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Abstract

Increasing global travel and changes in the environment may escalate the frequency of con-

tact with a natural host carrying an infection and, therefore, increase our chances of encoun-

tering microorganisms previously unknown to humans. During an emergency, the etiology

of infection may be unknown at the time of patient treatment. The existing local or global

Antimicrobial Stewardship Programs may not be fully prepared for emerging/re-emerging

infectious disease outbreaks, especially if they are caused by an unknown organism, engi-

neered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial

efficacy profiling method that can be performed in hours directly from clinical urine speci-

mens. The antimicrobial potency was determined by the level of microbial growth inhibition

and compared to conventional antimicrobial susceptibility testing results. The oligonucleo-

tide probe pairs on the sensors were designed to target Gram-negative bacteria, specifically

Enterobacterales and Pseudomonas aeruginosa. A pilot study of 10 remnant clinical speci-

mens from the Clinical Laboratory Improvement Amendments-certified labs of New York-

Presbyterian Queens was conducted, and only one sample was not detected by the probes.

The remaining nine samples agreed with reference AST methods (Vitek and broth microdilu-

tion), resulting in 100% categorical agreement. In a separate feasibility study, we evaluated

a dual-kinetic response approach, in which we inoculated two antibiotic stripwells containing

the same antimicrobial concentrations with clinical specimens at the original concentration

(1x) and at a 10-fold dilution (0.1x) to cover a broader range of microbiological responses.

The combined categorical susceptibility reporting of 12 contrived urine specimens was

100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from

105 to 108 CFU/mL.
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Introduction

Direct-from-specimen microbial growth inhibition assessment can assist in emergency pre-

paredness and pre-hospital interventions by providing timely patient-specific antimicrobial

efficacy profiling information. The use of empirical therapy proves that the methods currently

used are inadequate when it comes to informing initial treatment decisions in a timely manner

[1]. Phenotypic antimicrobial efficacy profiling, in which clinical specimens are directly

exposed to different antibiotic conditions, could provide critical information for the prescrip-

tion of antibiotics in hours. The results of a phenotypic antimicrobial efficacy profile test,

taken in conjunction with local antibiogram data, could guide the course of therapy to improve

patient outcomes and slow the spread of antimicrobial resistance. We present a molecular test

based on the transcriptional responses of causative bacteria to antibiotic exposure that can be

performed directly from urine specimens. Quantification of group-specific or species-specific

16S rRNA growth sequences was used to provide rapid antimicrobial efficacy profiling results.

Categorical agreement was assessed with reference AST methods according to CLSI

guidelines.

Even though antibiotics do not directly affect the SARS-CoV-2 respiratory virus responsible

for the COVID-19 pandemic, physicians are administering many more antibiotics than nor-

mal when treating COVID-19 patients [2]. The appearing surge in antibiotic use is reflected in

the higher percentages of COVID-19 patients with severe conditions and pediatric patients

(85% in a multicenter pediatric COVID-19 study [3]) receiving antibiotic therapies. The

World Health Organization warned that the use of antibiotic therapy may lead to higher bacte-

rial resistance rates and increase the burden of the pandemic [4]. A recent study by Zhou et al.

[5] found that 15% of 191 hospitalized COVID-19 patients, as well as 50% of the 54 non-survi-

vors, acquired bacterial infections. Therefore, a shorter time to rule out certain antibiotic

options by detecting microbial growth under such conditions may provide physicians with

valuable information before the availability of conventional AST results.

Generating curves to illustrate the microbial growth inhibition response to antibiotic expo-

sure conditions across a range of microbial loads may provide a dynamic method for estimat-

ing antimicrobial efficacy that is much more rapid than the endpoint minimum inhibitory

concentration (MIC) method used in conventional AST. Here, we present a method to quan-

tify the 16S rRNA content of viable target pathogens in unprocessed specimens, such as urine,

following exposure to various antibiotic concentrations in vitro (Fig 1). This method allows for

interpretation of the antimicrobial effect by analyzing the differential microbial responses at

two inoculum dilutions. The hypothesis is that the growth inhibition concentration (GIC) is

the lowest antimicrobial concentration necessary to inhibit the growth of target strains in a

given sample after adjusting for pathogen concentration effects. The combined GIC in a poly-

microbial sample is not evaluated in this pilot study. We compare the GIC reported from this

direct-from-specimen antimicrobial efficacy profiling method to the MIC and susceptibility

reported from CLSI reference methods to assess the categorical agreement, after which we

establish a correlation between the microbiological susceptibility (i.e., MIC) and antimicrobial

efficacy (i.e., GIC).

Electrochemical-based molecular quantification of RNA transcription for

streamlined ID and phenotypic AST

Prior to the presented study, we developed a PCR-less RNA quantification method that per-

forms enzymatic signal amplification with a proprietary electrochemical sensor array. We

applied this quantification method to a streamlined pathogen identification and AST using

species-specific probe pairs, then validated and published studies with our clinical
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collaborators using contrived and remnant clinical specimens [6–36]. The detection strategy

of our universal electrochemical sensors is based on sandwich hybridization of capture and

detector oligonucleotide probes which target 16S rRNA as described in S1 Protocol. The cap-

ture probe is anchored to the gold sensor surface, and the detector probe is linked to horserad-

ish peroxidase (HRP). When a substrate such as 3,3’,5,5’-tetramethylbenzidine (TMB) is added

to an electrode with capture-target-detector complexes bound to its surface, the substrate is

oxidized by HRP and reduced by the bias potential applied onto the working electrode. Oligo-

nucleotide probe sequences for both capture and detector probes are detailed in Fig 2 of S1

Protocol. This redox cycle results in the shuttling of electrons by the substrate from the elec-

trode to the HRP, producing enzymatic signal amplification of current flow in the electrode.

The concentration of the RNA target captured on the sensor surface can be quantified by the

reduction current measured through the redox reaction between the TMB and HRP with a

multi-channel potentiostat built into our system as demonstrated in Fig 4 of S1 Protocol.

Quantifying changes in RNA transcription appears to be a more suitable approach in the case

of timely reporting due to its rapid changes upon exposure to antibiotics [37, 38]. Measuring

the RNA response of pathogens to antibiotic exposure directly in clinical specimens would

provide a rapid susceptibility assessment that can be performed in clinical settings.

