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Abstract

Recently, several non-classical functions of histone modification regulators (HMRs), independent of their known
histone modification substrates and products, have been reported to be essential for specific cellular processes.
However, there is no framework designed for identifying such functions systematically. Here, we develop ncHMR
detector, the first computational framework to predict non-classical functions and cofactors of a given HMR, based
on ChIP-seq data mining. We apply ncHMR detector in ChIP-seq data-rich cell types and predict non-classical
functions of HMRs. Finally, we experimentally reveal that the predicted non-classical function of CBX7 is biologically
significant for the maintenance of pluripotency.
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Background
Histone modification regulators (HMRs) are proteins that
can recognize, add, or remove modifications on histone
tails [1, 2], usually termed as histone modification (HM)
readers, writers, or erasers, respectively (Fig. 1a). Numerous
studies have shown that perturbing HMRs can lead to vari-
ous diseases, and some HMRs are potential therapeutic tar-
gets [3–5], demonstrating their critical roles in regulating
chromatin state and gene expression. In addition to their
classical functions as HM readers, writers, or erasers, some
HMRs have been reported to perform non-classical regula-
tory functions in chromatin, which are independent of their
known HM substrates/products (Additional file 1: Fig. S1a),
in a context-dependent manner by cooperating with

cofactors. For example, histone methyltransferase EZH2, a
core unit of PRC2 complex, can play a PRC2-independent
role by interacting with androgen receptor (AR) to activate
a subset of its target genes in an androgen-independent
prostate cancer cell line [6] (Fig. 1a). In another example,
SETDB1, a histone methyltransferase responsible for the
methylation of histone H3 lysine 9 (H3K9) [7], can modu-
late PRC2 activity at developmental genes independently of
H3K9me3 in mouse embryonic stem cells (mESCs) [8].
These emerging cases suggest that the non-classical func-
tions of HMRs can be essential to certain cellular processes.
Various technologies have been applied to discover the

non-classical regulatory functions of HMRs. For ex-
ample, streptavidin bead complex isolation followed by
mass spectrometric analysis approach identified the non-
classical function of RNF2, a key unit of PRC1, through
its interaction with KDM1A [9]. In another example, by
using sequential ChIP and ChIP-qPCR technologies,
KDM4B, a demethylase of H3K9me3 or H3K36me3, was
found to interact with MLL2 complex, an H3K4-specific
methyltransferase, to regulate the breast carcinogenesis
gene [10]. In addition to the above low-throughput tech-
nologies, analyzing ChIP-seq data can also contribute to
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Fig. 1 (See legend on next page.)
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the discovery of non-classical functions of HMRs by fo-
cusing on those binding sites of HMRs without signals
of their classical substrates or products; 11 out of 18
known cases were discovered by this approach (Add-
itional file 1: Fig. S1a). ChIP-seq technology has been
widely used to profile the genome-wide binding sites of
transcription factors (TFs), chromatin regulators, and
HMs [11], providing a valuable resource for the efficient
identification of non-classical functions of HMRs.
In the last decade, many computational approaches

have been developed to perform in-depth analysis on
ChIP-seq data of HMs and TFs, but none of them was
designed to predict non-classical functions of HMRs.
HMCan [12] and ChIPseqR [13] were specially designed
to accurately identify genomic loci of HMs, while Epi-
gram [14] and DeepHistone [15] can be used to predict
loci of HMs based on sequence features and chromatin
accessibility. DeepChrome [16], EpiRegNet [17], and Epi-
daurus [18] were designed for revealing the regulatory
functions of HMs on transcription regulation. However,
the aims of the above methods were fundamentally dif-
ferent to the identification of non-classical functions of
HMRs. MultiGPS [19], edgeR [20], and DBChIP [21] can
be applied to identify the condition-specific binding sites
of a given HMR among multiple conditions, which were
related, but distinct to identify its context-dependent
binding sites in a given condition. Gerstein et al. [22] de-
veloped the factor co-association analysis method, which
could be applied to identify cofactors at specific subsets
of a given HMR’s binding sites. However, it cannot dis-
tinguish cofactors of classical and non-classical functions
of a given HMR. To the best of our knowledge, there is
no systematic computational framework designed for
identifying the non-classical functions of HMRs based
on ChIP-seq data integration, mainly due to the follow-
ing challenges. First, a typical HMR ChIP-seq dataset
has thousands of peaks or more, and experimental vari-
ation could result in the non-specific missing of its clas-
sical substrate or product signals on a fraction of peaks,
which may in turn lead to a high false discovery rate in
non-classical function prediction. Second, the quality of
public ChIP-seq data is highly variable, and stringent

quality control (QC) is necessary to guarantee the reli-
ability of prediction. Therefore, to take advantage of
public ChIP-seq data in detecting non-classical functions
of HMRs, novel computational frameworks are needed
to solve the above challenges.
In this study, we presented ncHMR detector (non-clas-

sical functions of histone modification regulator de-
tector), a computational framework for predicting non-
classical functions of HMRs and their cooperating cofac-
tor candidates. This framework was designed to over-
come the above challenges as follows. First, ncHMR
detector includes a feature selection component, which
is based on the significantly enriched co-occurrence of
binding events of cofactors and the absence of classical
substrates/products of a given HMR. The feature selec-
tion step can help to largely avoid the influence of the
presence or absence of non-specific signals in single
ChIP-seq data. Second, we used a stringent QC criterion
to filter the public ChIP-seq data to guarantee the qual-
ity of datasets used in the prediction framework. In
addition to the prediction of non-classical functions and
cofactors of HMRs, ncHMR detector can also report the
genomic loci with predicted non-classical functions
through Otsu’s method, an image processing algorithm
[23]. We applied ncHMR detector to ChIP-seq data-rich
cell types, including GM12878, K562, hESCs, mESCs,
HeLa, and HepG2, and predicted 12 non-classical func-
tions of HMRs and their cofactor candidates. To confirm
the accuracy of the prediction, we experimentally vali-
dated the predicted non-classical function of CBX7, a
component of PRC1 complex [24], in mESCs. Our re-
sults showed that the H3K27me3-independent non-
classical function of CBX7 is closely related to the pluri-
potency of mESCs, with NANOG, a key effector regulat-
ing the pluripotency [25], as the cofactor. The source
code of ncHMR detector is available in https://github.
com/TongjiZhanglab/ncHMR_detector.

