homeostasis [9]. Bone consists of an organic matrix, mineral components, and water,
as presented in Figure 1. The bulk part of the organic matrix consists of type I collagen,
but other non-collagenous proteins are also present, mainly extracellular and a small part
within the cells [10]. Bone composition, by weight, is approximately 65% mineral (mostly
as hydroxyapatite (85%), but also calcium carbonate and calcium fluoride [9]), organic part
is approximately 20% to 25%, mostly type I collagen (about 90%) [10], while the water
content varies between 10% and 20% depending on several factors including age, species,
bone health, etc. [11].
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Bone tissue can assume a compact (cortical bone) or trabecular (cancellous bone)
structure [12], but indifferently, all experience remodeling throughout life associated with
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bone resorption, a process performed by osteoclasts subsequent bone formation through
the action of osteoblasts [5].

Cortical bone consists of a dense matrix constructed by recurrent osteon units with
collagen fibers assembled in a concentric manner around a central canal containing blood
vessels [13]. This structure formed by collagen fibers is oriented along with the directions
of the loading lines, greatly confirmed with the piezoelectric assistance involved in bone
formation [14]. It forms a dense outer shell [9] consisting of well-organized lamellae
of hierarchical structures [5] and provides torsion, bending resistance, and compressive
strength [9]. They possess remarkable strength but lower capacity to bear loads beyond
the elastic deformation range in contrast to trabecular (cancellous) bone, consisting in
unparallel fibrillar units of variable porosity (ranging between 50–90%) [5].

Cancellous (trabecular) bone is found in the porous interior [9], possesses a network
of interlinked trabeculae containing marrow, organized in a hierarchical manner extended
between solid material, trabeculae, lamellae, and collagen-hydroxyapatite composite and
having disorganized collagen network [13]. The trabeculae exhibit considerable surface
area in which nutrients diffusion and growth factors circulation is easily done, allowing,
thus, cancellous bone to play a metabolically active role and permit a more persistent
remodeling compared to cortical bone [9]. The mechanical capacity of cancellous bone
derives to a great extent from its bone mineral density (BMD), while the stiffness of cortical
bone derives to a great extent from its porosity [5].

Bone tissue is distinct due to its capacity to heal free of scar tissue, which determines
an unscarred full restoration of bone tissue integrity [15]. Fractured bone repair itself by
repeating various steps of endochondral and intramembranous bone formation and healing
is devoid of scar tissue. Development of hematoma implies inflammation at the injured site
and the action of signaling molecules involved in regulating new bone development (inter-
leukins, tumor necrosis factor-a, fibroblast growth factors, platelet-derived growth factor,
vascular endothelial growth factor (VEGF), bone morphogenetic proteins (BMPs), etc.) [9].
Inflammatory cells (macrophages, monocytes, lymphocytes, and polymorphonuclear cells)
and fibroblasts infiltrate bone tissue in a process mediated by prostaglandins [11]. Through-
out fracture repair, mesenchymal stem cells (MSCs) from the bone marrow are engage at
the fracture site in interaction with the local cells influencing the healing efficacy [7]. The
emergence of intramembranous bone starts right away at the cortical tissue and periosteum.
Later, the fracture stabilization occurs through the action of the outer soft tissues through
callus formation. Afterwards, chondrocyte proliferation happens. Ingrowing of blood
vessels starts to bring chondroclasts to the site, which reabsorb calcified cartilage, and
osteoblastic progenitors, which launch new bone tissue formation [9]. The recruitment of
osteoblast on the surface and the emergence of new bone tissue are moreover promoted by
the modifications in the ionic dynamics of the microenvironment [16]. Mechanical continu-
ity of the cortical bone tissue is reached through later remodeling of recently formed bone.
If the needed regeneration of bone starts due to damage or disease, hematoma building
and a quick inflammatory response occurs as a way to facilitate host cell attraction and
the discharge of decisive signaling molecules [9]. Hematoma building and inflammation
process starts bone healing, which further elapses via the major stages of anti-inflammatory
signaling, revascularization, soft callus development, its mineralization and remodeling
in the end, macrophages playing an essential role in the process [15], influencing, thus,
the success or failure of a bone implant [17]. Macrophages control cell migration to the
injured site through the cytokines and growth factors they produce (tumor necrosis factor-
a, IL-1, IL-6, IL-8, IL-12, TGF-b, platelet-derived growth factor, and insulin-like growth
factor-1), and have effect on cell proliferation, collagen synthesis and angiogenesis [18].
Monocytes, neutrophils, and natural killer cells are also present in the affected site [19].
Inflammatory markers are the following cytokines: TNF-α, IL-1β and iNOS [20]. Osteoge-
nesis, osteoclastogenesis, and angiogenesis are greatly regulated by immune cells and their
signaling molecules [21].
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Initial inflammatory action is necessary to start the bone healing process but persis-
tent inflammatory action against the implant usually leads to granulation (formation of
connective tissue) and formation of a fibrotic capsule around the implant with undesirable
results [20] or increased healing time [22].

Bone tissue extracellular matrix is formed out of a non-mineralized organic con-
stituent, largely type-1 collagen with numerous post-translational modifications, but also
non-collagenous proteins particularly involved in improved fusion between the min-
eral crystals and the organic matter [5], and a mineralized inorganic constituent (made
up of carbonated apatite mineral particles in the form of 4-nm-thick plates) [8,12]. The
nano-composite structure (collagen fibers reinforced by hydroxyapatite) is necessary for
compressive strength and toughness towards fracture [12], thus, bearing an impact without
cracking [5]. The toughness and flexibility of the collagen fibers adjust bone ductility.

The metaphyseal component of bone is largely made up of cancellous tissue, which is
metabolically more active compared to cortical tissue. As a consequence of this attribute,
osteoporosis can impact its mass and structural integrity at a higher rate [23], mainly
because diffusion is much higher as surface to volume ratio is superior in contrast to the
cortical one.

Healing rates are age dependent, as in young people fractures usually heal about the
weight-bearing level in approximately six weeks, and about complete mechanical integrity
level after approximately one year, and in the elderly individuals the healing rates can be
much lower [24]. In pathological or large fractures and defects, the processes of healing
and repair can be unsuccessful, due to deficient blood delivery, bone cells or bone forming
minerals, but also due to infection in the bone or its adjacent tissues, and systemic affections
causing delay or even lack of union [25]. Important factors that affect the process of bone
tissue healing are also mechanical stability, proportions of the affected site, severity and
incidence of adjacent tissue injuries [11].

After implantation of bone scaffolds in the body, injured blood vessels quickly lead
to protein adsorption on scaffold surface and formation of fibrin-rich clot with the role
of a transitory surface matrix at the tissue-scaffold interface occurs. It emits various pro-
inflammatory cytokines and chemokines, triggering the mobilization of inflammatory and
osteoprogenitor cells towards the infixed scaffold. The scaffold is recognized as a foreign
body by the immune system, inducing specific immune reactions. The scaffold active
regulates the kind and extent of immune system reactions during bone regeneration [17].
To counteract chronic inflammatory action against implants, anti-inflammatory factors
such as corticosteroids and prostaglandins were investigated but adverse effects such
as hepatotoxicity, cardiotoxicity, and immunological impairment in long-term use were
reported. Extended inflammation may cause fibrosis, granuloma formation and further
encapsulation and failure of the implant [20].

3. Bone Healing and Types of Bone Grafts

Bone grafts are made of biomaterial implanted in order to assist healing alone or with
the aid of other materials, because of the expected properties of osteogenesis, osteoinduc-
tion, and osteoconduction either alone or combined [25]. Bone grafts are especially needed
if a larger bone lost is recorded. It is worth to mention that in fact, only the need of blood
is higher than the need of bone grafts. It is also important to mention that synthetic bone
grafts have some advantages against autografts, and this is why many synthetic grafts are
studied worldwide [26].

Autografts are obtained by taking bone from another part of the patient’s own
body [11] and still serves as a point of reference to which other grafts may be com-
pared [1,8,11,27] because of their histocompatibility, absence of immunogenic reactions
and all other properties demanded of a bone graft material, respectively osteoinduction
(growth factors to drive the regeneration process, i.e., bone morphogenetic proteins), os-
teogenesis (i.e., osteoprogenitor cells, functionally active osteoblastic cells to produce new
bone matrix) and osteoconduction (i.e., three-dimensional, porous matrix) [2,12]. Auto-
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grafts integrate into the host bone faster [1] and are the most effective method for bone
regeneration [11], unfortunately donor site morbidity is a problematic consideration [3,8].
Important health risks such as major vessel or visceral injuries during harvesting are also
among the limitations in using autografts [25].