Material and methods

Bacterial strains and antibiotic stripwells

Strains were obtained from various sources including the CDC AR Bank and New York-Pres-

byterian Queens (NYPQ). The number of strains of each species is listed in S1 Table. All clini-

cal isolates were obtained anonymously from remnant patient samples collected for routine

culture and were de-identified prior to testing under the approved NYP/Queens Institutional

Review Board and joint master agreement. We aimed to test an even distribution of species

with MIC values on or near the susceptible and resistant breakpoints of each antibiotic. We

included three representative antibiotics of three different classes (fluoroquinolones, amino-

glycosides, and carbapenems): ciprofloxacin (CIP; Cayman Chemical Company, Ann Arbor,

MI), gentamicin (GEN; Sigma-Aldrich, St. Louis, MO), and meropenem (MEM; Cayman

Chemical Company). CDC AR Bank isolates were used to include representative bacteria sus-

ceptibility profiles that were not covered by those from NYPQ. CDC AR Bank isolates were

stored as glycerol stocks at -80˚C and were grown from these stocks at 35˚C on tryptic soy

Fig 1. Graphical abstract of presented direct-from-specimen antimicrobial efficacy profiling method. Unprocessed urine is inoculated into two antibiotic

stripwells at the original concentration and 10-fold dilution. After antibiotic exposure, viable 16S rRNA is quantified using an electrochemical sensor assay and

reported as categorical susceptibility. The presented method is able to be fully automated.

https://doi.org/10.1371/journal.pone.0263868.g001
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agar plates with 5% sheep’s blood (Hardy Diagnostics) for 18–24 hours before testing. Suspen-

sions of each isolate to be used for contriving urine samples were prepared using cation-

adjusted Mueller-Hinton II (MH) broth (Teknova; Hollister, CA) and a Grant DEN-1B densi-

tometer (Grant Instruments, Cambridge, UK). Negative urine specimens to be used for con-

trived samples were stored in Falcon tubes at 4˚C. Clinical urine samples from NYPQ were

stored in BD 364954 Vacutainer Plus C&S tubes containing boric acid at 4˚C prior to over-

night shipment for testing. Consumables consisted of stripwells with dried antibiotics, electro-

chemical-based sensor chips functionalized with oligonucleotide probe pairs complementary

to Enterobacterales and Pseudomonas aeruginosa for RNA quantification (probe sequences in

Fig 2A of S1 Protocol), and a reagent kit for lysing and viability culture. Stripwells were pre-

pared as previously described by drying antibiotics in DI water with 0.1% Tween onto EIA/

RIA 8-well strips (Corning, Corning, NY) at the following concentrations: CIP 0.0625, 0.125,

0.25, 0.5, 1, 2, 4 μg/mL; GEN 1, 2, 4, 8, 16, 32, 64 μg/mL; MEM 0.5, 1, 2, 4, 8, 16, 32 μg/mL [39].

The first well of each stripwell was left without antibiotic to be used as a growth control (GC)

during the assay. Electrochemical sensor chips were produced in-house by deposition of gold

onto a plastic substrate and functionalized with probes as previously described [35].

Specimen collection and matrix removal

Urine samples were spun down to remove the majority of matrix components in the superna-

tant. Specifically, urine samples with a 4-mL starting volume were spun in a centrifuge at 5,000

RPM for 5 minutes, after which supernatant was removed and replaced with 4 mL of cation-

adjusted MH broth to create the 1x inoculum. A ten-fold dilution of this sample was prepared

by adding 100 μL of this sample to 900 μL of MH broth, resulting in the 0.1x inoculum.

Electrochemical-based microbial growth quantification

The direct-from-specimen antimicrobial efficacy profiling approach presented in this study

aims to demonstrate a significant correlation to conventional AST results. The electrochemi-

cal-based biosensor measures the reduction current from cyclic enzymatic amplification of an

HRP label with TMB and H2O2. The resulting reduction current signal can be estimated with

the Cottrell equation (Equation 1 of S1 Protocol) [40]. Signal levels (in nanoamperes) from

each microbial exposure well were normalized to that of the GC well (no antibiotics) to form

GC ratios. These ratios were then plotted against the spectrum of antimicrobial concentrations

tested for statistical analysis. Two antibiotic stripwells containing the same range of seven anti-

biotic concentrations separated by twofold dilutions, as well as one GC, were used for each

specimen at 1x (undiluted pellet) and 0.1x (diluted pellet) concentrations to generate two

microbial response curves. Each dual-response curve signature was generated by overlaying

the two GC ratio curves over the antibiotic range, establishing a signature library that corre-

sponded to each antimicrobial efficacy and microbial susceptibility combination. Changes in

the response signature and inflection point in the GC curve were analyzed by three algorithms

to match a categorical classification (susceptible, intermediate, or resistant).

Antibiotic exposure stripwell inoculation and molecular quantification

One hundred microliters of reconstituted specimen pellets at 1x and 0.1x concentrations were

inoculated into each well of their corresponding antibiotic stripwell. All stripwells were incu-

bated at 35˚C for the exposure time indicated in each study. Thirty-six microliters of 1M

NaOH were then added to each well to lyse target gram-negative pathogens after antibiotic

exposure, followed by a 3-minute incubation at room temperature. Twenty-four microliters of

1M HCl were then added to each well to neutralize the pH of the lysed sample, or lysate, and
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prevent the degradation of free RNA. Ten microliters of the lysate from each well were pipetted

onto its corresponding sensors on two electrochemical sensor chips for a total of 4 sensors per

well. No sample was delivered to the negative control sensor. All chips were incubated for 30

minutes at 43˚C, and the RNA content was quantified using the method described above and

in S1 Protocol to obtain the microbial growth response.

Clinical feasibility validation with blind clinical specimens

For the blind testing study, we used remnant clinical specimens collected at NYPQ under the

current IRB. These urine specimens were prospectively collected for urine culture as part of

routine care. All samples shipped overnight to GeneFluidics for testing were confirmed posi-

tives for either Enterobacterales or Pseudomonas aeruginosa. De-identification and data analy-

sis were performed by administrative staff. We included species belonging to the

Enterobacterales family and Pseudomonas aeruginosa due to their prevalence in urinary tract

infections, bloodstream infections, and healthcare-associated pneumonia, as well as their

increasing resistance to commonly used antimicrobial agents [41–43].