Results
ncHMR detector framework
To identify the ChIP-seq data features of non-classical
functions of HMRs, we collected previously reported

(See figure on previous page.)
Fig. 1 Non-classical functions of HMRs and ncHMR detector framework. a Schematic showing classical and non-classical functions of HMRs.
Classical functions of HMRs include recognizing (CBX7 recognizes H3K27me3), adding (RNF2 catalyzes H2Aub1), or removing (KDM2B
demethylates H3K36me2) histone modification substrates/products. In contrast, non-classical functions of HMRs are independent of its classical
histone modification substrates/products and some involve in cooperation with other cofactors (EZH2 interacts with AR to activate gene
transcription independently of H3K27me3). b Graph showing the classical and non-classical binding sites of EZH2 in abl cell line. The red line
indicates the distribution of H3K27me3 signals at EZH2 ChIP-seq peaks. The light blue and green dashed lines indicate two fitted normal
distributions for H3K27me3 signals which represent non-classical sites without H3K27me3 and classical sites with H3K27me3, respectively. The pie
chart shows the number of two kinds of binding sites. c Heatmap showing EZH2, H3K27me3, and E2F1 enrichment around EZH2 ChIP-seq peak
centers in abl cell line. Rows represent EZH2 binding sites and are ranked by normalized H3K27me3 signals. The colors indicate the normalized
ChIP-seq enrichment level and the values are scaled by row. d A schematic view of the workflow of the ncHMR detector framework (see the
“Methods” section for details). All ChIP-seq data used in the analysis were annotated in Additional file 1: Fig. S1a
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non-classical functions of HMRs (Additional file 1: Fig.
S1a) and reanalyzed the 11 cases discovered by mining
ChIP-seq data. In all 11 reported cases, the lack of clas-
sical substrate/product signals at 50% or more of ChIP-
seq peaks is common for HMRs with reported non-
classical functions, and the overlap percentages between
ChIP-seq peaks of such HMRs and their classical sub-
strates/products are much lower than those randomly
selected HMR ChIP-seq datasets (Additional file 1: Fig.
S1b). For example, consistent with the previous report,
we observed a bimodal distribution of the H3K27me3
signal at EZH2 ChIP-seq peaks in LNCaP-abl (abl) cell
line, an androgen-independent prostate cancer cell line
(Fig. 1b), where the two modes represent classical and
non-classical binding sites of EZH2, respectively. Fur-
thermore, among the 11 cases, 7 of them have reported
cofactors that interact with HMRs and are required for
non-classical functions of HMRs (Additional file 1: Fig.
S1a). We profiled the ChIP-seq signals of reported cofac-
tors at ChIP-seq peaks of HMRs and found that 6 re-
ported cofactors showed co-localization at non-classical
binding sites of HMRs with low classical substrate/prod-
uct signals (Fig. 1c, Additional file 1: Fig. S1c-f). For ex-
ample, AR and E2F1 are two cofactors reported to
cooperate with EZH2 to perform a non-classical func-
tion in abl [6, 26], and their ChIP-seq signals were
enriched at non-classical sites of EZH2 (Fig. 1c, Add-
itional file 1: Fig. S1g). Taken together, the binding sites
of HMRs with reported non-classical functions exhibited
the enriched co-occurrence of binding events of cofac-
tors and the absence of classical substrates/products.
The above observations motivated us to pursue identify-
ing more non-classical functions of HMRs through
ChIP-seq data mining.
Based on the ChIP-seq data features of reported non-

classical functions of HMRs, we designed ncHMR de-
tector, a computational framework to systematically pre-
dict the non-classical functions and cofactors of a given
HMR. The framework relies on the significantly
enriched co-occurrence of cofactor binding events and
the absence of classical substrates/products of each given
HMR. It includes four steps (Fig. 1d, see the “Methods”
section for details). In the first step, public ChIP-seq
data of the given HMR, its classical HM substrates/prod-
ucts, and TFs from the same cell type were collected and
filtered based on certain QC criterion (see the
“Methods” section for detail). The design matrix X was
generated to represent the cobinding occurrence (0 or 1)
of other factors (including TFs and other HMRs) at each
ChIP-seq peak of the given HMR. The average HM signals
around each ChIP-seq peak center of the given HMR were
stored in a response vector Y. We used ± 5 kb flanking
peak centers to calculate the average signals for well-
known broad HMs, including H3K9me3, H3K27me3, and

H3K36me3, while used ± 1 kb for other HMs. In the sec-
ond step, to avoid the confounding influence of too many
cofactor predictors (i.e., the TFs and other HMRs with
ChIP-seq data in the same cell type), a feature selection
method based on penalized linear regression [27] (either
elastic [28] or Lasso regression [29]) was applied to only
keep the negative correlated factors in X in predicting the
HM signals in Y. In the third step, for each of the
remaining factors after feature selection, a univariate lin-
ear regression was refitted between the cobinding occur-
rence of the factor and vector Y. If one or more factors
showed strong negative correlations, the given HMR was
regarded as having a potential non-classical function, and
those negatively correlated factors were regarded as cofac-
tor candidates. In the fourth step, to report the genomic
loci with predicted non-classical functions, the ChIP-seq
peaks of the given HMR were classified into classical and
non-classical binding sites by using Otsu’s method, an
image processing algorithm [23]. Considering that an
HMR may cooperate with multiple cofactors independ-
ently, the framework reported subsets of the non-classical
sites overlapping with the binding sites of each cofactor
candidate.

Performance evaluation of ncHMR detector
The non-specific absence of a HMR’s classical substrate/
product signals on a fraction of its ChIP-seq peaks due
to experimental variation may cause the non-classical
function prediction to exhibit low specificity or robust-
ness (prediction sensitive to noise). To evaluate the pre-
diction performance of ncHMR detector, we designed
two different setups for specificity and robustness evalu-
ation based on simulated data. The first setup is designed
to evaluate the specificity of cofactor identification. Based
on EZH2 and H3K27me3 ChIP-seq data in mESC, we
simulated the cobinding events with EZH2 for four groups
of other factors, and different groups displayed distinct
correlations (strong negative, weak negative, weak positive,
and strong positive) between cobinding occurrence with
EZH2 (0 or 1) and the response H3K27me3 signals (see
the “Methods” section for details). Two other feature se-
lection methods, greedy forward selection [30] and knock-
off [31], were also used in the evaluation. Based on the
evaluation dataset, classifying the factors in the strong
negative group as true positive cofactors and other factors
as true negative, ncHMR detector with elastic net or Lasso
as the feature selection method showed high specificity
(0.98 ± 0.03 for elastic net and 0.98 ± 0.03 for Lasso),
which are much larger than the specificities obtained by
greedy forward selection (0.83± 0.03) and knockoff
(0.92 ± 0.03). Furthermore, the predicted cofactors
showed a higher frequency of cobinding events with
EZH2 at non-classical sites (Additional file 1: Fig. S2a),
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confirming the high specificity of cofactor identification
using ncHMR detector.
The second setup is designed to evaluate the robust-