Allografts consist of taking bone from the donor and has a lower rate of incorporation
within the bone [11]. They are linked to risks of immune reactions and infection carrying,
have low osteoinductive capacity and have no bone cells, since donor grafts are devitalized
and processed through irradiation or freeze-drying [12]. The handicap of restricted donor
supply and the need for immunosuppressive therapy [3] and batch to batch variation [28]
add to the ones previously mentioned.

Xenografts are derived from species other than the recipient, are osteoconductive,
relatively inexpensive, do not lengthen the healing time, and the need for a second surgical
site for bone harvesting is eliminated [29]. They carry a rare risk of transmission of zoonotic
diseases [25], causing an immune reaction, and are unable to gain adequate height and
width for large defects [29]. Remains of bovine bone from xenografts can still be unresorbed
even after three years as some histological analyses have proved. They are osteoconductive
rather than osteoinductive [30] and are considered to be more liable to rejection, even in an
aggressive manner [25].

Biomaterial scaffolds (engineered scaffolds) address the limits of autografts, allografts
and xenografts. Novel approaches offered by tissue engineering have been conducted with
the aim to create grafts for repairing and regenerating damaged tissues [4] through the use
of a provisional biomaterial scaffold at the injured site in order to stimulate healing and
ensure certain recovery of functionality [3] and harness bone innate regenerative capacity,
as bone has a natural potential to repair, remodel, and regenerate itself [24].

Scaffolds need to be engineered with features that provide cells with signals for
regeneration in order to cancel the need for extended in vitro culture anterior to implan-
tation. Hence, considerable efforts are committed to advance biomimetic biomaterials to
a more complex stage, making them able to incorporate multi-functionality and possess
bioinstructive and stimuli-responsive properties [24].

Scaffolds should possess cytocompatibility and imitate biochemical and mechanical
properties of the veritable bone, furthering similar biological functions in order to prevail
limitations such as donor deficit, immunogenic reaction, and infection carrying, with the
main strategies considering the admixture of cells, biologically active molecules, and imper-
manent 3D fine-tuned porous design [4]. Degradation capability is necessary to integrate
the scaffold and should progress at a rate capable of maintaining mechanical support in
implantation sites. Apart of that, it plays a critical role in not only in ensuring the means
for metabolite diffusion and the development of new blood vessels, but also in releasing
the agents loaded into the biomaterial [3]. Scaffolds enable osteogenic cells adhesion of
and provide a suitable microenvironment for them in order to secrete osteoid, the matrix
of recently formed tissue and deliver signaling molecules to the bone regeneration space
(osteoconduction) [2].

4. Biomaterial Scaffolds

Scaffold development usually starts by choosing the scaffold material [3] as chemical
composition of the biomaterial plays an essential part in the favorable outcome of the pro-
cess [9,12]. We distinguish three classes of scaffolds in line with their material composition:
metals, polymers, and bio-ceramics, but they may consist also of a combination of these
three material types as composites [2,9,27]. Common materials used and approved, such
as stainless steel, poly(lactic-co-glycolic acid), and hydroxyapatite can be appealing as they
are already safely used as components in existing products [3]. However, they still have
their disadvantages such as the necessity for several surgical intervention, stress shielding,
wear particle osteolysis [28] and no potential for drug delivery in the case of biocompatible
metals and their alloys [16] and inferior mechanical properties that limit its use in load
bearing bone parts in the case of bioactive glasses [28]. A further classification is made by
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considering the origin of the material (natural or synthetic) and its degradation potential
under physiologic conditions (resorbable versus non-resorbable) [2].

Other characteristics to take into account is the heterogeneousness of the scaffold,
that bone is biologically and biomechanically variable, the ease to handle it as a one-step
procedure, its ability to reach suitable mechanical properties in order to bear the load of
normal movements, and its ability to allow vascularization in order to obtain a normal bone
structure [11], which can thus prevent the scaffold to undergo ischemia and cell death [25].

Scaffold material aims to support the viability of the adequate cell category and
simultaneously operate as a nonpermanent replacement of the bone extracellular ma-
trix, as a substitute matrix that will preferably be displaced by newly functional bone
tissue [31], while reproducing the properties of normal bone tissue formation [9]. Scaffolds
designed to aid regeneration need to encourage migration, cell adhesion, proliferation, and
differentiation [8] and ideally some essential features and functions should be certainly
considered: architecture, cytocompatibility, bioactivity, biodegradability, and mechanical
characteristics [9].

Material characteristics, such as biomaterial porosity and its surface properties, for
instance nano/micro topography, play a decisive role in osteoinduction [9,12] and the ex-
pected histogenesis [31]. The architectural features consider a controlled porous microstruc-
ture and high porous interconnectivity, a controlled degradation rate, mechanical stability,
and osteoconductive properties [8]. In addition, for an effective interaction between scaf-
folds and the cellular component, other design parameters are necessarily acknowledged,
such as surface properties, permeability, geometric properties, and mechanical strength,
all of which influence nutrients and oxygen transport throughout the scaffolds [32] and
influence cell-material interactions [33] controlling, thus, bone regeneration.

Host reactions to the implanted scaffold are greatly influenced by the physical (Figure 2)
and chemical properties of the scaffold and design strategies should consider and evaluate
this impact [17].

The ability of cells to penetrate, proliferate and differentiate are greatly influenced by
pore size, distribution and scaffold geometry, and also the rate of scaffold degradation [34].

Porosity: interconnection between pores promotes the loading of cells into biomaterials
due to large internal surface area, which ensures attachment and spreading sites. Because
the biomaterial is designed as an open network structure, diffusion of oxygen, metabolites,
and growth factors is possible, thus, enabling cells viability and proliferation, and the
space needed for the deposition of proteins secreted by the cells. Porosity of the bone
tissue facilitate the penetration of host cells and the growth of blood vessels that provide
the means to feed the emerging tissue [31]. This microstructure permits the ingrowth of
cells, which lead to tissue regeneration. Uniform cell seeding and nutrient exchange are
dependent on the interconnectivity of pores [8]. By raising the available surface inside a
pore to which cells can adhere on the implant, known as the specific surface area (SSA), a
quicker growth of hydroxyapatite appears and thus bone bonding will be more quickly
as well [35].

Scaffold architecture needs to consider, in order to assure well-adjusted biological
and physical properties of scaffolds, the following key parameters: total porosity, pore
morphology, distribution, and size [34]. Given the size of the bone cells of about 20 to
35 µm, materials with a porosity of about 50 to 150 µm seem to be the optimal for bone
grafting because, in this case, the bone cells can easily penetrate inside, and can assure
an in depth osteointegration of these synthetic grafts. If the pore size increases, it means
that the mechanical properties decrease and also the time requested for the feeling of these
pores with new bone increase, which overall means a slower healing and a higher risk of
secondary failure [36–38].

Interaction between cells and scaffolds is done mostly through the chemical groups
(ligands) present on the biomaterial surface. Using materials found naturally in the extracel-
lular matrix (e.g., collagen) have the advantage of initially possessing ligands in the scaffold
shaped as Arg-Gly-Asp (RGD) binding sequences, in contrast with synthetic materials,
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which may need a planned addition of ligands via, for example, protein adsorption. Ligand
density is influenced by the specific surface area which is conditional on the mean pore
size in the implanted scaffold. Cells migrate into the scaffold if the pores are sufficiently
large for them to penetrate, but pores need to be sufficiently small to reach a satisfactory
specific surface, with a ligand density high enough to permit adherence of a substantial
number of cells to ligands within the scaffold [24].
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Macroporous scaffolds (ranging between 100 and 600 µm) permit superior integration
in the host bone, further angiogenesis, and bone distribution. A higher pore size determines
an enhancement in permeability, which leads to better bone ingrowth, while small pores
have better results for soft tissue ingrowth [34]. For tissue ingrowth, a minimum pore
size about 50 µm is necessary [4] while, in most cases, surpassing a pore size limit of
150 µm determines the abrupt decrease of mechanical properties. It is also important to
mention that pore size and porosity play an important role in drug delivery, as will be
later discussed. Porosity can influence the scaffolds’ ability to induce new blood vessel
formation [19].