Statistical analysis

Signals generated from each sensor from enzymatic reaction with TMB substrate were ana-

lyzed with three different algorithms for comparison. Before reporting GC ratios, the algo-

rithms first assessed the signal level from the negative and growth controls from each sensor

chip. If either control was out of the acceptable range (i.e., greater than 50 nA for the negative

control, less than 50 nA for the growth control), the algorithm reported “NC fail” or “GC fail”,

respectively, indicating substandard quality of a sensor chip or no bacterial growth. If all con-

trols passed the acceptance criteria, the algorithm proceeded to determine the inflection point

in the plot of GC ratios against the antibiotic spectrum. The antibiotic concentration corre-

sponding to the inflection point was estimated by two algorithms (Inhibited Growth Cutoff

and Maximum Inhibition) and reported as the growth inhibition concentration (GIC). The

Inhibited Growth Cutoff method reported the lowest antibiotic concentration with a GC ratio

lower than a predetermined cutoff value; the GIC was solely determined by the GC ratio. Ini-

tial assessment of the Inhibited Growth Cutoff method used both 0.4 and 0.5 as cutoff values,

and the final cutoff value was determined using on-scale strains with an MIC on or one 2-fold

dilution above or below the CLSI breakpoints. The Maximum Inhibition method reported the

GIC as the lowest antibiotic concentration observed after the maximum GC ratio reduction in

the plot. Unlike in the Inhibited Growth Cutoff method, the GIC corresponded to the greatest

change in the slope of the response curve as a whole instead of individual GC ratios. For both

algorithms, if the GC ratio from the lowest antibiotic concentration tested was less than 0.45,

indicating significant growth inhibition, the GIC was reported as less than or equal to this anti-

biotic concentration. If the GC ratio from the highest antibiotic concentration tested was

greater than 0.9, indicating limited growth inhibition, the GIC was reported as greater than

this antibiotic concentration. The first level of analysis was qualitative, whereby the antimicro-

bial efficacy profiles (significant growth, moderate growth, and inhibited growth) derived

from the GIC were compared to the corresponding antibiotic susceptibility results (R for resis-

tant, I for intermediate, or S for susceptible) determined by the clinical microbiology lab or

CLSI reference methods. The concordance between susceptibilities reported from the GIC and

reference susceptibilities was determined by essential and categorical agreement. Essential

agreement is an agreement in which a reported MIC value falls within a log2 dilution of the

reference MIC from the CDC AR Bank or CLSI broth microdilution. Categorical agreement is

an agreement in which a reported S, I, or R interpretation agrees with the reference category
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from the CDC AR Bank or CLSI disk diffusion method. Discrepancy rates for the detection of

antimicrobial susceptibility were analyzed by very major (vmj), major (maj), and minor errors

(min). A vmj, maj, and min are defined as false susceptible reporting (resistant strain reported

as susceptible), false resistant reporting (susceptible strain reported as resistant), and misclassi-

fication of an intermediate strain (intermediate strain reported as susceptible or resistant),

respectively. Any direct-from-specimen antimicrobial efficacy profiles found to be misclassi-

fied (i.e., GIC higher than the susceptible breakpoint for a susceptible strain) were retested

with both the presented method and microdilution reference method.

The negative control is a direct indicator of the electrochemical reaction between HRP and

TMB taking place on the sensor, and the growth control is the quantification of microbial

loads in diagnostic specimens without any interference from antimicrobials. Therefore, we

assessed the normality of these controls by generating box and whisker plots in S1 and S2 Figs.

In S1A and S2 Figs, the distribution of negative controls is positively skewed due to the signal

cutoff of our potentiotat reader to detect only amperometric signal from the reduction of oxi-

dized TMB. Although there are few data points that fall in the upper quartile, these data points

are still below the negative control maximum of 50 nA.

Results

There is valid concern about detection sensitivity and matrix interference when developing a

direct-from-specimen microbial growth inhibition method that tests directly from clinical

specimens rather than an overnight-cultured isolate. Starting directly from unprocessed speci-

mens introduces the challenge of unknown pathogen concentrations ranging from 0 to> 108

CFU/mL. To address this concern, we established the correlation between the limit of detec-

tion (LOD) of the current molecular analysis platform and the assay turnaround time (TAT).

Fig 2 illustrates the minimum assay time needed for quantification of RNA transcription at dif-

ferent levels of pathogen concentrations. As shown in Fig 2C, the analyte incubation time for

higher target LODs may be significantly reduced, resulting in a TAT of 16 to 36 minutes. Tar-

get pathogen enrichment and matrix component removal by centrifugation may be included

to achieve mid-level target LODs, resulting in a TAT of 42 to 110 minutes. For low-abundance

pathogens and early infection diagnostics, additional viability culture steps may be included to

achieve an LOD of< 10 CFU/mL with a TAT of 4 to 5.5 hours. The direct-from-specimen

antimicrobial efficacy profiling protocol was based on the assay parameters summarized in

Fig 2D.

To evaluate the potential impact of urine matrix components on microbial growth inhibi-

tion, we tested two sets of contrived samples, one prepared in culture media and the other pre-

pared in negative urine. This initial evaluation was conducted with highly-susceptible E. coli

Fig 2. Calibration curves of configurable ID protocols with various TAT and LODs. (A) TAT for “low” pathogen concentrations, (B) “medium” pathogen

concentrations, (C) “high” pathogen concentrations. (D) Summary of various TAT and LOD. Each plotted point represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.g002
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(EC69, MIC� 0.06 μg/mL for ciprofloxacin) and highly resistant K. pneumoniae (KP79, MIC:

>8 μg/mL for ciprofloxacin) isolates from the CDC AR Bank (Fig 3). The goal of the pilot

study was to investigate the potential interference in urine; therefore, a higher and more clini-

cally relevant concentration of 1.0 x107 CFU/mL was used to contrive the samples. Three anti-

biotic exposure times of 30, 60, and 90 minutes were tested as primary parameters for

optimization. Microbial growth inhibition was analyzed by plotting GC ratios against the cip-

rofloxacin concentrations tested, which ranged from 0.0625 μg/mL (two 2-fold dilutions below

the Enterobacterales CLSI susceptible breakpoint) to 4 μg/mL (two 2-fold dilutions above the

Enterobacterales CLSI resistant breakpoint). As shown in Fig 3A and 3B, all microbial response

curves of the resistant K. pneumoniae CDC 79 strain were overlapping at the GC ratios near