ness of cofactor identification. Three types of noises
were added to the evaluation dataset, including (1) add-
ing a Gaussian noise on H3K27me3 signal at EZH2
ChIP-seq peaks to simulate the experimental variation
on HM ChIP-seq data, (2) randomly losing a fraction of
non-classical sites of EZH2 to simulate the experimental
variation on HMR ChIP-seq data, and (3) randomly al-
tering the cobinding events with EZH2 for other factors
to simulate the experimental variation on other factors’
ChIP-seq data (see the “Methods” section for details).
We used the F-beta score and specificity to evaluate the
robustness of cofactor identification in each simulation
condition, and ncHMR detector with elastic net or Lasso
as the feature selection method showed high F-beta
score and specificity upon all three types of noise, which
are higher than those obtained using greedy forward se-
lection or knockoff (Fig. 2a–c, Additional file 1: Fig. S2b-
d), confirming the high robustness of cofactor identifica-
tion using ncHMR detector.
Although there is no existing computational frame-

work designed for identifying the non-classical functions
of HMRs based on ChIP-seq data integration, some
methods can be modified to perform the prediction (see
the “Methods” section for details). We compared the
performance of ncHMR detector (elastic net and Lasso)
and four modified existing methods (MultiGPS + Jaccard
index, edgeR + Jaccard index, DBChIP + Jaccard index,
modified factor co-association analysis) by evaluating the
robustness of cofactor identification (see the “Methods”
section for details), and ncHMR detector showed much
higher F-beta scores than those four modified existing
methods (Additional file 1: Fig. S3a, b). Considering Ger-
stein et al. applied factor co-association analysis by using
normalized peak intensities (quantitative values, ranging
from 0 to 1) rather than the presence or absence of
cobinding events (binary values, 0 or 1) in the cobinding
matrix [22], we also compared the performance of
ncHMR detector and modified factor co-association ana-
lysis based on simulated cobinding matrix with quantita-
tive values (ranging from 0 to 1) (see the “Methods”
section for details), and ncHMR detector showed much
better performance than modified co-association analysis
(Additional file 1: Fig. S3c, d). Taken together, ncHMR de-
tector outperformed those existing methods which can be
modified to identify the non-classical functions of HMRs.

Prediction of non-classical functions in ChIP-seq data-rich
cell types
As ncHMR detector relies on the significantly enriched
co-occurrence of binding events of cofactors and the ab-
sence of classical substrates/products of the given HMR,

the availability of a large amount of ChIP-seq data for
other factors in the same cell type is required for effect-
ive cofactor identification. In this study, we applied
ncHMR detector in four ChIP-seq data-rich cell types,
including GM12878, K562, hESCs, mESCs, HeLa, and
HepG2 (Additional file 1: Fig. S4a). In total, 12 non-
classical functions of HMRs, together with cofactor can-
didates, were predicted by ncHMR detector (Add-
itional file 2: Table S1). Among the top 10 ranked non-
classical function candidates of HMRs, 2 cases have been
partially reported, in terms of either as the HMR having
a non-classical function (for example, EZH2 has non-
classical function in mESCs [32]) or the HMR having
predicted cofactor (for example, RNF2 interacts with
MED12 in mESCs [33]) (Fig. 3a).
EZH2 was predicted to have a non-classical function

in mESCs, which is consistent with a previous study
[32]. However, to the best of our knowledge, whether
EZH2 functions with any cofactors at non-classical bind-
ing sites in mESCs is still unexplored. In this study,
ncHMR detector predicted several cofactor candidates
that may function with EZH2 at its non-classical binding
sites in mESCs, including SUPT5H, E2F1, HCFC1,
CDK7, and RBBP5. Among the predicted cofactor candi-
dates, E2F1 was reported as the cofactor of EZH2’s non-
classical function in abl cell line [26], indicating that it
may also function as a cofactor of EZH2 to activate tar-
get genes in mESCs. ChIP-seq signal profiles of EZH2,
H3K27me3, and E2F1 in mESCs confirmed the co-
occurrence of EZH2 and E2F1 at genomic loci without
H3K27me3 signals but instead with strong H3K4me3
signals (Fig. 3b, Additional file 1: Fig. S4b). It was re-
ported that the cooperation of EZH2 and E2F1 in tran-
scriptional activation is conserved in diffuse large B cell
lymphomas [26], which inspired us to investigate
whether such cooperation is conserved across species.
We converted the genomic coordinates of EZH2 non-
classical sites cobound by E2F1 in abl to the mouse gen-
ome, target promoters of those sites were significantly
overlapped with the counterpart in mESCs, and genes
associated with the overlapping EZH2 non-classical sites
were enriched in biological processes such as mRNA
processing (Fig. 3c). It suggests that the non-classical func-
tion of EZH2 in cooperation with E2F1 could be conserved
across different cell types and species. RNF2, a key unit of
the PRC1 complex, catalyzes the mono-ubiquitylation of his-
tone H2A on lysine 119 (H2AK119ub1) [35] and has been
reported to interact with MED12 in mESCs [33]. However,
whether such an interaction occurs independently of RNF2’s
classical function is still unexplored. In this study, RNF2 was
predicted to have a non-classical function in mESCs, with
MED12 as one of the cofactor candidates. In addition,
among the predicted cofactor candidates, KDM1A was re-
ported to interact with RNF2 in erythroleukemia cells [9],
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indicating that it may also function as a cofactor of RNF2 in
mESCs. ChIP-seq signal profiles of RNF2, H2AK119ub1,
MED12, and KDM1A in mESCs confirmed the co-
occurrence of three factors at genomic loci without
H2AK119ub1 signals (Fig. 3d, Additional file 1: Fig. S4c).
Furthermore, RNF2 non-classical sites cobound by MED12
are significantly overlapped with those cobound by KDM1A
(Fig. 3e), suggesting that RNF2, MED12, and KDM1A may
function together in mESCs. The analysis of both partially
reported cases indicated that the ncHMR detector predic-
tion not only can indicate the existence of non-classical
function for a given HMR, but also provide valuable infor-
mation for the investigation of its mechanism.
It is possible that some HMRs’ non-classical functions

may be correlated with their classical functions. To in-
vestigate that possibility, for each predicted HMR with

non-classical function, we calculated the average dis-
tance between non-classical sites and their nearest clas-
sical sites and compared it with the average nearest
distance within non-classical sites. Among 12 predicted
HMRs with non-classical functions, KDM5A, RBBP5,
and WDR5 showed significantly closer distance between
their non-classical sites and classical sites (Add-
itional file 1: Fig. S4d). We further investigated their
chromatin interaction frequencies using public Hi-C
data, and we observed significantly higher interaction
frequencies between non-classical sites and their nearest
classical sites for KDM5A, RBBP5, and WDR5 (Add-
itional file 1: Fig. S4e). Those results suggested that the
non-classical functions of KDM5A, RBBP5, and WDR5
might be correlated with their classical functions via
chromatin looping.