To create pores or increase porosity of biomaterials used in scaffolds, the following
methods are used: freeze-drying, salt leaching, gas foaming, controlled air drying, the use
of additional polymers, electrospinning, and inclusion of degradable hydrogel micropar-
ticles [31,39,40]. Research is still ongoing regarding whether uniform pore distribution
and similar size is a better choice than scaffolds designed with irregular pore size distri-
bution [34]. In 3D printing, two kind of pores can be developed, one induced by printing
larger pores, which are larger than the intrinsic porosity of the strands and are essential
in a faster cell penetration deep inside the graft. The strands can also have pores suitable



J. Clin. Med. 2021, 10, 253 8 of 27

for the penetration of the osteoblasts or, at least, to assure the attachment of these cells on
the scaffold [41].

Degradation: chronic foreign body responses generate complications for non-degradable
biomaterials, so the ideal scaffold is ultimately replaced by new native bone tissues [31] as
scaffolds are not intended to be perpetual implants [32].

Degradation rates depend not just on the chemical composition, but also on pore
morphology, although this factor is less significant but should still receive attention in
some cases [42]. The degradation rate of the implanted construct is an essential factor in
its success. Material degradation should be in accordance to tissue synthesis to ensure
appropriate mechanical stability in the course of bone tissue hystogenesis. The required
residence time of the scaffold is specific to every tissue and need to be sufficient for cells to
populate the scaffold appropriately and produce an enduring bone extracellular matrix. If
a scaffold degrades faster than enough production of bone extracellular matrix can happen,
cells will lose key physiochemical factors for bone tissue regeneration and repair, leading
to scar formation. If residence time is prolonged, bone extracellular matrix production and
cell proliferation will be suppressed [31].

Degradation rates are supposed by design to match the rate of new tissue development
and maturation after transplantation in vivo [34]. The structure and microenvironment
of scaffolds should ensure an increase in cell population, particularly for osteoblasts,
which have bone-forming properties [43], leading to differentiation of precursor cells into
osteoblasts and being supportive towards osteoblasts regenerative actions [8].

The key considerations for designing a scaffold or determining its effectiveness are as
seen also in Figure 3 [24]:

1. Biocompatibility: it must trigger a reduced immune reaction to hinder it from causing
a severe inflammatory response that might reduce healing or cause rejection by
the body. Cells must adhere, function normally, and migrate onto the surface and
eventually through the scaffold and begin to proliferate before laying down new
matrix.

2. Biodegradability: it must degrade while new tissue is forming, and cells deposit
their extracellular matrix. Secondary degradation products must be of low or absent
toxicity and able to exit the body easily.

3. Mechanical properties: it should possess enough mechanical integrity to operate
from implantation to the completion of the remodeling process. A balance between
mechanical properties and enough porous architecture to allow cell infiltration and
vascularization is essential.

4. Scaffold architecture: It should possess a structure of interconnected pores with high
porosity to ensure cellular penetration and adequate diffusion of nutrients to cells
within the construct and to the extra-cellular matrix formed by these cells. A porous
interconnected structure is also required to allow diffusion of waste products out of
the scaffold, and the products of scaffold degradation should be able to exit the body
without interference with other organs and surrounding tissues. A critical range of
pore sizes exists, for any scaffold, which may vary depending on the cell type used
and tissue being engineered.

5. Manufacturing technology: It must be financially profitable and feasible to scale-up
from research laboratory production to batch production, and thus be clinically and
commercially viable. The progress to scalable production needs to comply with good
manufacturing practice (GMP) standards for ensuring successful translation to the
clinic and determining the way in which the scaffolds will be delivered and made
available to the clinician.

6. Delivery capability: It is essential to mention that delivery capability through the
releasing biological active agents can induce important properties such as faster
healing [44,45], antimicrobial [46–48], and antitumoral activity [49,50].

7. “In depth” osteointegration: This requirement is strongly correlated with the pore size
and porosity but also with the nature of the biomaterial. Bone grafting went through
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progressive improvement from the use of first-generation bone grafts (metals and
alloys, i.e., titanium and its alloys, stainless steel, Co–Cr alloys) to second-generation
bone grafts (ceramics and polymers, i.e., calcium phosphates, Al2O3, ZrO2; collagen,
gelatin, chitosan, chitin, alginate, PLLA, PLGA), third-generation bone grafts (acellu-
lar composites or nanocomposites) and fourth-generation bone grafts (composites or
nanocomposites containing cells or derived). The fifth generation in bone grafting is
assumed to be “material design”, the additive manufacturing methods, along with
some classical ones, being used in generating desired morphology to assure deep cell
penetration inside the graft as well as to allow a controlled delivery of the biological
active agents’ activity [50].

Plenty of material types have displayed osteoinductive properties, including nat-
ural and synthetic ceramics, especially calcium phosphate-based materials in various
forms [9,12]. There is evidence for the osteoinductivity of calcium phosphate-based materi-
als namely in the form of cements, coatings, sintered ceramics, and coral-derived ceramics
in numerous animal models, while other ceramics, such as bioglass and alumina ceramic,
have been lately confirmed to be osteoconductive [12].
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Biomaterials effectiveness is assessed in animal metaphyseal osteoporotic models,
the ones of critical size being the most clinically relevant ones, as healing occur only with
the aid of a graft [51]. In clinical practice, unlike standardized animal models, every
fracture is distinct [22]. As clinical studies regarding biomaterials are scarce, due to their
classification as medical devices and the strict safety regulations derived from this, clinical
data is insufficient to assess performance and research is ongoing [52].

Bioceramics are the basis for porous scaffolds (e.g., bone regeneration), solid scaffolds
(e.g., reconstruction of ear ossicles), and powders (e.g., bone filling). Considering the
way they interact with the host, bioceramics are classified into resorbable (e.g., some
calcium phosphates, calcium sulphate, etc.), bioactive (e.g., bioactive glass), and nearly inert
(e.g., zirconia). Bioactive and resorbable ceramics, are considered promising regenerative
biomaterials and have been subject of clinical trials [4].

Calcium phosphates ceramics have high potential for bone regeneration applications,
due to their injectability, bioactivity, biocompatibility, and ability to deliver stem cells,
growth factors and drugs, including anti-resorptive (anti-osteoporotic) drugs [53]. Calcium
phosphates have a crystalline structure and chemical composition resembling bone miner-
als. The widely used hydroxyapatite (HA), having the chemical formula (Ca10[PO4]6[OH]2),
has a hexagonal structure [27], similar to apatite, the main mineral found in bone, but
a low resorption rate [4], being thermodynamically stable at physiological pH and less
soluble among other calcium phosphates [35]. HA scaffolds are well-known for being
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biocompatible, osteoconductive, and osteoinductive and other calcium phosphates, with
faster resorption rates, such as β-tricalcium phosphate, have been studied as well [4].

Calcium phosphate scaffolds show the capacity to promote osteogenesis and osteoin-
tegration, due to their surface charge, and, also, their chemistry and topography [4]. HA
coated implants are proven to promote osteointegration capacity of inert metals [7] but
some pioneering works were reported related to COLL/HA composite deposition by
using MAPLE [54]. Due to its high biocompatibility, bioactivity, osteoconductive and/or
osteoinductive capacity (in certain conditions), nontoxicity, nonimmunogenic properties,
and noninflammatory behavior, HA is available and used as a bone filler and as coatings
on prostheses, [4].

Calcium phosphate cements also have applicability in osteoporotic fractures in the
form of bone void fillers. HA is highly osteoconductive but has no natural osteoinductive
capacity and incorporation of cells, growth factors, and also of various ionic substitutions
into the crystal lattice such as Mg, Zn, F, Cl, Si, Sr, may prove to be beneficial [7]. The
in vivo evaluation of scaffolds, loaded with growth factors and without them, indicated
superior new bone development in previous variant compared to the other [4]. Therefore,
a more efficient HA scaffold for osteoporotic applications can be made by the addition of
bone regulatory agents/biologics with osteogenic and anti-resorptive capacities [7]. There
is evidence that the body’s hard tissues contain substituting ions such as strontium (Sr) and
fluorine (F) and incorporating them into HA can lead to improved material properties such
as crystallinity and dissolution rate in physiological conditions [55] and various ions (Ca,
Sr, Mg, Co, Cu, and Zn) can influence the implant generated immune response through
the effect on immune cells and their cytokine releasing activity [21]. Bone formation
is dependent on the extracellular microenvironment and its calcium ion gradient, both
influenced by implant proprieties. Calcium ions dynamic and their concentration affect the
recruitment and differentiation of mesenchymal stem cells (MSCs). Calcium phosphates
ceramic adsorb firmly proteins from bodily fluids which further affect cell behavior and
osteogenesis [56].