1.0 (S2 Table), indicating little to no inhibited growth regardless of the exposure time. How-

ever, there was a clear trend of inhibited growth, as exhibited by the lower GC ratios, with the

susceptible E. coli CDC 69 strain; this trend was also more apparent with increasing exposure

time or ciprofloxacin concentration. The reported GIC value from the Maximum Inhibition

algorithm is listed to the right of each response curve. The bolded GIC value (S strain in MH

30 min, S strain in urine 30 min, S strain in urine 60 min) indicates incorrect categorical sus-

ceptibility reporting, which occurred when the exposure time was insufficient. The microbial

growth inhibition curves from the contrived urine samples in Fig 3B exhibit characteristics

identical to those of the culture media samples in Fig 3A. This similarity suggests that the addi-

tional pelleting step performed on the urine samples is sufficient to mitigate the effects of the

urine matrix but not harsh enough to put the pathogen into the stationary phase. Additionally,

in S1A Fig, the growth controls are clearly separated for each exposure time. Although longer

exposure times show a wider distribution, this range may have been caused by the different

growth rates of the two included strains, resulting in different signal levels. We also expect

there to be a natural dispersion of growth rates within the same strain population. However,

these data points are still clearly separated by those from shorter exposure times.

As illustrated in Fig 3A and 3B, it is likely that a shorter antimicrobial exposure time may

lead to insignificant growth inhibition of susceptible strains, reducing the separation between

susceptible and resistant responses. This phenomenon could potentially lead to more errors in

categorical susceptibility reporting without the use of a more sophisticated algorithm. We sus-

pected that a similar reduction in the separation between susceptible and resistant strains

would occur if the microbial load were much higher than the standard inoculum density of

5x105 CFU/mL. To evaluate the effects of higher microbial loads and to explore the biological,

chemical, and molecular analytical limitations of our assay, we tested contrived urine samples

Fig 3. Investigation of matrix interference components and starting inoculum concentration. (A) Ciprofloxacin antimicrobial efficacy profiling in MH

broth and (B) direct-from-urine ciprofloxacin antimicrobial efficacy profiling using highly susceptible (E. coli CDC 69) and highly resistant (K. pneumoniae
CDC 79) strains from the CDC AR bank. (C) Direct-from-specimen meropenem antimicrobial efficacy profiling with 2-hr exposure for urine with highly

susceptible (E. coli CDC 77) and resistant strains (E. coli CDC 55). Bolded GIC values indicate incorrect categorical susceptibility due to short exposure time

(30 or 60 min.) in Fig 3A and 3B or high microbial load (108 CFU/mL) in Fig 3C. Each plotted point represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.g003
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prepared at three different microbial loads against a different class of antibiotics (Fig 3C). A

shorter antibiotic exposure time of 2 hours was used to assess the separation between resistant

and susceptible response curves. Antimicrobial efficacy profiling tests directly from these con-

trived urine samples were evaluated. Based on the trend of GC ratios along the increasing mer-

openem concentrations (0.5 to 32 μg/mL), the GIC would be reported as “susceptible” (� S-

breakpoint of 1 μg/mL for meropenem) for E. coli CDC 77 (MIC:� 0.12 μg/mL) and “resis-

tant” (� R-breakpoint of 4 μg/mL for meropenem) for E. coli CDC 55 (MIC: > 8 μg/mL),

which agree with the categorical susceptibilities listed by the CDC AR Bank. The GIC reported

from only 2 hours of antimicrobial exposure did not match the MIC value reported from the

broth microdilution method, which included a 16-to-24-hour exposure using clinical isolates

from an overnight subculture. This disagreement is most likely due to the antimicrobial expo-

sure of the causative pathogen taking place in a different matrix environment (urine vs. agar

plate) with different antimicrobial conditions (short vs. long exposure). This study was an ini-

tial assessment of the effects of different matrices and testing conditions on categorical suscep-

tibility reporting.

To establish a higher correlation between the MIC and GIC values, it would be necessary to

incorporate the impact of the microbial load into the GIC reporting, which is not within the

scope of this initial study. With higher contrived concentrations, we expect the inflection point

to shift to a higher antimicrobial concentration due to a higher bug-to-drug ratio. Even for sus-

ceptible strains, microbial growth can be observed at antibiotic exposure concentrations on or

below the susceptible breakpoint if the microbial load is higher than the standard inoculum

concentration of 5x105 CFU/mL.

S1B Fig displays the distribution of growth controls from each inoculum concentration. As

the inoculum concentration increases from 106 to 108 CFU/mL, more data points become sat-

urated, leading to our hypothesis of a shifting inflection point and inoculum effect on the

MIC.

Fig 3C only demonstrated the feasibility to differentiate highly-susceptible from highly-

resistant strains, which do not represent all clinical strains; therefore, we wanted to evaluate

the growth inhibition curves from on-scale strains containing a MIC on or near the CLSI

breakpoints. These strains included E. coli CDC 1 with an MIC of 4 μg/mL for gentamicin (on

susceptible breakpoint), E. coli CDC 85 with an MIC of 1 μg/mL for meropenem (on suscepti-

ble breakpoint), and K. pneumoniae CDC 80 with an MIC of 0.5 μg/mL for ciprofloxacin (on

intermediate breakpoint). To determine if on-scale strains required an exposure time longer

than that of highly susceptible and resistant strains, we tested exposure times of 2, 3, and 4

hours. General trends of inhibited growth were observed at 2, 3, and 4 hours for all suscepti-

ble-breakpoint strains as shown in Fig 4. The GIC values reported for E. coli CDC 1 were at

2 μg/mL for all exposure times; they were one two-fold dilution below the reference MIC (S3

Table). In addition, the categorical susceptibility listed in parentheticals was correctly reported

as susceptible. The GIC values for E. coli CDC 85 increased from�0.5 to 2 μg/mL as the mero-

penem exposure time increased from 2 to 4 hours. Although the GIC values at all three expo-

sure times were within one 2-fold dilution of the reference MIC for E. coli CDC 85, the GIC

values with longer exposure times more closely aligned with the MIC value. The goal of this

study was to report susceptibility within a much shorter time frame. However, the GIC report-

ing based on only one response curve with a shorter exposure time of 2 hours was insufficient

to differentiate borderline susceptible strains. Therefore, a slightly extended exposure time of 3

hours proved necessary in the case of the CDC 85 strain. We then tested the reproducibility of

GIC reporting using two different batches of ciprofloxacin stripwells in Fig 4C and 4D; the

GIC reporting was consistent for both batches. The GIC reporting from just two hours of cip-

rofloxacin exposure was 0.5 μg/mL, which was in agreement with the MIC value from CDC
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AR Bank database. However, the GIC value transitioned to 0.125 μg/mL with longer exposure

times, further signaling the risk of changes in susceptibility reporting when relying on only

one response curve. The MIC from the microdilution of K. pneumoniae CDC 80 was 0.25 μg/

mL, which is within one two-fold dilution from the GIC reporting of all response curves in Fig

4C and 4D.