Fig. 2 Performance evaluation of ncHMR detector. a–c Graph showing robustness of cofactor identification on evaluation data with three types
of noise that simulate three types of experimental variation. a A Gaussian noise on the H3K27me3 signal at EZH2 ChIP-seq peaks, the mean and
standard deviation of the noise distribution were set to be equal to a given fraction (from 0 to 100%) of the average histone modification signal
across the genome. b Random loss of a fraction (from 0 to 80%) of non-classical sites of EZH2. c Random alteration on a fraction (from 0 to 20%)
of cobinding events with EZH2 for other factors. The F-beta score (β = 0.75) was used to evaluate the robustness by treating the factors in the
strong negative group as true positive cofactors and other factors as true negative. The red, blue, yellow, and green lines represent cofactors
identified by elastic net, Lasso, forward selection, and knockoff, respectively
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Fig. 3 Prediction of non-classical functions in ChIP-seq data-rich cell types. a Top 10 ranked non-classical functions and the corresponding
cofactor candidates of HMRs. Non-classical functions of HMRs are ranked by adjusted R2 of the cofactor. For non-classical functions candidates
from multiple ChIP-seq data of the same HMR, the top ranked non-classical function candidates are kept. For each non-classical function
candidate, the top 5 cofactor candidates are showed. The previously reported non-classical functions are highlighted in red. b Heatmap showing
EZH2, H3K27me3, E2F1, and H3K4me3 enrichment around EZH2 ChIP-seq peak centers. Rows represent EZH2 binding sites and are ranked by the
normalized H3K27me3 signals at EZH2 binding sites. The colors indicate the normalized ChIP-seq enrichment level and the values are scaled by
row. EZH2, E2F1, H3K27me3, and H3K4me3 ChIP-seq data in mESCs were obtained from GSE49431, GSE11431, GSE58023, and GSE73432. c Venn
diagram showing the significant overlap of target promoters (±3 kb around TSSs of genes) between EZH2 non-classical sites cobound by E2F1 in
mESCs and converted EZH2 non-classical sites cobound by E2F1 from human abl cell line. Fisher’s exact test was performed to identify statistical
significance. The dot plot shows that target genes of overlap sites were enriched in biological processes such as mRNA processing. Gene
ontology analysis of target genes was performed using the R package clusterProfiler [34]. Top 7 significant (Benjamini-Hochberg-adjusted p value
< 0.01) terms are shown. d Heatmap showing RNF2, H2Aub1, MED12, and KDM1A enrichment around RNF2 ChIP-seq peak centers. Rows
represent RNF2 binding sites and are ranked by the normalized H2Aub1 signals at RNF2 binding sites. The colors indicate the normalized ChIP-
seq enrichment level and the values are scaled by row. RNF2, MED12, KDM1A, and H2Aub1 ChIP-seq data were obtained from GSE55697,
GSE22557, GSE27841, and GSE34518. e Venn diagram showing the significant overlap between non-classical RNF2 sites cobound by MED12 and
sites cobound by KDM1A. Fisher’s exact test was performed to identify statistical significance

Hu et al. Genome Biology           (2020) 21:48 Page 7 of 16



Non-classical function of CBX7 for the maintenance of
pluripotency
In addition to partially reported non-classical functions,
ncHMR detector also predicted 12 non-classical func-
tions of HMRs, among which the non-classical function
of CBX7, a component of the PRC1 complex that prefer-
entially recognizes H3K27me3 and H3K9me3 by its
CHRromatin Organization Modifier (CHROMO) do-
main [24], in mESCs ranked as the top prediction
(Fig. 3a). NANOG, a well-known pluripotency factor
[25], was predicted as the top cofactor candidate. The
ChIP-seq signal profiles of CBX7, H3K27me3,
H3K9me3, and NANOG in mESCs confirmed the co-
occurrence of CBX7 and NANOG genomic loci without
H3K27me3 or H3K9me3 signals but instead with strong
H3K27ac signals, which is considered to be the mark of
active promoters or enhancers in mammalian cells [36]
(Fig. 4a, Additional file 1: Fig. S5a, b). Notably, the pre-
dicted CBX7 non-classical binding sites cobound by
NANOG were far from transcription start sites (TSSs),
while the classical binding sites were mainly localized at
promoters (Fig. 4b). These data indicate that CBX7 may
play a non-classical function in cooperation with NANOG
in mESCs.
To rule out the possibility that CBX7 ChIP-seq signals

at non-classical binding sites might be due to the non-
specificity of antibody, we next examined whether the
depletion of Cbx7 can affect its binding at those sites.
We depleted Cbx7 in mESCs through either knockout
or knockdown, and the expression levels of CBX7 were
significantly downregulated (Fig. 4c, d; Additional file 1:
Fig. S6a). The depletion of Cbx7 by knockdown led to a
dramatic decrease in enrichment levels at its non-
classical binding sites (Id3 enhancer and Nanog enhan-
cer) as well as at classical binding sites (Fgf3 promoter
and Wnt1 promoter), while as a negative control, the
non-binding site (Fgf4 promotor) remained unbound by
CBX7 (Additional file 1: Fig. S5c). As CBX7’s non-
classical binding sites had strong H3K27ac signals, we
next investigated whether the H3K27ac signal is required
for CBX7 binding. As bromodomains are known as the
reader of lysine acetylation [38], we treated mESCs with
JQ1, a selective inhibitor of the BET family of bromodo-
main proteins. The treatment of JQ1 indeed led to a dra-
matically decreased enrichment levels on CBX7’s non-
classical binding sites, but not at its classical binding
sites (Additional file 1: Fig. S5c), suggesting that CBX7
binding to its non-classical binding sites is dependent on
a bromodomain-containing cofactor, which is com-
pletely different its CHROMO domain-dependent mech-
anism at the classical binding sites.
Among the predicted non-classical binding sites of