Natural marine sources for calcium phosphates are fish bones, seashells, corals, and
algae. Phylum Porifera (Sponges) and Phylum Cnidaria (Corals) attracted attention due
to their skeleton composed of bioceramics of which HA has been obtained. In addition,
eggshells are an easily obtained, low-cost source for this material since they are considered
food waste and calcium phosphates can be readily obtained by treating with phosphate,
calcination and milling [4].

Synthetic HA can be obtained by different methods, as seen in Figure 4. Parameters
such as temperature, pH, reaction time, and concentration of reagents during synthesis can
affect the properties of the obtained HA [4].

As the biological HA is formed from plate-like crystals with nanoscale thickness, it is
considered that nanoparticles of synthetic HA such as bone apatite is the adequate choice
to utilize for bone substitution and regeneration. Particle diminution to nano-size level
may hinder demineralization. Nanoscale HA have advanced densification and sintering
properties as a result of its increased surface energy preventing micro-cracks. Improved
surface functional features in HA nanoparticles, compared to micro-size particles, may
determine superior cell proliferation and differentiation [55].

However, the drawbacks for this material are still the brittleness, their high deforma-
tion rates [19] and lack a fine-tuning biodegrading capacity [4].

Natural polymers are expected to be suitable biomaterial scaffolds for bone tissue
engineering, the most common being collagen/gelatin, chitosan, alginate, silk, hyaluronic
acid, and peptides [9], the benefits being their capacity to resorb in vivo and their natural
biocompatibility and reduced adverse immunological effects [2].
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Synthetic polymers widely used for tissue engineering are aliphatic polyesters such
as polyglycolic acid, polylactic acid, and polycaprolactone [9] and their copolymers [57].
Synthetic polymers scaffolds possess the advantages of versatile fabrication with a broad
range of degradation rates and mechanical properties in contrast with natural polymers
due to their composition, the copolymer ratio, and the interactions of their polymeric side
chains. The options regarding chemical composition and 3D configuration can influence
its cell adhesion capacity to incorporate and deliver bioactive molecules in a controlled
manner [2]. They are used for scaffolds due to their good biocompatibility and suitability as
drug delivery materials for desired molecules in tissue regeneration [31]. These polymers
are already used in orthopedic applications for low mechanically loaded implantable
devices such as screws and plates for fixing fractured bone fragments, but widespread use
is still limited by their low mechanical performances [58].

PGA is highly hydrophilic, and its mechanical strength weakens in two to four weeks
after implantation. PLA is more hydrophobic, and degradation can take from months
to years after implantation. The degradation rates of these materials can be customized
by copolymer blends (PLGA) utilization. Acid-catalyzed hydrolysis and large erosion of
these scaffolds is a drawback, which can lead to structural instability and even stopped
regeneration [31]. The PLGA scaffolds degradation rate varies, as the ones with wider pore
size and reduced porosity degrade faster compared to those with reduced pore size and
increased porosity due to higher surface area in the scaffolds with higher pore size, which
increase the diffusion of acidic degradation products during the incubation period and
lead to accentuated acid-catalyzed hydrolysis [42].

Long-term exposure to PLGA acidic by-products upon degradation may cause tissue
necrosis and implant failure. An array of polyphosphazenes has been incorporated in
PLGA scaffolds, in order to control degradation rates and create more efficient scaffolds.
Polyphosphazenes have nontoxic and neutral pH or basic products upon degradation
and can be fine-tuned according to the degradation rates aimed [9]. pH is an important
factor to take in account as the calcium phosphate precipitates start appearing with a
rise in the pH and the sequential cross linkage of collagen chains depends on pH for
bone regeneration [35]. The majority of polymer materials do not have osteoconductive
properties and can lead to stress relaxation behavior and creep [16]. Figure 5 present some
of the most important biomaterials used in bone tissue engineering: metals and alloys,
polymers, and ceramics, but also derived composite materials.
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Polymer-ceramic composites represent attractive options for bone substitution and
regeneration as it is hard for a single category of biomaterial to fulfill all the requirements of
artificial bone scaffolds [27] and fully replicate the properties of bone [59]. Composites take
advantage of each of its constituents, organic and inorganic (i.e., biodegradable polymer
and ceramic materials), and prove to be more successfully strategy than the separate use of
these materials [12]. In fact, this approach is a biomimetic approach which compositionally
mimic the nature of the bone, which is also a polymer-ceramic composite material.

Scaffolds fabricated from polymer-ceramic composites biomaterials possess the higher
biocompatibility and biodegradability of organic materials and the higher mechanical
properties and biological activity of inorganic materials [27]. Because natural bone structure
is, indeed, that of a composite biomaterial with an inorganic component—HA crystals and
an organic component—collagen fibers [12], the combination of those two components for
scaffold material can reproduce the chemical composition of the genuine bone extracellular
matrix [27]. Evaluation of scaffolds is generally devised through evaluation of cellular
interactions, the scaffold microstructure and mechanical properties [4].
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The scaffold microstructure (e.g., pore size, shape, and interconnectivity) allows cell
migration, nutrient and waste interchange, angiogenesis, and bone ingrowth and mechani-
cal features ensure the formation of bone tissue after implantation while maintaining its
structural integrity [4,9], while porous structures improve mechanical performance [4]. The
mechanism of bone fixation is through the deposition of a surface layer of apatite, a process
known as bioactivity of biomaterials [60]. This deposition arises from the merging of
calcium derived from the bioactive material matrix or the biological fluids and phosphate
present in the biological fluids [35]. Physiological fluids such as blood are supersaturated
with these ions, but the deposition of the apatite layer is not happening on every surface.
In vitro physicochemical analyses showed quite the opposite as faster deposition of apatite
layer occurs on more reactive surfaces [16].

Polymer-HA composites containing PLA, PLGA, collagen, gelatin, and chitosan have
been realized and proved to be osteoinductive, enhancing bone development in vitro
and/or in vivo [12] and ectopically [9]. Combining HA and natural polymer has been
proved to enhance mechanical properties and bioactivity of scaffolds in contrast to simple
polymer scaffolds and to increase hydrophilicity, in case of PLLA-matrix [58], and poten-
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tially reduces adverse effects resulting from degradation of various synthetic polymers, [12]
thus making polymer-ceramic composite biomaterial the most promising option for bone
scaffolds [27].

A scaffold combining collagen, calcium phosphate, and HA, showed higher mechani-
cal strength compared to scaffolds fabricated only from calcium phosphate, with proper
biocompatibility, increased osteoinductivity and bone formation in vivo compared with
calcium phosphate scaffolds and collagen-calcium phosphate scaffolds [4]. HA is one of the
most promising fillers for the reinforcement of PLLA due to its high hardness and Young’s
modulus [58].

These biomimetic materials are capable of simulating the formation, precipitation and
deposition of apatite from simulated body fluid (SBF), leading to increased bone-matrix
interface strength through better osteoblastic cell survival, proliferation and expression of
bone-specific markers (i.e., bone sialoprotein and osteocalcin) [12].

Surface modification and functionalization of scaffolds with biologically active molecules
can increase the effectiveness of bone regeneration. A specific molecule (i.e., peptide) cho-
sen to initiate attachment of cells and their proliferation or directly their differentiation,
can be deposited on scaffold surface or integrated within [8].

To overcome the challenge caused by the relatively low compatibility at the interface
between bioceramic and biopolymer, the use of coupling agents has been proposed in
the form of a chemical moderating agent with two different functional groups, the first
being able to react with polymer molecules, while the second being able to adsorb with
the ceramic surface to create a strong bond. There is substantial difference in chemical
and physical properties between the two phases, which results in poor bonding strength.
Interface interaction are important in determining mechanical properties that need more
consideration, as research focused mainly on the reinforcement effect that bioceramics have
on biopolymer matrix. The use of a coupling agent can enhance the efficiency of interfacial
stress transfer between the two components, thereby improving the mechanical properties
of the composite scaffold [27].