In S2 Fig, the GC signals are clearly separated for each exposure time. The wider distribu-

tion observed for each time may be due to the inclusion of different strains in each dataset, as

well as the natural dispersion of growth rates within a single strain population, resulting in dif-

ferent signal levels. Despite this distribution, each exposure time was distinguishable from the

others and 3 hours proved to be adequate, unlike 2 and 4 hours, which generated many data

points that were either too low or too high (saturated) to observe a clear susceptibility trend.

After demonstrating that 3 hours of antimicrobial exposure may be sufficient for testing

on-scale strains, we explored the ability to differentiate bacterial strains with a range of on-

scale MIC values on or near the susceptible and resistant breakpoints using a 3-hour exposure

time (Fig 5). Fig 5A shows the growth inhibition responses to ciprofloxacin from E. coli (EC69:

Fig 4. Varying antibiotic exposure times for direct-from-urine antimicrobial efficacy profiling of on-scale strains for different antibiotics classes. (A)

Gentamicin responses. (B) Meropenem responses. (C, D) Ciprofloxacin responses with different stripwell batches. Bolded GIC values indicate incorrect

categorical susceptibility. Each plotted point represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.g004

Fig 5. Direct-from-urine antimicrobial efficacy profiling of pathogens with a range of on-scale MIC values. All urine specimens contrived at 106 CFU/mL.

(A) Ciprofloxacin responses. (B) Gentamicin responses. Bolded GIC values indicate incorrect categorical susceptibility. Each plotted point represents 3–4 data

points.

https://doi.org/10.1371/journal.pone.0263868.g005
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MIC�0.0625 μg/mL, EC85: MIC> 8μg/mL) and K. pneumoniae (KP126: MIC = 0.125μg/mL,

KP80: MIC = 0.5 μg/mL, KP76: MIC = 1μg/mL). There is a clear trend of increasing GIC val-

ues (�0.06 μg/mL to>4 μg/mL) that matches the reference MIC values (from�0.06 μg/mL to

>8 μg/mL), indicating successful distinction of strains with on-scale MICs. Detailed GIC

reporting from all three algorithms is displayed in S4 Table. In addition, we evaluated the

growth inhibition responses to gentamicin from K. pneumoniae (KP126: MIC� 0.25μg/mL,

KP79: MIC >16 μg/mL) and E. coli (EC1: MIC = 4 μg/mL, EC451: MIC = 8 μg/mL, EC543:

MIC = 16 μg/mL) in Fig 5B. Similar to Fig 5A, there is a clear trend of increasing GIC values

(from�1 μg/mL to>32 μg/mL) that matches the reference MIC values (from�0.25 μg/mL to

>16 μg/mL). Among all susceptible and resistant strains tested in Fig 5, the categorical suscep-

tibility was reported 100% correctly based on the reported GIC value. The two intermediate

strains (KP80 for ciprofloxacin and EC451 for gentamicin) were both reported as susceptible,

given that both of their GIC values were one two-fold dilution below the reference MIC. We

suspected that this incorrect reporting was due to the use of only one response curve. Results

leading up to this point in the study suggested the need for a dual-kinetic response curve

approach to provide more information on borderline susceptibility such as strains with a MIC

on the intermediate breakpoint. Using only one curve resulted in essential agreement between

MIC and GIC values, which is acceptable according to CLSI M100 classifications; however,

both intermediate strains reported minor errors in categorical susceptibility based on the GIC

from one curve [44, 45].

As revealed by the bolded GIC values, categorical susceptibility reporting (susceptible,

intermediate, or resistant) may be incorrect if the antimicrobial exposure time is too short

(Figs 3A, 3B, and 4B), the microbial load is too high (Fig 3C), or the MIC is on one of the sus-

ceptibility breakpoints (Figs 4C, 4D and 5A, 5B). In addition to extending the antimicrobial

exposure time—especially for time-dependent antibiotics such as meropenem—we explored

the feasibility of a dual-kinetic response approach that would allow us to observe a broader

range of microbiological responses. In this approach, we inoculated two stripwells containing

the same spectrum of seven antimicrobial concentrations with clinical urine specimens at the

original concentration (1x) and at a 10-fold dilution (0.1x). Additionally, to evaluate the corre-

lation between the current GIC reporting algorithm and reference categorical susceptibilities

and MIC values throughout the physiological range, we tested a scale of clinically relevant

microbial loads for urine (105 to 108 CFU/mL) in Fig 6. The GIC was calculated from the dual

kinetic curves, and the inflection point shifted toward higher antibiotic concentrations in sam-

ples with higher microbial loads (S5 Table). In Fig 6B, the growth inhibition curves of 1x and

0.1x of 106 CFU/mL overlapped with each other in the insert graph despite the signal levels of

Fig 6. Direct-from-urine ciprofloxacin antimicrobial efficacy profiling with dual kinetic curves on different contrived urine concentrations. Dual kinetic

curves for E. coli CDC 69 with MIC of�0.0625 μg/mL at starting sample concentrations of (A) 1.0x105 CFU/mL, (B) 1.0x106 CFU/mL, (C) 1.0x107 CFU/mL,

(D) 1.0x108 CFU/mL. The bolded GIC value indicates incorrect categorical susceptibility in individual response curves. Each plotted point represents 3–4 data

points.

https://doi.org/10.1371/journal.pone.0263868.g006
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these two sets of curves being significantly different. It is likely that the similarity in microbial

load and symmetry between 105 to 5x105 CFU/mL and from 5x105 to 106 CFU/mL resulted in

overlapping GC ratio curves. Fig 6A–6D show the transition of GIC reporting from

�0.0625 μg/mL (susceptible) to 1 μg/mL (resistant). The categorical susceptibility reporting of

“Susceptible” was correct over a range from 104 CFU/mL (0.1x of 105 CFU/mL) to 107 CFU/

mL (0.1x of 108 CFU/mL). The GIC value jumped from 0.125 μg/mL (0.1x of 108 CFU/mL) to

1 μg/mL (1x of 108 CFU/mL) as shown in Fig 6D. Similar microbial responses were observed

in the rapid ciprofloxacin exposure study with the same E. coli CDC 69 strain in Fig 3B; the

GIC value jumped from 0.0625 μg/mL (90-min exposure) to 1 μg/mL (30-min and 60-min

exposure). The GC signal levels as listed in S5 Table were saturated at 10,000 nA for 107 and

108 CFU/mL; therefore, the reported GIC value is expected to be higher than the MIC values

due to the inoculum effect.