CBX7, we observed the co-occurrence of CBX7 and
NANOG at the distal upstream region of Nanog, which

was reported as an enhancer of Nanog [37] (Fig. 4e).
This finding prompted us to investigate whether CBX7
contributes to the formation of a positive auto-
regulatory loop of NANOG expression, which is essen-
tial for the maintenance of naïve pluripotency [39].
Upon the efficient depletion of Cbx7, the expression
level of NANOG is modestly but significantly downregu-
lated (Fig. 4c, d). Immunofluorescence staining for
NANOG and OCT4 showed that the number of
NANOG-positive cells was decreased in Cbx7-depleted
mESCs, while OCT4 remained evenly expressed (Fig. 4f,
g). Therefore, CBX7 is indeed required for the proper
expression of NANOG and the maintenance of naïve
pluripotency. To further confirm that the downregula-
tion of NANOG expression was induced by the loss of
CBX7 non-classical function, we induced Ezh2 deletion
in Ezh2f/fCreERT2 mESCs by 4-OHT. The deletion of
Ezh2 led to the loss of H3K27me3 which is vital for
CBX7 classical functions (Additional file 1: Fig. S5d,
S6b). Nevertheless, the NANOG expression remained
unaffected by Ezh2 deletion (Additional file 1: Fig. S5e,
f), which is consistent with the previous reports showing
that PRC2 is dispensable for the maintenance of pluripo-
tency [40–42]. Taken together, the non-classical func-
tion of CBX7 in mESCs is biologically significant for the
maintenance of pluripotency, which is independent of its
classical function.

Discussion
Although the emerging cases suggest that the non-
classical functions of HMRs can be essential to certain
cellular processes, there is no framework designed for
identifying such functions systematically. In this study,
we presented ncHMR detector, the first computational
framework to predict the non-classical functions and co-
factors of a given HMR systematically, based on ChIP-
seq data integration. The framework relies on the signifi-
cantly enriched co-occurrence of binding events of co-
factors and the absence of classical substrates/products
of each given HMR, and its cofactor identification has
high specificity and robustness. We applied ncHMR de-
tector to ChIP-seq data-rich cell types and predicted 12
non-classical functions of HMRs and their cofactor can-
didates. Among the top 10 predicted candidates, 2 cases
were already partially reported. With the hints of pre-
dicted cofactor candidates and public data reanalysis, the
understanding of functional mechanisms of both cases
was extended. Furthermore, we experimentally validated
the predicted non-classical function of CBX7 in mESCs,
which is biologically significant for the maintenance of
pluripotency, with NANOG as the cofactor. Taken to-
gether, the prediction from ncHMR detector not only ef-
fectively indicates the existence of non-classical function
for a given HMR, but also provides valuable information
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for its mechanistic investigation. The source code of
ncHMR detector and the prediction results are publicly
available, which provides a valuable resource for re-
searchers on the non-classical regulatory functions of
HMRs.

Despite the aforementioned advantages, ncHMR de-
tector has some technical limitations. First, to effectively
identify cofactors, ncHMR detector requires the avail-
ability of large amounts of ChIP-seq data for factors
within the same cell type, which limited the applicability

Fig. 4 (See legend on next page.)
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of the ncHMR detector to a few ChIP-seq data-rich cell
types [43, 44]. This limitation could be partially solved
by applying chromatin accessibility profiling and motif
scanning to predict binding sites of a series of TFs in
certain cell types. Second, to effectively avoid the influ-
ence of non-specific signal presence or absence in single
ChIP-seq data, ncHMR detector was designed to rely on
the significantly enriched co-occurrence of binding
events of cofactors and the absence of classical sub-
strates/products of each given HMR, which may sacrifice
the sensitivity of the framework, especially for cofactors
that only bind to a small fraction of the given HMR’s
non-classical sites. For example, we previously reported
that SETDB1 can modulate PRC2 activity at develop-
mental genes independently of H3K9me3 in mESCs [8].
However, this case cannot be predicted by ncHMR de-
tector, because PRC2 complex members such as EZH2
bind to only 7.1% of SETDB1 non-classical binding sites.
We hope our work will overcome this limitation by bal-
ancing the specificity and sensitivity of ncHMR detector.
Third, ncHMR detector cannot be applied to identify
non-classical functions of some HMRs, such as histone
acetyltransferases and deacetylases, which have too many
known substrates/products, due to the difficulty to de-
fine real non-classical binding sites given limited ChIP-
data available on the known substrates/products. Fourth,
each HMR can have multiple non-classical functions
cooperating with distinct cofactors. Our computa-
tional framework can report different subsets of non-
classical sites for different cofactors, but it does not
report whether different cofactors represent distinct
non-classical functions. Users could further analyze
the lists of non-classical sites for different cofactors
to classify the potential multiple non-classical func-
tions of a given HMR.
Although ncHMR detector was designed to identify

non-classical functions of HMRs, its application could
be extended to other scenarios, in which a TF or HMR
has at least two context-dependent functions. One

potential scenario is to predict the epigenetic context-
dependent TF binding, in view of epigenetic modifica-
tions which can explain cell-type-specific binding of
many TFs [45]. By treating epigenetic modification dif-
ferences between two cell types as matrix X and the dif-
ference in TF binding signals as response Y for each
given TF, ncHMR detector may be applied to identify
key epigenetic modifications that contribute to cell-type-
specific binding of some regulatory TFs. Another poten-
tial scenario is to predict the cell-type-specific cobinding
TF pairs, considering that many TFs cooperate with one
another to occupy target genome loci and shape gene
expression programs in a cell-type-specific manner [46].
It would be efficient to select cell-type-specific cobinding
TF pairs by treating the difference in the co-occurrence
of binding events with other TFs between two cell types
as matrix X and the difference in TF ChIP-seq signals as
Y for each given TF. Future versions of ncHMR detector
could be extended to address a variety of questions re-
lated to regulatory complexity.

Conclusions
Although more and more studies have revealed the bio-
logical importance of non-classical functions of HMRs,
there are no methods designed for identifying such func-
tions based on ChIP-seq data integration. Here, we de-
veloped ncHMR detector, a computational framework
for predicting the non-classical functions and cofactors
of a given HMR systematically, based on a regression
model. We applied ncHMR detector to 6 ChIP-seq data-
rich cell types and predicted 12 non-classical functions
of HMRs and their cofactor candidates. Moreover, we
experimentally validated the predicted non-classical
function of CBX7 in mESCs with NANOG as the cofac-
tor. Our study provides a valuable resource for the iden-
tification of non-classical functions of HMRs, which will
assist researchers to understand the Janus-faced role of
HMRs in biological processes well.