As a result of the different properties of bioceramic and biopolymer, it is improbable
for bioceramics to disperse equally in the organic component and their low compatibility
and interface bonding strength may lead to shrinking and deformation of the polymer on
the ceramic surface and cause micro-cracks at their interface throughout processing, further
leading to depreciated mechanical properties. After transplantation into the human body of
a composite scaffold, the interface layer between the two components is rapidly damaged,
and the ceramic is separated soon from the matrix, causing decreased mechanical property
in the preliminary usage stage, unsuitable for a successful repairing process. In order to
construct a successful bioceramic/biopolymer composite and use it as a bone scaffold is
necessary to improve adhesion at the bioceramic and biopolymer interface [27].

5. Material Design by 3D Printing Technology

An innovative area of research concerning scaffold designing and fabrication is the
use of additive manufacturing technologies (3D printing) [8] which guides the path in
developing 3D structures trough cutting edge methods utilizing various biomaterials [61].
Advances in this field of research are providing the methods to produce complex and highly
specialized 3D structures [31] serving as templates in providing a suitable environment
for bone tissue regeneration [9]. This is why additive manufacturing techniques open
new opportunities and there are premises to consider a fifth revolution in bone grafting
materials due to the advanced “materials design”. Three-dimensional (3D) printing is
realized through adding materials to obtain scaffolds using 3D model data, layer-by-
layer, in contrast to subtractive manufacturing methods [62]. These methods have a
great flexibility in producing scaffolds of different structural complexity [2]. A concise
comparison between different scaffold fabrication methods can be seen in Figure 6.
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The 3D printed scaffolds are advantageous because of their customized shape, poros-
ity/pore size, and mechanical characteristics [62]. This high customization permits a
high control regarding the scaffold architecture, flexibility in scaling up fabrication, tech-
nically precise reproducibility—which is not always the case in subtractive fabrication
techniques [2]—and a precise morphology [4]. The usage of 3D printing for bone tissue
engineering possesses an essential advantage, such as the increased spatial control over
the deposition of cells and materials that permits design control of complex tissue in-
terfaces [13]. The capacity to precisely shape mechanical and biological properties, and
degradation kinetics is linked with control of the scaffold architecture. Additionally, these
methods allow the development of dimensionally precise prototypes of bone [4]. The
development of 3D printing through computer-aided design (CAD) modelling further
increases manufacturing precision and repeatability of scaffolds, and highly controlled
porosity at both micro and macro levels [59]. Relevant to mention, is that the macroporosity
is important in allowing for a fast cell penetration, fast bone ingrowth, but also in allowing
vascularization oxygen and nutrients exchange, etc., while the microporosity is essential in
designing the release profile, for instance.

Fused deposition modeling (FDM) 3D printing technology allows printing with poly-
mer and polymer-based composite filaments by extrusion with a resolution of up to
200 microns. Such high printing precision allows designing and manufacturing with high
accuracy personified highly porous scaffolds possessing an interconnected system of open
pores, thus prompting osteointegration of scaffold [58].

Suitable polyesters for 3D printing of polymer scaffolds, possessing biodegradable
and biocompatible properties, like poly(L-lactic acid) (PLLA), poly(vinyl alcohol) (PVA),
poly-β-hydroxybutyrate (PHB), polyurethane elastomers, poly(3- hydroxybutyrate-co-
3-hydroxyvalerate) (PHBV), poly(D,L-lactic acid) (PDLLA), poly(lactic-co-glycolic acid)
(PLGA) and polycaprolactone (PCL) and polyurethanes, can be processed into wires, pellets
and powders with the help of high temperature melting-extrusion and sintering, or by
dissolution in organic/aqueous solvents to allow micro extrusion-based 3D printing at
room/low temperature [62].
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Microporous PLGA scaffolds were produced through rapid printing technique by
precisely directing solvent streams onto polymer granules or by drilling with dies of a
specific size. Reproducibility precision of these cylindrical scaffolds went to millimeter
dimensions and the materials supported in vivo bone regeneration in defect models [31].
Due to its properties of thermoplasticity and extremely low thermal shrinkage, 3D printing
technologies have also become widespread in PLLA molding [58].

Scaffolds obtained by 3D printing techniques represent an efficient approach for
providing local delivery and sustained release of drugs, by mixing them with the syn-
thetic/natural polymer solution, which can be 3D printed into scaffolds [62].

3D methods have precise control over scaffold microarchitecture and spatial content.
Together with the wide variety of available bioactive materials, growth factors, function-
alization techniques and biomimetic designs, increases the possibility to create complex
scaffolds fine-tuned to individual needs, offering chances of treatment to difficult condi-
tions, such as osteonecorosis, critical defects, and osteoporosis [59].

3D printing is a complex process with multiple engineering aspects to consider, due to
the material type and 3D structure fabrication method when choosing the most suitable for
specific damage or defect [61] and due to facing competition from injectable scaffolds in
the form of hydrogels, micro or nanospheres [8]. In certain situations, when direct printing
is problematic, such as for instance for the direct printing of the COLL/HA composite
gel, the use of a precursor gel based on collagen and calcium hydroxide can be used and
the printed microstructured patterns are simultaneously cross-linked with glutaraldehyde
and calcium hydroxide are transformed into hydroxyapatite, both processes occurring as
a consequence of dipping them into glutaraldehyde solution in phosphate buffer saline
or SBF [41].

The following challenges are expected to be overcome in the near future [62]:

1. Imitating exactly the structure of natural bone tissue, as the majority of extrusion-
based 3D printed structures have a reduced printing resolution and are capable of
imitating the hierarchical structure at a rather reduced level. Superior micro-extrusion
nozzle is expected to be capable of producing considerably higher resolution scaffolds;

2. Enabling the manufacturing of customized structures with complex characteristics,
adapted to the heterogeneousness and gradient mechanical properties of defected
bone tissue;

3. Controlled delivery of angiogenic factors and development of vascular-like duct in the
structures are necessary to allow enhanced vascularization able to transport sufficient
oxygen/nutrient to the regeneration site;

4. Obtaining both scaffold fabrication and cell incorporation concomitant, as 3D printed
scaffolds loaded with cells are considered more effective in healing bone conditions,
compared to recruiting host cells into scaffolds after implantation. Subsequent ad-
hesion of cells on scaffolds in vivo usually induces variable cell distribution and low
cell density, compared to in situ incorporation of cells through 3D printing, which is
preferable. Besides 3D bioprinting, which fabricates cell-loaded hydrogel structure,
no other 3D printing technique can sustain cell incorporation during the process;

5. Incorporating anti-bacterial or anti-cancer capabilities in order to treat infection/bone
tumor resection-induced defects.

All these challenges can be considered part of the fifth generation of materials which
will be obtained by “material design” and developed by using additive manufacturing.

6. Drug Delivery

Scaffolds made from biomaterials loaded with biologically active therapeutic agents
(ions, vitamins, drugs) may become the preferable manner in which delivery of these
agents at the defect site is realized in order to promote healing and integration [7]. Scaffolds
act as reservoirs for delivery of bioactive agents including ions, such as, especially Ca2+,
Zn2+, PO4

3−; peptides and proteins, vitamins, genes but even cells and nanoparticles [3],
aiding functional restoration of the fractured bone or to treat different diseases, especially
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infections, osteoporosis, or cancer [7] and their loco-regional delivery in order to minimize
side effects at systemic level [41]. In case of osteoporotic fractures, convenient local drug
delivery approaches are implant coatings, injectable bone cements and gels, while scaf-
folds are preferred for large bone defects [22]. The use of these biological active agents is
especially welcome, as seen in Figure 7, because they can replace the normal bone resorp-
tion/formation ratio by enhancing the formation rate. Figure 7a represents the evolution of
bone mass, highlighting the active growth period (formation rate (F) > resorption rate (R))
while, after 25 to 30 years the bone mass usually slightly starts to decrease, and this decrease
will be more important after 45 years, especially if this is overlapping with menopause.
Once the mass loss is starting, an important imbalance appears between formation and
resorption and, in the case of fractures, the healing process will be significantly affected,
and the bone density will be lower compared to normal, healthy bone tissue. Figure 7b
schematically highlights the influence of the use of biological active agents in the healing
of the osteoporotic, fractured bone. Therefore, especially in the case of fractures associated
with osteoporosis, the healing could be slow, and the mechanical performances of these
regions will be inferior and subsequently, secondary fractures can appear.
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Figure 7. (a) Bone mass evolution during life; (b) bone mass evolution in normal versus assisted
healing of bone defects.