The combined categorical susceptibility reporting for the dual-kinetic response approach in

Fig 6 is listed in Table 1. We used the Maximum Inhibition algorithm, in which the combined

categorical susceptibility is determined by the maximum GC reduction in both microbiolog-

ical response curves. Specifically, the combined GIC corresponds to the greatest change in the

slope of both response curves. Table 1 also includes the individual and combined GIC report-

ing from all contrived concentrations in Fig 6. Given that the combined categorical susceptibil-

ity is determined by the greatest GC ratio reduction in the extended antimicrobial spectrum

(all 1x and 0.1x bug-to-drug ratios), it represents the most significant growth inhibition caused

by antimicrobial exposure throughout the entire spectrum. Although there was one categorical

susceptibility reporting error in the 1x curve in Fig 6D, the reported combined categorical sus-

ceptibility was correct for all microbial load conditions. The purpose of the combined GIC

reporting in the dual-kinetic-curve approach is to report only the maximum growth inhibition

and to discard GIC reporting errors caused by high or low microbial loads.

To evaluate the correlation between the GIC reporting algorithm and reference microbial

susceptibility and MIC values throughout the physiological range with other antimicrobial

classes, we tested the same set of microbial loads in urine against gentamicin in Fig 7. The GIC

Table 1. Ciprofloxacin growth inhibition concentration (GIC) and combined categorical susceptibility reporting for Fig 6.

Contrived concentration 1X response GIC (μg/mL) 0.1X response GIC (μg/mL) Combined response GIC (μg/mL) Combined categorical susceptibility

1.0x105 CFU/mL �0.0625 �0.0625 �0.0625 Susceptible (categorical agreement)

1.0x106 CFU/mL �0.0625 �0.0625 �0.0625 Susceptible (categorical agreement)

1.0x107 CFU/mL �0.0625 �0.0625 �0.0625 Susceptible (categorical agreement)

1.0x108 CFU/mL 1 0.125 0.125 Susceptible (categorical agreement)

GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a ciprofloxacin-susceptible strain with an MIC of�0.0625 μg/mL.

https://doi.org/10.1371/journal.pone.0263868.t001

Fig 7. Direct-from-urine gentamicin antimicrobial efficacy profiling with dual kinetic curves on different contrived urine concentrations. Dual kinetic

curves for E. coli CDC 451 with MIC of 4 μg/mL at starting sample concentrations of (A) 1.0x105 CFU/mL, (B) 1.0x106 CFU/mL, (C) 1.0x107 CFU/mL, (D)

1.0x108 CFU/mL. Bolded GIC values indicate incorrect categorical agreement. Each plotted point represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.g007

PLOS ONE Direct-from-specimen microbial growth inhibition under antibiotic exposure and comparison to conventional AST

PLOS ONE | https://doi.org/10.1371/journal.pone.0263868 February 16, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0263868.t001
https://doi.org/10.1371/journal.pone.0263868.g007
https://doi.org/10.1371/journal.pone.0263868


value reported by the Maximum Inhibition algorithm is displayed next to each response curve.

GIC reporting from all three algorithms can be found in S6 Table. There is a clear transition in

GIC reporting for gentamicin across the range of microbial loads—from�1 μg/mL (suscepti-

ble) to 16 μg/mL (resistant). The categorical susceptibility reporting of “Susceptible” was cor-

rect over a range of 104 CFU/mL (0.1x of 105 CFU/mL) to 106 CFU/mL (0.1x of 107 CFU/mL).

A GIC of 8 μg/mL was reported for 107 CFU/mL (1x of 107 CFU/mL and 0.1x of 108 CFU/

mL), which is one dilution above the reference MIC of 4 μg/mL. This disagreement between

GIC and MIC is acceptable for essential agreement but is a minor error for categorical agree-

ment. The GIC reporting of 16 μg/mL from 108 CFU/mL was a major error. Similar to the

results of ciprofloxacin, the GC signal levels, as listed in S6 Table, were saturated at 10,000 nA

for 107 and 108 CFU/mL; therefore, the reported GIC value is expected to be higher than the

reference MIC value due to the inoculum effect.

Table 2 is a summary of the individual and combined GIC reporting from all contrived con-

centrations in Fig 7. The MIC of E. coli CDC 451 is listed by the CDC as 8 μg/mL, indicating

intermediate susceptibility, but our microdilution indicated a MIC of 4 μg/mL, which would

be categorically classified as susceptible. Therefore, we used the MIC of 4 μg/mL for reference,

as it was obtained with the reference microdilution method. Without adjusting for the inocu-

lum effect, the maximum growth inhibition would indicate a combined GIC of 8 μg/mL for

both Fig 7C and 7D. However, due to the signal level saturation observed at the growth control

and low antibiotic concentrations (1 and 2 μg/mL in 1x curve in Fig 7C, 1–8 μg/mL in 1x

curve in Fig 7D, 1–4 μg/mL in 0.1x curve in Fig 7D), we adjusted the combined GIC to account

for the inoculum effect. The electrochemical current reading is set to saturate at 10,000 nA to

maximize the resolution at lower current readings around the limit of detection, so the reading

would be saturated if the starting microbial load were too high. The reported GIC was adjusted

one dilution down for every antibiotic concentration reported at a saturated signal level. As a

result, the combined GIC reporting from Fig 7C and 7D was adjusted from 8 μg/mL to 4 μg/

mL. In comparison to the microdilution MIC, there were three categorical susceptibility

reporting errors in the single response curves in Fig 7C and 7D. After adjusting for the satu-

rated signal level, the combined categorical susceptibility of both response curves was correct

for all microbial load conditions.