(See figure on previous page.)
Fig. 4 Non-classical function of CBX7 for the maintenance of pluripotency. a Heatmap showing CBX7, CBX7’s classical substrates H3K27me3 and
H3K9me3, predicted cofactor NANOG, and H3K27ac enrichment around CBX7 ChIP-seq peak centers. Rows represent CBX7 binding sites and are
ranked by normalized H3K27me3 signals. The colors indicate the normalized ChIP-seq enrichment level and the values are scaled by row. CBX7,
NANOG, H3K27me3, H3K9me3, and H3K27ac ChIP-seq data were obtained from GSE64008, GSE90893, GSE58023, GSE90895, and GSE67867. b
Stacked bar plot showing the percentages of classical sites, non-classical sites, and the whole genome that reside in promoter, gene body, and
intergenic regions. The promoter is defined as ± 3 kb around TSS of the gene. c Real-time qPCR analysis for the expression of CBX7 and NANOG
in wild type, Cbx7-knockout, and Cbx7-knockdown mESCs. Error bars represent the standard deviation for triplicate experiments, and unpaired t
test with Welch’s correction was used to calculate the statistical significance for comparison (*p value < 0.05, **p value < 0.01, ***p value < 0.001,
and n.s represents non-significant). d Western blot analysis of CBX7 and NANOG level in wild type, Cbx7-knockout, and Cbx7-knockdown mESCs.
Tubulin was used as a loading control. Blots were cut before antibody application. Gel images for Western blot are shown in Additional file 1: Fig.
S6a. e The UCSC genome browser view of CBX7, H3K27me3, H3K9me3, NANOG, and H3K27ac enrichment at a previously reported enhancer of
Nanog [37]. Enhancer loci are shaded in purple and signals represent ChIP-seq RPM. f Immunofluorescence staining for NANOG (red), OCT4
(green), DAPI (blue), and merged images in wild type, Cbx7-knockout, and Cbx7-knockdown mESCs. g The fluorescence intensity of NANOG for
about 300 nuclei in wild type, Cbx7-knockout, and Cbx7-knockdown mESCs. Unpaired t test with Welch’s correction was used to calculate
statistical significance for comparison
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Methods
ChIP-seq data collection
We collected and filtered ChIP-seq data of HMRs, TFs,
and HMs in four ChIP-seq data-rich cell types, including
GM12878, K562, hESCs, mESCs, HeLa, and HepG2. We
downloaded ChIP-seq peak files, detected by MACS2
[47], of HMRs and TFs, and big wiggle format files (pre-
senting normalized reads density at each genomic loci)
of HMs from Cistrome data browser [48]. Only the
ChIP-seq data passing at least four out of the first five
QCs (i.e., sequence quality, mapping quality, library
complexity, ChIP-enrichment, and signal to noise ratio)
available in Cistrome data browser were kept. We also
filtered out the ChIP-seq data of HMRs with fewer than
1000 peaks. For a factor in matrix X or a HM in re-
sponse Y, if it has multiple ChIP-seq data available in a
given cell type, we kept only the dataset with the best
quality based on QC assessment.
We integrated ChIP-seq data of HMRs, HMs, and TFs

passing QC as follows. For each HMR ChIP-seq data, we
collected its peak file and the bigwig files of its known
HM substrates/products to calculate HM signals sur-
rounding HMR peaks (vector Y), whereas ChIP-seq peak
files of TFs and other HMRs in the same cell type were
integrated to obtain the cobinding occurrence of those
factors with the HMR (matrix X).

Workflow of ncHMR detector
The workflow of ncHMR detector consists of the follow-
ing four steps.
In the first step, the average HM signals across ± 5 kb

(for H3K9me3, H3K27me3, and H3K36me3) or ± 1 kb
(for other HMs) flanking each ChIP-seq peak center of
given HMR were stored in a vector Y. We denoted the
histone modification signals at n ChIP-seq peaks of
given HMR as Y = (Y1,…, Yn)

⊤. The design matrix X was
generated to represent the cobinding occurrence (0 or 1)
with other factors (including TFs and other HMRs) at
each ChIP-seq peak of given HMR. The matrix for p fac-
tors was denoted as X ¼ ðX⊤

1;…;X⊤
pÞ⊤ , where Xj = (X1j,

…, Xnj)
⊤, for j = 1, …, p, represents the cobinding of fac-

tor j and the given HMR, with Xij ∈ {0, 1}, for i = 1, …, n.
In the second step, ncHMR detector relies on the sig-

nificantly enriched co-occurrence of binding events of
cofactors and the absence of classical substrates/prod-
ucts of each given HMR, and we posited that the re-
sponse vector Y and some columns of X are negatively
associated in the form of the following linear model (1).

Y i ¼ β0 þ
Xp

j¼1
β jXij ð1Þ

We then applied popular feature selection methods, ei-
ther elastic net17 or Lasso18, to the linear model (1) to

filter out redundant or non-significant factors. The esti-
mation of β by elastic net is determined by

β̂ ¼ argmin
β

1
2

Xn

i¼1
Y i−β0−

Xp

j¼1
β jXij

� �2
þ λ

Xp

j¼1
αβ j

2 þ 1−αð Þ β j

���
���

� ���

ð2Þ

whereas the Lasso estimator is simply a special case of
the elastic net estimator by setting α = 0. In this paper,
we set α = 0.5 in the elastic net model. In practice, we
used glmnet package37 in R to implement both elastic
net and Lasso.
In the third step, for each of the remaining factors

after feature selection, a univariate linear regression was
refitted between the cobinding occurrence of the factor
vector Xj and response vector Y. Refitting linear regres-
sion after model selection by elastic net or Lasso is now
common statistical practice with theoretically justified
guarantees [49]. If one factor showed strong negative
correlation (adjusted R2 > 0.1, where the adjustment was
calculated by Wherry’s formula), we permuted the
cobinding events between the factor and the given HMR
for 1000 times, to test the significance of the calculated
correlation coefficient. For each permuted cobinding
event, a univariate linear regression was fitted and an ad-
justed R2 was calculated. The significance of adjusted R2

calculated based on the original cobinding events was
defined as the percentage of permutations having ad-
justed R2 larger than the original un-permuted adjusted
R2 (i.e., permutation p values). In this study, 0.01 was set
as the p value threshold to screen factors. If one or more
factors showed strong and significant negative correla-
tions, the given HMR was regarded as having a potential
non-classical function, and those factors were predicted
to be cofactor candidates.
In the fourth step, to report the genomic loci with pre-

dicted non-classical functions, the ChIP-seq peaks of the
given HMR were classified into classical (the classifica-
tion with high HM signals) and non-classical (the classi-
fication with low HM signals) binding sites using Otsu’s
method, an image processing algorithm [23], which cal-
culated the optimum threshold separating the two classi-
fications so that their intra-class variance was minimal.
Considering that an HMR may cooperate with multiple
cofactors independently, the framework reported subsets
of the non-classical sites overlapping with the binding
sites of each cofactor candidate.