The incorporation of several types of ions in the chemical composition of the scaffold
is proved to promote the osteoconductivity of CPC [53]. HA can be an outstanding drug
delivery carrier for numerous therapeutic agents as a result of its high stability, bioactivity,
biocompatibility, and lack of toxicity [63]. In addition, biodegradable polymers have wide
usage as drug delivery systems due to their biodegradability and biocompatibility, and,
among them, aliphatic polyester (PLA), proteins (collagen, gelatin) or polysaccharides
(alginate, chitosan) have the ability to extend the releasing of drugs from some days till
some months [57,64–66].
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The absence of an exothermic effect in the setting reaction and the natural porosity of
CPCs permit the incorporation of therapeutic agents with reduced risk of thermal denatu-
ralization and possible activity loss during preparation or implantation. Incorporation of
drugs is realized by simply mixing it with one of the solid or liquid cement components.
Drugs can also be added by adsorption onto the scaffold or incorporated into polymeric
microfibers or microspheres prior to mixing with the cement paste. Features that impact
loading and release of therapeutic agents include the microstructure, porosity and surface
area of the cements, drug incorporation method, and the interaction between the agent and
the pre-set matrix [53].

Ion substitution of HA is widely researched lately due to its capacity to allow simul-
taneously both the stabilization of bone defect sites and locally delivering therapeutic
ions [63], thus improving bioactivity or mechanical properties of the graft [67]. Ionically
modified CPCs (i.e., with Sr2+, (SiO4)4−, Zn2+, Mg2+) were investigated for their capability
to influence bone modeling and remodeling processes [53], Sr2+ receiving attention for
its particular prospects for stimulating new bone formation, hindering cell driven bone
resorption and raising BMD, and thus having large acceptance and usage in systemic
osteoporosis therapy [63].

Interest is rising regarding the potential of carbonate substituted HA as a way to
improve the bioactivity of the composites, adhesion and differentiation of osteoblast cells,
collagen and osteocalcin expression and mineral deposition [60]. During an evaluation of
the apatite formation capacity of biomaterials in SBF, there were reported visible differences
in calcium uptake, the thickness of the freshly precipitated apatite layer and a confirmation
of higher degradation rate of carbonate HA [60].

Fluorine can enhance HA crystallization and mineralization during bone formation, as
fluorine containing HA, Ca10(PO4)6(OH)2−xFx is reported to manifest the lowest solubility
and higher biocompatibility and bioactivity comparing with HA, leading to an increase in
the differentiation and proliferation of osteoblasts, inducing, thus, bone regeneration [55].

7. Osteoporosis

Sustaining bone mass depends on bone remodeling processes, which imply the equi-
librium between the activity of bone resorbing osteoclasts and bone forming osteoblasts.
Unbalanced resorption activity leads to decreased bone mass, altered bone quality, and
higher fracture risk in osteoporosis [68]. The same equilibrium of bone remodeling can
be affected because of skeletal senescence, which alter the integrity and biomechanical
properties of both types of bone tissue [5].

Osteoporosis is a chronic condition [69], characterized by decreasing bone mass and
quality [6], making elderly patients, both men and women with the general increase in life
expectancy, susceptible to osteoporotic fracture, also known as fragility fracture, due to
low-energy trauma [5] and delayed [43] or impaired bone regeneration potential, as such
fractures usually do not heal and increase the incidence of subsequent fractures by two to
three times in the proximity of the site [7].

Osteoporotic bones have a low BMD [70], because of a low capacity of bone regen-
eration, excessive activation of osteoclasts [5] and the increased osteoclast induced bone
turnover, leading to high crystallinity of the HA in the bone and lower level of acid phos-
phate [7]. These changes in the microarchitecture cause a reduction in both the cross-linking
efficiency and tolerance of the bone towards mechanical stress [7] and increased risk of
bone fractures [70]. Osteoporotic fractures are the visible effect of the micro-alterations that
raise the susceptibility of bone to the applied load [5].

Surgery is the main treatment strategy, but poor results are obtained because of vari-
ous biological and surgical factors, which makes it hard to achieve a stable fixation and
the failure risk (refracturation) following surgery is significant [5,20]. Treating osteoporotic
fractures is difficult because of the reduced healing capacity, which correlates for osteo-
porotic patients with a far higher (~50%) failure rate of implant fixation than against
non-osteoporotic patients [67], making their implants prone to pull out and failure [7],
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as osseointegration is inhibited by osteoporosis [71]. Decreased bone mass [69], porous
structure and low strength are linked to a reduced supporting ability of an implant [20].

Delayed regeneration potential is influenced by compositional difference in vitamin
D, non-availability of growth factors, while estrogen is important in stimulating RANK
ligand secretion, leading, thus, to osteoclasts activation and bone resorption. For men,
testosterone is key for maintaining BMD. Decrease of the parathyroid hormone (PTH)
determines reduced calcium absorption and, consequently, a reduction in BMD [7]. The
bone fragility specific to osteoporosis subsequent to menopause is caused by an imbalance
at the cellular level between exceeding bone resorption and lower bone formation, and
from an increase in the rate of remodeling at the tissue level [72]. Although bone turnover
is a normal physiological process involved in microfractures repairing, its acceleration
determines bone loss [73].

Throughout the evolution of osteoporosis, osteocyte numbers per unit of bone area
are constantly declining, and consequently trabecular thickness lowers and intracortical
porosity heightens. These significant modifications in the matrix composition and structure
cause deteriorated bone quality and lower resistance to mechanical loading [5]. Red
marrow starts to accumulate adipose cells, turning into white marrow. Simultaneously with
the beginning of osteoporosis, other changes were reported, namely, decreased number,
proliferation and osteogenic differentiation potential of MSCs present in the bone marrow
micro-environment [7].

Osteoporosis causes inadequate conditions for fracture healing [43], and the simple
treatment of the acute fracture is unable to lower the risk of repeated fractures, thus, being
necessary to be followed up by appropriate osteoporosis treatment [70]. In these cases,
the loco-regional delivery could be an efficient solution because the delivered agents can
counteract the bone density decrease and thus can assure an assisted healing where the
formation rate is enhanced, the formation/resorption will be improved or even normal
bone density can be obtained in the new bone as well as in the neighboring region where
these agents are diffusing. In normal conditions, these biological active agents will diffuse
during and after the healing process (Figure 8b,c) and the distribution of the bone density
in this area will be similar with the one presented in Figure 8c. Similar approaches were
also proposed in the patent application RO129822 (A2) [74] which use zinc as the active
ion enhancing bone formation, but this approach can be applied also for developing anti-
osteoporotic agents such as strontium ranelate. These drug delivery systems can be in solid
or gel form, the solids will be implanted after surgical intervention as presented in Figure
8b and, if necessary, metallic supports can be used to take over the mechanical loadings
while gels can be injected into the defect.
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Osteoporosis is classified into primary and secondary [6]:
Primary osteoporosis or postmenopausal osteoporosis appears after menopause. Type

1 affects more trabecular than cortical bone, as seen mainly in vertebral and distal radius
fractures. It can affect men also, arising in midlife with vertebral fractures or low BMD
by DXA. In men, genetic causes may involve genes for IGF-I18 or estrogen metabolism.
Type 2 is found in both genders after age 70. Both types of bone are affected, commonly
resulting in fractures of the proximal femur, in addition to vertebrae and radii. There are
differences in aging-associated changes between genders, as women lose trabeculae and
have greater spacing between trabeculae, and men only have thinning of trabeculae as they
age. Quantitative computed tomography with finite element analysis have shown that
women lose more cortical bone in vertebrae. Men have larger bones at peak bone mass;
and with aging, more periosteal bone is deposited in long bones. These differences may
explain why men fracture later in life than women [6].

Secondary osteoporosis affects both genders. The initiation of corticosteroid therapy
is usually the cause of secondary osteoporosis, namely glucocorticoid-induced osteoporo-
sis, which increase fracture risk as early as three months following oral glucocorticoid
treatment [6].

Typical osteoporotic drugs act by either inhibiting bone resorption or favoring bone
formation [7]. Currently, therapy for osteoporosis utilize anti-resorptive or anabolic drugs,
which determine inconsistent effects on bone mass and fracture incidence [68]. Authorized
treatment by FDA for osteoporosis includes the bisphosphonates (alendronate, risedronate
and zoledronic acid), the more recent anti-resorptive antibody denosumab and the anabolic
agent teriparatide. Bisphosphonates have been connected to bone osteonecrosis [71].
Ibandronate is also available, while strontium ranelate is approved to be used in over
70 countries but not approved by the FDA [6].