Similar results were observed for the same study using meropenem in Fig 8. The reported

GIC transitioned from�0.5 μg/mL (susceptible) to 32 μg/mL (resistant). The categorical sus-

ceptibility reporting of “Resistant” was correct over a range of105 CFU/mL to 108 CFU/mL. A

GIC of�0.5μg/mL was reported for 104 CFU/mL (0.1x of 105 CFU/mL in Fig 8A) and resulted

in a very major error for categorical agreement. However, the GC signal level listed in S7 Table

was 39 nA, which indicated insufficient microbial growth and was reported as “GC fail”. No

GIC value was reported in the case of GC failures (<50 nA).

Table 3 is a summary of the individual and combined GIC reporting for Fig 8. Similar to

the CDC 451 strain, the MIC value of K. pneumoniae CDC 79 is listed by the CDC as 8 μg/mL,

Table 2. Gentamicin growth inhibition concentration (GIC) and combined categorical susceptibility reporting for Fig 7.

Contrived concentration 1X response GIC (μg/mL) 0.1X response GIC (μg/mL) Combined response GIC (μg/mL) Combined categorical susceptibility

1.0x105 CFU/mL �1 4 4 Susceptible (categorical agreement)

1.0x106 CFU/mL 4 4 4 Susceptible (categorical agreement)

1.0x107 CFU/mL 8! 4 4 4 Susceptible (categorical agreement)

1.0x108 CFU/mL 16! 8 8! 4 4 Susceptible (categorical agreement)

GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a gentamicin susceptible strain with an MIC of 4 μg/mL.

https://doi.org/10.1371/journal.pone.0263868.t002
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but our microdilution indicated the MIC was 4 μg/mL. We used the microdilution result as

the reference. Without adjusting for the inoculum effect, the maximum growth inhibition

would result in a combined GIC of 0.5 and 32 μg/mL for Fig 8A and 8D, respectively. How-

ever, the combined GIC was adjusted due to growth control failure in Fig 8A and saturated sig-

nal level at the growth control and five antibiotic concentrations in Fig 8D. There was initially

only one categorical susceptibility reporting error in Fig 8A, but it was not reported due to GC

failure. The combined categorical susceptibility was correct for all microbial load conditions.

After initial validation of the presented antimicrobial efficacy profiling method using CDC

clinical strains, we conducted a pilot feasibility study on blinded urine specimens from NYPQ.

De-identified remnant clinical specimens were shipped overnight to GeneFluidics for testing

as described above, and the summary of combined categorical susceptibility is detailed in

Table 4. Sample #7 was positive for P. aeruginosa but when tested with the assay produced a

GC failure. Subculture of NYPQ sample #7 on a Chromagar plate exhibited two separate

strains, indicating that the original specimen may have contained a polymicrobial infection or

was contaminated during sample collection or testing. For specimens containing multiple

organisms, species-specific susceptibility reporting would require the pathogen identification

sensor chip with complementary oligonucleotide probes for each target pathogen, which is

outside the scope of this study. The categorical susceptibilities of the remaining nine specimens

were reported correctly, resulting in 100% categorical agreement with the susceptibilities

reported by NYPQ. All individual and combined GIC reports are listed in S8 Table. NYPQ’s

AST panel tests levofloxacin (LEV) instead of ciprofloxacin (CIP) for the class of fluoroquino-

lones; therefore, the GIC reporting of CIP susceptibility for Samples 1, 4, and 6 was compared

to the categorical susceptibility interpreted from the reference broth microdilution result.

Levofloxacin is generally less effective than ciprofloxacin against Gram-negative pathogens, as

explained in the literature [46, 47]. If a pathogen is susceptible to levofloxacin, it may not be

Fig 8. Direct-from-urine meropenem antimicrobial efficacy profiling dual kinetic curves for different starting sample concentrations. Dual kinetic curves

for K. pneumoniae CDC 79 with MIC of 4 μg/mL at starting sample concentrations of (A) 105 CFU/mL, (B) 106 CFU/mL, (C) 107 CFU/mL, (D) 108 CFU/mL.

Bolded GIC values indicate incorrect categorical susceptibility. Each plotted point represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.g008

Table 3. Meropenem growth inhibition concentration (GIC) and combined categorical susceptibility reporting for Fig 8.

Contrived concentration 1X response GIC (μg/mL) 0.1X response GIC (μg/mL) Combined response GIC (μg/mL) Combined categorical susceptibility

1.0x105 CFU/mL 4 �0.5 4 Resistant (categorical agreement)

1.0x106 CFU/mL 4 4 4 Resistant (categorical agreement)

1.0x107 CFU/mL 4 4 4 Resistant (categorical agreement)

1.0x108 CFU/mL 32! 20 4 20 Resistant (categorical agreement)

GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a meropenem-resistant strain with an MIC of 4 μg/mL.

https://doi.org/10.1371/journal.pone.0263868.t003
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susceptible to ciprofloxacin, as demonstrated in Sample 4. However, if a pathogen is resistant

to ciprofloxacin, it is likely to be resistant to levofloxacin, as observed in Sample 6.

Discussion

Although recent technologies have allowed PCR-based pathogen identification to be per-

formed in fewer than 30 minutes, there is currently no phenotypic AST that can be performed

within a reasonable time frame—specifically, in hours—directly from clinical samples in clini-

cal microbiology laboratory settings. Schoepp et al. demonstrated a benchtop digital LAMP

quantification method that measured the phenotypic response of E. coli in clinical urine sam-

ples and presented AST results after a 15-minute antibiotic exposure. However, only highly-

resistant or susceptible strains with rapid doubling times were selected for testing [48]. For

pathogens with an on-scale MIC or a longer doubling time, an extended antibiotic-exposure

incubation is necessary. Khazaei et al. demonstrated that quantifying changes in RNA signa-

tures instead of DNA replication resulted in significant shifts (>4-fold change) in transcription

levels within 5 minutes of antibiotic exposure [37, 49]. However, there was a wide range of

control:treated (C:T) ratio dispersion from highly susceptible strains with MICs at least seven

2-fold dilutions below the resistant breakpoint. With 8 strains of the same MIC (0.015 μg/mL)

and one strain with an MIC only 2-fold above (0.03 μg/mL), the C:T ratio can change from 2

to 6, but the C:T ratio separation between resistant and susceptible populations is only roughly

0.4. The aforementioned study demonstrates the limitation observed in clinical settings where

not all susceptible strains have an extremely low MIC.