Performance evaluation based on simulation data
To evaluate the prediction performance of ncHMR detector,
we designed two setups for specificity and robustness evalu-
ation based on simulation data. The first setup is designed
for specificity evaluation of cofactor identification. Based on
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EZH2 and H3K27me3 ChIP-seq data in mESC
(GSM1199182, GSM1199183, GSM1399500, GSM1399503),
we simulated the cobinding events with EZH2 for four
groups of other factors, and different groups displayed dis-
tinct correlations (strong negative, weak negative, weak posi-
tive, and strong positive, separately) between cobinding
occurrence (0 or 1) with EZH2 and response H3K27me3 sig-
nals. The strong negative group included 15 factors with a
negative correlation coefficient with H3K27me3 and adjusted
R2 > 0.1, and the weak negative group included 35 factors
with a negative correlation coefficient and adjusted R2 < 0.1.
Similarly, the strong positive group included 15 factors with
positive correlation coefficient with H3K27me3 and adjusted
R2 > 0.1, and the weak positive group included 35 factors
with positive correlation coefficient and adjusted R2 < 0.1.
We generated 5 simulation datasets in this study. Based on
each simulation dataset, the specificities of ncHMR detector
and approaches using other feature selection methods, in-
cluding forward selection [30] and knockoff [31], were calcu-
lated by treating the factors in the strong negative group as
true positive cofactors and other factors as true negative. In
addition, the specificity was also measured by the frequency
of cobinding events between predicted cofactors and EZH2
at the non-classical sites of EZH2.
The second setup is designed to evaluate the robust-

ness of cofactor identification. Three types of noises
were added to the evaluation dataset. First, to simulate
the experimental variation on HM ChIP-seq data, we
added a Gaussian noise on H3K27me3 signal at EZH2
ChIP-seq peaks. In each simulation, the mean and stand-
ard deviation of the noise distribution were set to be
equal to a given fraction of the average histone modifica-
tion signal across the genome. The fraction was set from
0.1 to 1, with 0.1 as the interval. Second, to simulate the
experimental variation on HMR ChIP-seq data, we ran-
domly omitted a percentage of non-classical sites of
EZH2 (from 10 to 80%, with 10% as the interval). Third,
to throw away the experimental variation on other fac-
tors’ ChIP-seq data, we randomly altered a percentage of
cobinding events (alteration from 1 to 0, or from 0 to 1)
with EZH2 for other factors (from 2 to 20%, with 2% as
the interval). For the above three types of noise, we gen-
erated 10 simulated datasets for each case. We used spe-
cificity and F-beta score (β = 0.75) to evaluate the
robustness of cofactor identification in each simulation
condition, by treating the factors in the strong negative
group as true positive cofactors and other factors as true
negative.

Comparison with modified existing methods
The following existing methods can be modified to pre-
dict cofactors of non-classical functions of HMRs: (1)
MultiGPS, (2) edgeR, (3) DBChIP, and (4) factor co-
association analysis. MultiGPS [19], edgeR [20], and

DBChIP [21] can be applied to detect differential bind-
ing events across multiple conditions, which were re-
lated, but distinct to identify its context-dependent
binding sites in a given condition. In the method com-
parison part, we modified the aims of those methods by
identifying differential enriched regions between a given
HMR and its HM substrates/products ChIP-seq data,
and defined the specifically enriched regions in the
HMR ChIP-seq data (fold change > 20 and FDR < 0.01)
as its non-classical sites. To identify the cofactors of
non-classical function, we modified those methods by
applying Jaccard index to compute the overlapping fre-
quency between potential cofactors and identified non-
classical sites of HMR, and those with Jaccard index >
0.35 were defined as cofactors of the non-classical func-
tions. Gerstein et al. developed context-specific TF co-
association analysis method (https://code.google.com/
archive/p/tf-coassociation/source/default/source) [22],
and this method can be used to identify partner factors
with co-occurrence of binding events at specific subsets
of a given HMR’s binding sites. As it cannot distinguish
cofactors of classical and non-classical functions of a
given HMR, we added a column containing the pres-
ence/absence status of its HM substrates/products to the
input cobinding matrix. In that column, HMR binding
sites with HM peaks were assigned to 0 and other HMR
binding sites were assigned to 1. Factors which showed
high-confidence co-associations (CS ≥ 5) with the feature
of HM absence were identified as cofactors of non-
classical functions of the given HMR.
In the method comparison between ncHMR detector

and four modified existing methods, we applied the
same simulation datasets used in performance evaluation
of ncHMR detector. As the simulation of the experimen-
tal variation on HM ChIP-seq data is not applicable in
some modified existing methods (MultiGPS + Jaccard
index, edgeR + Jaccard index, and DBChIP + Jaccard
index), only simulations of experimental variation on
HMR ChIP-seq data and other factors’ ChIP-seq data
were used in method comparison.
In the comparison of ncHMR detector and modified

factor co-association analysis, we also generated simu-
lated cobinding matrix with quantitative values (ranging
from 0 to 1) as follows. Based on the approach used to
generate quantitative cobinding matrix in Gerstein et al.,
for all 0 (no cobinding) in binary cobinding matrix, we
kept it as 0 in the quantitative cobinding matrix, and for
all 1 (cobinding) in binary cobinding matrix, we simu-
lated an intensity rank for the overlapped binding sites
and computed the normalized peak intensities (ranging
from 0 to 1) used in the quantitative cobinding matrix.
For the additional column representing the presence/ab-
sence status of HM in the modified factor co-association
analysis, we ranked HM signals at all HMR binding sites

Hu et al. Genome Biology           (2020) 21:48 Page 12 of 16

https://code.google.com/archive/p/tf-coassociation/source/default/source
https://code.google.com/archive/p/tf-coassociation/source/default/source


and reversed the rank to compute the normalized peak
intensities.

Statistical analysis
In the factor selection step, we used standard elastic net
to predict histone modification signals on HMR peaks
with the cobinding events of different factors. By default,
we set α = 0.5 to control the relative weighting of Lasso
and Ridge. Besides, we used the value of lambda.1se as
the selected value for λ in order to provide a simpler
model with comparable error to the best model. The co-
factor candidates with non-zero coefficient are selected
as significant factors in the feature selection step.