Bisphosphonates are a class of drugs that adjust the increased activity of the osteoclasts,
and along selective estrogen receptor modulators (SERMs), calcitonin, denosumab and
strontium ranelate, are included in the wider group of anti-resorbers. Differently from
the catabolic drugs, anabolic drugs favor bone formation and include teriparatide and
PTH analog [7].

Delivering a pair of drugs, with a complimentary action on bone dynamics has
been considered, mostly with BPs and BMP-2—BPs and PTH being another combination.
Simultaneous use of pro-anabolic and anti-catabolic drugs aims to aid impaired healing in
osteoporotic patients [52].

New drugs against osteoporosis such as denosumab (targeting RANKL/RANK/OPG
pathway) and romosozumab (targeting Wnt signaling cascades), are monitored for cardio-
vascular outcomes. One meta-analysis indicates that denosumab usage did not increase
the risk of major adverse cardiovascular events among patients with primary osteoporo-
sis over a period of 12 to 36 months but romosozumab might raise concerns [75], but
after a re-analysis was performed, both Denosumab and Romosozumab association with
cardiovascular outcomes was dismissed [76].

Romosozumab is a monoclonal antibody that inhibits sclerostin, an extracellular
Wnt inhibitor secreted mainly by osteocytes [77], with a double effect of enhancing bone
formation and diminishing bone resorption [75].

Clinical trials of romosozumab show that it is well tolerated and effective in fracture
risk reduction, possessing great therapeutical potential for osteoporosis but still has some
limitations by the fact that its anabolic potency is restricted to a few months of therapy,
after which the large bone mass gaining is diminished. A possible strategy might be the
usage of other drugs as well to sustain the bone mass gaining [78].

Odanacatib is an inhibitor of cathepsin K (CatK), and is very active, selective and
sensitive, capable increasing bone formation and implant osseointegration and hinder bone
loss in osteoporotic conditions. Osteoclasts perform bone degradation trough acid secretion
in order to demineralize HA and lysosomal cysteine protease secretion (CatK) in order
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to degrade the bone matrix proteins. Odanacatib does not alter normal differentiation,
migration and polarization of osteoclasts [71].

Increased risk of cardiovascular events, such as stroke, made odanacatib less attractive
for future use against osteoporosis [75,79], even though it was proved beneficial for risk
reductions of fractures in postmenopausal osteoporosis [75]. Other similar drugs such
as balicatib, relacatib and dual cathepsin S/K inhibitor SAR114137 were discarded after
adverse effects were observed [79].

Statins are not specific for treating osteoporosis but their capacity to inhibit the HMG-
CoA reductase pathway determine an increased bone metabolism [22] and by increasing
BMP-2 expression determine healing [52], but their efficiency is still debated.

Clinical reports indicate intrinsic weak bone architecture and impaired osteointegra-
tive ability as the lead cause of implant non-union and ejection. Worrying is also the
negative effect osteoporosis has on previously osteointegrated implants [7], including
degradable bone graft substitutes [43]. Implants used in osteoporotic fractures need to
sustain, alongside mechanical support, a way to counteract the pathology of osteoporosis,
thus, aiding bone regeneration. Consequently, local delivering of therapeutic agents that
can increase osteointegration, osteogenesis while simultaneously regulate bone remodeling
may prove advantageous [7].

8. Strontium Ranelate

Strontium (Sr) is an alkaline earth metal, present in the human body as a trace element,
with chemical and physical properties comparable to those of calcium [23]. It is stored
in the bone [33] where is stimulates cell growth, hindering bone resorption, opposing
osteoporosis [55] and improving both cortical and trabecular bone structures [23]. It has
been reported as a key factor in bone remodeling, being linked to both the stimulation of
bone formation and hindering of bone resorption [80]. This beneficial double effect it has
on bone turnover has been so far used to some extent against osteoporosis [43]. It has the
capability to promote bone regeneration while reducing the frequency of fractures in animal
models [23] even in small doses [43]. Sr ions have strong bone-seeking properties and
often act in the human body similarly to calcium [69] but due to its higher atomic weight,
incorporation of Sr ions reinforces the bone through increasing its mass and density [35]. Sr
has attracted attention for potential use against osteoporosis as Sr ions increase osteoblast
proliferation and reduce osteoclast activity, respectively [7].

Strontium ions have demonstrated effects both in vitro and in vivo studies [43], and is
believed to lie in the Sr2+ capability to enhance osteoblast-related gene expression and the
alkaline phosphatase (ALP) activity of mesenchymal stem cells (MSCs) [55], together with
inhibiting the differentiation of osteoclasts [3]. ALP is considered a marker of osteogenic
differentiation [28].

Sr hinders the formation of a ruffled border by the pre-osteoclast cells, thus hinder-
ing its maturation and resorption ability. Sr controls calcium sensing receptor activity
by increasing calcium concentration in the microenvironment, resulting in an enhanced
osteogenesis by osteoblast cells. Advanced osteogenic ability (ALP activity) of Sr doped
CPCs is indicated by rat OB sarcoma cells model [7]. Sr doped HA/chitosan nanohy-
brid scaffolds display increased ALP activity, extracellular matrix mineralization, and
osteoinductivity [63].

Sr ions promote protein synthesis for both collagen and non-collagen and osteoblastic
growth [35] together with the inhibition of osteoclast differentiation and resorption activity,
causing a denser and larger bone [23]. Considering this, Sr is believed to be effective in im-
proving the properties of materials, especially bioactivity and biocompatibility, stimulating
bone regeneration [80] and being effective against osteoporosis. Through increased expres-
sion of angiogenic factors such as VEGF and Ang-1, Sr promotes neovascularization [21].

Strontium ranelate is considered effective in fighting fragility fractures through im-
proving the biomechanical properties of bone [5] reducing the risk of fractures in osteo-
porotic patients [69]. In contrast to other anti-osteoporotic drugs, Sr has a beneficial effect
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on the cortical bone, as its mass and thickness increase the following treatment with Sr in
animal and clinical studies [23]. It was indicated to consequently reduce the chances of
vertebral and hip fracture in elderly woman [35]. Sr has been proved effective in vitro in
reducing osteoclast differentiation, activity and bone resorption and increasing osteoblast
differentiation [70]. The metabolic activity of osteoblasts is enhanced in the presence of
strontium ions, while the activity of the osteoclasts is reduced depending on the concen-
tration of strontium in the microenvironment [43]. Inhibited activity of osteoclast in the
presence of Sr is due to reduced synthesis of matrix metalloproteinase coupled with control
of osteoprotegerin-RANKL pathway [81].

The mechanisms through which Sr can stimulate new bone formation are the CaR/ERK1/2
and Wnt signaling pathways. Wnt/β-catenin signaling is essential in the bone development
and homeostasis. Wnt/β-catenin signaling is activated by Sr2+, which promotes new bone
formation by inhibiting the osteoclasts and stimulating osteoblasts through nuclear factor
NFATC1. Sr2+ concentration levels may lead to different results of new bone formation
and side effects, meaning that accumulation of Sr2+ should be considered when applied
to humans [33].

Cn-NFAT signaling is identified as a mechanism involved in strontium ranelate (SrRan)
in vitro displayed osteoblastic stimulatory effects. This involves the activation of Cn-
NFATc1 and components of canonical and non-canonical Wnt signaling, making this
molecular mechanism the novelty through which SrRan enhanced osteoblastogenesis
is explained [68].

Drugs containing strontium show significant effects in the prevention and treatment of
osteoporosis [7]. Sr administered as SrRan is a known remedy against primary osteoporosis
and difficult fracture healing, being approved for treatment many countries [43]. SrRan
influences bone formation through a dual mechanism, by signaling osteoblasts to produce
bone and inhibition of osteoclast mediated bone resorption [28]. SrRan in vitro results
confirm its dual mechanism and in vivo was shown to determine an advantageous bone
balance in experimental osteopenic models. In clinical usage it was also shown to decrease
in patients with primary osteoporosis the risk of vertebral and non-vertebral fractures [68],
femoral bone fractures also being positively impacted [63]. SrRan remains the main option
for cases of severe osteoporosis [81].