Doern noted that although the concept of using unprocessed clinical specimens as inocu-

lum for direct-from-specimen AST or antimicrobial efficacy profiling is appealing, there are

significant challenges to this approach [1]. The first challenge he mentioned was accommodat-

ing clinical specimens with unknown organism concentrations that may be significantly

Table 4. Summary of direct-from-urine antimicrobial efficacy profiling using de-identified remnant urine specimens from NYPQ.

Sample

Code

Organism 1X response GIC

(μg/mL)

0.1X response

GIC (μg/mL)

Combined response

GIC (μg/mL)

NYPQ reported susceptibility or

microdilution (MIC: μg/mL)

Combined categorical

susceptibility

0001 Citrobacter koseri 0.125 <0.06 <0.06 CIP susceptible (�0.0625) Susceptible (categorical

agreement)

0002 Escherichia coli <0.5 0.5 <0.5 MEM susceptible (�0.25) Susceptible (categorical

agreement)

0003 Enterobacter cloacae
complex

16 16 16 GEN resistant (> = 16) Resistant (categorical

agreement)

0004 Escherichia coli 0.5 0.25 0.5 CIP susceptible (0.5) Intermediate

(categorical agreement)

0005 Serratia marcescens <0.5 No growth <0.5 MEM susceptible (�0.25) Susceptible (categorical

agreement)

0006 Klebsiella
pneumoniae

>4 >4 >4 CIP resistant (>4) Resistant (categorical

agreement)

0007 Pseudomonas
aeruginosa

No growth No growth MEM resistant (> = 32) No growth

0008 Proteus penneri <1 <1 <1 GEN susceptible (<1) Susceptible (categorical

agreement)

0009 Citrobacter koseri <1 <1 <1 GEN susceptible (�1) Susceptible (categorical

agreement)

0010 Escherichia coli 32 32 32 GEN resistant (> = 16) Resistant (categorical

agreement)

Each antimicrobial condition tested represents 3–4 data points.

https://doi.org/10.1371/journal.pone.0263868.t004
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higher or lower than the standardized inoculum concentration used in most growth-based sus-

ceptibility tests. In a proof-of-concept study by Mezger et al., urine was used as an inoculum

for rapid AST, in which a 120-minute antimicrobial exposure was performed, followed by

quantitative PCR [50]. Although pilot experiments demonstrated E. coli susceptibility to cipro-

floxacin and trimethoprim within 3.5 hours, the susceptibility profiling algorithm was not cor-

related to CLSI M100 categorical reporting. In our method, we attempted to address this

second challenge of providing susceptibility profiling equivalent to AST performed in a clinical

microbiology lab (>95% categorical agreement) by assessing susceptibility response dynamic

trends at three different bug/drug ratios. This was done by inoculating the raw specimens in

two dilutions as detailed above. The third challenge is the need to ensure pathogens are iso-

lated from clinical samples to allow for retesting, confirmation of phenotypic testing (e.g.,

AST), polymicrobial testing, or epidemiological studies. This challenge will be addressed by

setting aside the remainder of specimens for QC or archiving purposes.

Despite being recognized as the standard quantitative index of antimicrobial potency, the

MIC is subject to several limitations, the first of which is a long antimicrobial exposure time of

16 to 20 hours. Furthermore, it requires a standard inoculum concentration of 5x105 CFU/mL,

rendering it insufficient to test a low initial bacterial inoculum (i.e., 3 to 5 colonies usually in

the absence of resistant populations). Lastly, it utilizes constant, or static, antibiotic concentra-

tions [51]. Therefore, the MIC provides no information on the time-course of bacterial killing

or emergence of resistance [52–56]. Several static and dynamic in vitro and in vivo infection

model studies have been performed to analyze and interpret in vitro efficacy results of antimi-

crobial drugs as an alternative to MIC reporting [56–61]. These experimental models provide

a wealth of time-course data on bacterial growth and killing but have not been adopted into a

diagnostic test directly from clinical specimens [62].

An ideal growth inhibition spectrum can fit concentration-responses in a sigmoidal curve

that is symmetrical about its inflection point and flattened on both ends with statistical fluctua-

tions, as shown in Figs 6–8. The left plateau represents insignificant growth inhibition under

antibiotic exposure below the MIC, and the right plateau represents significant growth inhibi-

tion above the MIC. The inflection point indicates the concentration at which antimicrobial

potency lies midway between non-inhibited growth (left plateau) and complete inhibited

growth (right plateau); the slope of the tangent to the curve at the inflection point is a measure

of the antimicrobial intensity.

With increasing concentrations of antibiotic in each well, the effectiveness of the antibiotic

increases and lowers the rate of pathogen viability. This behavior is reflected in the growth

control ratio, which would be negatively correlated with the instantaneous mortality rate.

Therefore, the antimicrobial concentration at the inflection point, or GIC, will likely increase

when the microbial load in the clinical specimen is higher. This concept is exemplified in the

literature [63–66]. Based on this hypothesis, we developed a direct-from-specimen microbial

growth inhibition test that utilizes two dilutions of unprocessed clinical specimens (1x and

0.1x) as inoculums for two antibiotic exposure stripwells, each containing one GC well and the

same range of seven antibiotic concentrations. The resulting response curves are used to visu-

alize the microbial growth inhibition spectrum. As the drug concentration increases, the prob-

ability of drug molecules reaching a lethal concentration increases as a function modeled by a

smooth sigmoidal curve. Considering the unknown microbial load in clinical specimens, the

coverage of this spectrum is designed to capture the inflection point within the entire range of

physiological conditions. The GC well of each stripwell serves two purposes: assist in GIC

adjustment based on the microbial load under no antibiotics and provide quality control to

eliminate the data set if there is no growth due to a microbial load below the limit of detection.

In this study, we developed a tentative algorithm that aims to identify the antibiotic
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concentration at the inflection point and adjust this inflection point based on microbial load

determined by the GC signal level; the reported GICs were compared to the MIC obtained

from reference methods or FDA-cleared systems.
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