Software and webserver implementation
The ncHMR detector software was implemented using
Python and R, under GNU General Public License v2.0.
It is available at https://github.com/TongjiZhanglab/
ncHMR_detector. We used glmnet package in R to im-
plement the regularized regression (elastic net and
Lasso) in the feature selection step. Users can change
the default values of α and λ by setting the parameters
--Alpha and --LambdaChoice. In the non-classical func-
tion qualification step, we used the built-in lm function
in R to implement the univariate linear regression. By
default, we set a stringent R2 cutoff (0.1) with an empir-
ical p value cutoff (0.001) to report the predicted candi-
dates. Users can also change R2 cutoffs by setting the
parameter --R-squared. The higher stringent R2 cutoffs
lead to less candidates. The software reports the candi-
dates ranking from highest R2 to the lowest. Besides, the
ncHMR detector software provides another running
mode (using quantitative values in matrix X) by setting
the parameter --mode as signal. In that running mode,
the values in matrix X are the average signals of TF
ChIP-seq data at the given HMR’s peaks. Bigwig files of
TFs are required under that running mode.
The ncHMR detector webserver was implemented

using HTML, JavaScript, and PHP, and it is freely avail-
able at http://compbio-zhanglab.org/ncHMR_detector/
index.php. The usage instructions and example files are
provided at the website.

Hi-C data processing
Processed Hi-C contact matrix in hESC was sourced
from [50] and downloaded from 4D nucleosome data
portal. Raw Hi-C data in mESC were obtained from Du
et al. [51]. Raw reads were aligned, processed by using
HiC-Pro [52]. Pairs of aligned reads were then assigned
to MboI restriction fragments. Read pairs from uncut
DNA, self-circle ligation, and PCR artifacts were filtered
out, and the valid read pairs involving two different re-
striction fragments were used. Valid read pairs in hESC
and mESC were both dumped with KR normalization at

5000-bp resolution to examine local interactions by
using Juicer [53].

Cell culture and stable cell generation
The mESCs were cultured on 0.1% gelatin-coated plates
in 2i medium (F12/Neuralbasal medium 1:1, non-
essential amino acids, L-glutamine, β-mercaptoethanol,
penicillin/streptomycin, sodium pyruvate, N2/B27 and
leukemia inhibitory factor (LIF), GSK3β and MEK1 in-
hibitors), or SL medium (GMEM, non-essential amino
acids, L-glutamine, β-mercaptoethanol, penicillin/
streptomycin, sodium pyruvate, 15% fetal bovine serum,
and LIF). All cell cultures were maintained at 37 °C with
5% CO2.
To knockdown Cbx7, specific oligonucleotides

(GTGAAGTTACCGTGACTGA) were designed and
cloned into pLKO.1 TRC cloning vector according to
the protocol recommended by Addgene. The shRNA ex-
pressing constructs were co-transfected with pAX8
(packaging) and pCMV-VSVG (enveloping) into 293FT
cells. After 48 h, virus supernatants were harvested and
mESCs were infected along with polybrene (8 μg/ml).
Positive cells were selected with 2 μg/ml puromycin 48 h
post-infection. To knockout Cbx7, specific oligonucleo-
tides (GCATGCTGTACAGCCGCTGCA) were designed
and cloned into px459 vector according to the protocol
recommended by Addgene. Then the sgRNA-expressing
constructs were transfected into mESCs and selected
with 2 μg/ml puromycin for 48 h. Single-cell clones were
isolated and validated by genome DNA PCR.

Real-time qPCR
For gene expression analysis, total RNA was extracted
by TRIZOL and reverse transcribed by the Reverse
Transcription Reagents Kit (Thermo Fisher). All qPCR
analyses were performed using the LightCycler® 480
SYBR Green I Master (Roche) with the ABI 7500 fast
PCR System (Applied Biosystems). All data were
normalized to Rpo. The primer sequences are listed in
Additional file 3: Table S2.

ChIP-qPCR analysis
The ChIP assay was performed as described previously
[54]. Briefly, 5 × 105–1 × 107 cells were fixed in 1% for-
maldehyde (i.e., 15 ml for a 15-cm dish) at room
temperature for 10 min. Then, fixation was stopped by
the addition of glycine to a final concentration of 0.125
M and incubation for 5 min. The plates were rinsed
twice with 1 × PBS at room temperature; then PBS was
aspirated completely from the plate and the cells har-
vested in SDS buffer (100 mM NaCl, 50 mM Tris-HCl,
pH 8.1, 5 mM EDTA, 0.02% NaN3, 1% SDS) containing
protease inhibitors. Cells were pelleted by spinning in a
tabletop centrifuge for 5 min at 1800 rpm, then
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resuspended in ice-cold IP buffer for sonication (IP buf-
fer = 1 volume SDS buffer:0.5 volume Triton dilution
buffer (100 mM Tris-HCl, pH 8.6, 100 mM NaCl, 5 mM
EDTA, pH 8.0, 0.02% NaN3, 5.0% Triton X-100)). Then
the samples were sonicated using a Bioruptor for 10 min
(30 s on/off per cycle). Sonicated chromatin was pelleted
by centrifugation at 20000×g for 5 min. Then, 3 μg of
antibody (CBX7 ab21873, Abcam) was added to the
supernatant (500 μg chromatin for each IP) and rotated
overnight at 4 °C. Protein A+G beads were added the
next morning for 3 h. Beads were washed once with
wash buffer 1 (1% Triton X-100, 0.1% SDS, 150 mM
NaCl, 2 mM EDTA, 20mM Tris-HCl, pH = 8.0) and
once with wash buffer 2 (1% Triton X-100, 0.1% SDS,
500 mM NaCl, 2 mM EDTA, pH 8.0, 20 mM Tris-HCl,
pH 8.0), then reverse crosslinked at 65 °C overnight.
DNA fragments were column-purified (QIAGEN,
Cat.NO. 28106) for qPCR analysis. The primer se-
quences are listed in Additional file 3: Table S2.

Immunofluorescent staining
The mESCs were fixed in cold methanol for 3 min,
washed twice with PBS, and then blocked with 0.8% BSA
for 10 min. Antibodies (OCT4: ab184665 Abcam;
NANOG: A300-397A Bethyl) were incubated at 37 °C
for 1 h, and the secondary antibodies were incubated at
37 °C for another hour. Images were acquired using a
laser scanning confocal microscope (ZEISS, LSM800).
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instructions and example files are also available at the webserver. The
embryonic stem cells used in this article are primary cells derived from ICM
of mouse E3.5 embryos. Public datasets for profiling non-classical function of
HMRs and simulation analysis can be found at the Gene Expression Omnibus
(GEO) under accession numbers GSE11431, GSE22557, GSE27841, GSE34518,
GSE49431, GSE55697, GSE58023, GSE64008, GSE67867, GSE73432, GSE90893,
and GSE90895 [32, 57–66].
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