SrRan is used for its gastric tolerability, physicochemical characteristics, bioavailability
of Sr [82] and to decrease Sr side effects [83].

As SrRan rebalance bone remodeling by increasing bone formation and decreasing
bone resorption [5,23,72], it is considered conducive to new bone formation and studies
indicate a beneficial effect of SrRan on all parameters related to bone quality and strength [5].
Profiting of its both antiresorptive and anabolic properties, it can increase and stabilize
BMD [70]. Its dual mechanism of action is favorable to osteoporotic fracture repair, in
contrast with other drugs such as bisphosphonates, which have no effects on bone growth
and repair of resorption sites of osteoporotic bone and can cause secondary effects such
as inflammatory disease and osteonecrosis [28]. Osteoclasts might not be inhibited as in
regular solely anti-resorptive treatment with bisphosphonates [43].

SrRan administrated orally in a daily dose of 2 g seems to be a safe approach and
effective in decreasing the risk of vertebral fractures in postmenopausal osteoporosis
patients [33,72] and documented to improve BMD, similar to other anti-osteoporotic drugs
such as bisphosphonates, selective estrogen receptor modulators (SERMs), parathyroid
hormone (PTH), and denosumab [23]. Among them, only Sr has a dual mechanism of action:
stimulating new bone formation and reducing bone resorption [8,9], while increasing bone
strength and decreasing fracture incidence [23]. Strontium ranelate increased BMD similar
in both genders, both having fewer fractures after Sr administration [6]. Due to its anti-
osteoporotic effect, ongoing treatment after the fracture occurs has a beneficial effect [23].

Despite all the shown benefits, systemic administration requires a high dose and
prolonged drug administration period [7] and can lead to serious adverse effects in os-
teoporotic patients such as myocardial infarction, venous thromboembolism [43], and



J. Clin. Med. 2021, 10, 253 22 of 27

skin rashes [7]. The bioavailability of Sr via oral administration is about 25%, making
local delivery with the aid of a biomaterial more effective [83]. The safety of SrRan has
been questioned after the EMA found that its use increases the risk of heart problems in
postmenopausal osteoporotic patients [84].

The Sr treatment is of particular concern because of its cardiovascular risk [84] and
is restricted although it is still prescribed to patients who have no other suitable treat-
ment [23], therefore the controlled local release of Sr is decisive as it has a great impact on
biological processes [80]. It is not recommended in patients suffering the following condi-
tions: peripheral vascular disease, ischemic heart, cerebrovascular disease, or uncontrolled
hypertension [6]. Local release from scaffolds can prevent the side effects [43] as long-term
administration is required for Sr to be effective. Research proved that local delivery at the
injured site of a low dose of Sr is beneficial for osteoporotic bone healing and has clinical
therapeutic importance [7]. In order to decrease the administered drug dose and bypass the
adverse side effects, the design of a durable local SrRan delivery system would be clinically
important [70]. The use of a low dose is not anticipated to induce persisting adverse side
effects and delivering SrRan locally at the defect site through implanted scaffolds, may be
a better strategy comparing to oral treatment [7].

In induced osteoporosis models of supercritical rat bone defects, Sr released from
SrRan loaded bioactive glass, CPCs, calcium silicate and collagen sponges implanted had
a visible accelerated bone regeneration effect depending on concentration [43]. Other
osteoporotic models using rats and sheep proved the safety and efficacy of low dose Sr
loaded implants (10%) [7]. Sr-containing CPCs has been described to improve bioactivity
and biocompatibility, promote osteoblast proliferation and differentiation, and enable
deposition of apatite, resulting an increased mechanical strength of the bone–scaffold
interface, in both types of bone [80]. Chemical resemblance of Ca and Sr contribute in the
development of Sr containing HA (SrHA) scaffolds [7].

Sr substituted calcium phosphates can impact in vitro the differentiation and activ-
ity of osteoclasts and osteoblasts [43] and SrHA demonstrates osteoinduction and high
solubility, making the incorporation of Sr into HA beneficial for improving bioactivity [55].

Improved Sr and Ca release was noticed for SrHA in comparison to stoichiomet-
ric HA granules, which is expected to further healing in vivo through the anabolic and
anti-catabolic properties of Sr [67]. When SrHA was added to an allograft it aided the
healing of the area around the implant, a fact proved by the extended volume of new
bone formed in the respective area, and delayed resorption [85]. Released Sr ions from the
biomaterial should stimulate genesis of osteoblasts through ion release or indirectly by
increased presence and activity of osteoclasts after material resorption, leading afterwards
to osteoblasts stimulation [43].

SrHA coatings at Sr concentrations of 5%, 10%, and 20% showed increased implant
osteointegration, improved trabecular microstructure around the implant, and better fix-
ation based on the molar ratio of Sr ions. The results for Ti implants show that Sr could
enhance new bone formation on implant surfaces, thus, improve osteointegration with
the aid of SrHA and the 20% Sr loaded coating, and proved to be the most beneficial for
implant osteointegration among the tested variant in osteoporotic rats [69].

Strontium was added into CPCs to augment their osteoconductivity and accelerate
their degradation. Studies indicated that in vitro the rates of osteoblastic cell prolifera-
tion are enhanced and in vivo degradation is faster and osteoconductivity is better [53].
Beneficial effects of SrHA on bone mass at interface between implant and bone has been
observed in healthy rabbit segmental bone defect model. Some sources indicate a daily
dose of 2 mg/per body weight of SrRan in treating osteoporosis systemically [7].

Studies suggest that Sr loaded CPCs induce faster hydroxyapatite growth, high per-
centage in vitro cell viability and superior durability than the Sr free samples, in the case of
Sr replacement of Ca, up to 5% in sol-gel bioactive ceramics with improvements on the pro-
liferation rate of the cell line of human osteosarcoma [35]. It is much harder in vivo to trace
and monitor the release, distribution, and accumulations of drugs. High concentrations
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can be monitored with magnetic resonance imaging (MRI) shortly after implantation, but
postmortem examinations remain the most precise approach [83].

In the SrHA coating, Sr ions replace a part of Ca ions leading to an improved disso-
lution of the SrHA coating, thus, increasing the concentration of Sr, Ca, and phosphorus
ions near implant surfaces. Their presence in the microenvironment improve osteoblast
activity and new bone development into the implant surfaces [69]. While Sr can prove
beneficial, high concentrations can have a negative impact [80]. Recommended concentra-
tions range between 1% and 10% for osteoporotic applications. Using 10% SrHA scaffold
to enhance in vitro osteoblast differentiation means a release of 0.11 mM Sr ions/mg is ex-
pected, enough to sustain a therapeutic effect in osteoporotic bone healing [7]. The reported
minimum dose for in vitro conditions was 0.1 mM for osteoblast activation and 1 mM for
osteoclast inhibition [83]. In addition, material properties such as strength, degradability,
handling, and component release can be modified by loading with Sr compounds and
these properties frequently have non-linear dependence on Sr concentration [43].

SrRan can be encapsulated, also, in PLA matrix using s/o/w and s/w1/o/w2 tech-
niques, the latter being used in order to create sustainable SrRan delivery systems up to
24 wt% SrRan content, with observed precipitation of biomimetic calcium phosphate on
the surface and in the pores of the delivery systems [70].

9. Conclusions

Osteointegration of implants and weakened regeneration potential of the host bone
remain challenges to be overcome in osteoporotic fracture healing. Functionalized scaffolds
capable of improving osteointegration and fast healing are of great importance for osteo-
porotic patients who have a lower number of osteoprogenitor cells. Loco-regional delivery
of anti-resorptive and/or osteogenic factors at the defect site may have significant clinical
applications for the recovery of fractured osteoporotic bones. Throughout this review,
we have tried to resume the current state of research and the strategies for bone healing
scaffolds and the future perspectives in the case of osteoporotic fractures by incorporation
of biological active agents such as strontium ranelate in bioceramic/biopolymer composite
bone scaffolds. The loco-regional delivery of SrRan can be suitable for administration
because the systemic toxicity and especially the cardiovascular adverse effects can be
reduced/removed but additional research will be necessary to evaluate the in vivo, short
and long-term toxicity. According to the literature it is evident that, even if many researches
were already done, many additional studies are necessary to reach optimal formulations.
Along with the strontium-based formulations, some other biological active agents are
usually used in the therapy of the osteoporosis and thus can be loaded in grafting materials
to control the ratio between formation and resorption.
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