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ABSTRACT

Vaccination is one of the most significant inventions
in medicine. Reverse vaccinology (RV) is a state-of-
the-art technique to predict vaccine candidates from
pathogen’s genome(s). To promote vaccine devel-
opment, we updated Vaxign2, the first web-based
vaccine design program using reverse vaccinology
with machine learning. Vaxign2 is a comprehensive
web server for rational vaccine design, consisting of
predictive and computational workflow components.
The predictive part includes the original Vaxign
filtering-based method and a new machine learning-
based method, Vaxign-ML. The benchmarking re-
sults using a validation dataset showed that Vaxign-
ML had superior prediction performance compared
to other RV tools. Besides the prediction compo-
nent, Vaxign2 implemented various post-prediction
analyses to significantly enhance users’ capability to
refine the prediction results based on different vac-
cine design rationales and considerably reduce user
time to analyze the Vaxign/Vaxign-ML prediction re-
sults. Users provide proteome sequences as input
data, select candidates based on Vaxign outputs
and Vaxign-ML scores, and perform post-prediction
analysis. Vaxign2 also includes precomputed results
from approximately 1 million proteins in 398 pro-
teomes of 36 pathogens. As a demonstration, Vax-
ign2 was used to effectively analyse SARS-CoV-2, the
coronavirus causing COVID-19. The comprehensive

framework of Vaxign2 can support better and more
rational vaccine design. Vaxign2 is publicly accessi-
ble at http://www.violinet.org/vaxign2.

GRAPHICAL ABSTRACT

INTRODUCTION

Vaccination is one of the most significant inventions in the
medical field, and WHO estimates about 2–3 million deaths
are prevented through vaccination every year (1). Since Ed-
ward Jenner introduced a live attenuated vaccine against
smallpox in 1798 (2), many different advanced vaccine types
have been created, such as subunit, viral vector and nucleic
acid vaccines. However, the first and the most crucial step
of the development of all these advanced vaccine types is to
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select one or more protective antigens (PAgs), which could
be a gene encoding a protein or the protein itself. The con-
ventional approach has been time-consuming, but in 2000,
the revolutionary technique of Reverse Vaccinology (RV)
emerged, dramatically reducing the time required to iden-
tify PAgs from 5–15 years to 1–2 years (3,4). This success
has led to the creation of various RV tools. Current open-
source RV tools can be grouped into two categories, using
filtering-based or machine learning (ML)-based methods.
The filtering-based tools include Vaxign, the first web-based
RV tool (5), and other tools such as NERVE (6), Jenner-
predict server (7) and VacSol (8). The second type of RV
tool leverages the power of ML to predict PAgs, including
VaxiJen (9), Bowman’s method (10) and Heinson’s method
(11). As reviewed by Dalsass et al., the best model at that
time achieved a recall of 0.76, and many of these tools lack a
user-friendly interface for experimental scientists and stan-
dalone software for bioinformatics users (12).

As mentioned previously, we published the first web-
based RV tool Vaxign in 2010 (5), and the original Vax-
ign manuscript is well-cited in the field of vaccine design
and immunoinformatics. The Vaxign web service has been
running since 2010 and is accessed by thousands of users
per year. Over the past decade, Vaxign has been applied by
other research groups to predict vaccine candidates against
different pathogens such as Helicobacter pylori (13), My-
cobacterium tuberculosis (14), and African swine fever virus
(15). To push the performance of ML-based RV prediction
further, we created the ML-based Vaxign, or Vaxign-ML,
in 2020. A significant advantage of Vaxign-ML was that the
training data to build the ML model was retrieved from the
Protegen database, which stored over ten years of experi-
mentally verified protective antigens from published liter-
ature. As a result, Vaxign-ML showed superior predictive
performance compared to existing RV tools. The initial ver-
sion of Vaxign-ML primarily focused on bacterial protec-
tive antigen prediction and was extended to predict viruses
and parasites in the following updates. Then, Vaxign-ML
was applied to predict COVID-19 vaccine candidates, with
the SARS-CoV-2 spike (S) glycoprotein being the top can-
didate followed by the non-structural protein 3 (nsp3). The
S protein is the primary target of most COVID-19 vac-
cines, including the Pfizer (16) and Moderna (17) mRNA
vaccines with high reported efficacy in Phase 3 clinical tri-
als. The second candidate predicted by Vaxign-ML, nsp3
protein, contained the Papain-Like protease (PLpro) sub-
domain, which was reported to play a critical role in the
SARS-CoV-2 evasion mechanism against host antiviral im-
mune responses (18). The inhibition of PLpro impaired the
virus-induced cytopathogenic effect and reduced viral repli-
cation in infected cells.

Here, we present the Vaxign2 web server, a comprehensive
tool to facilitate rational vaccine design. Vaxign2 consists
of a predictive framework and a computational workflow
component. The predictive framework includes the orig-
inal Vaxign filtering-based method and the newly devel-
oped Vaxign-ML machine learning-based method. Vaxign2
also implemented an array of post-prediction analyses be-
sides the prediction framework, including epitope predic-
tion, population coverage, and functional analysis. These
analyses significantly enhance user capability to refine the

prediction results based on different vaccine design ratio-
nales and access the biological function and immunogenic
content of Vaxign and Vaxign-ML prediction results.

METHODS AND IMPLEMENTATION

The input of Vaxign2 is the pathogen protein or proteome
sequences (Figure 1). For protein sequences, users can pre-
dict PAgs by directly inputting the amino acid sequences in
FASTA format or providing one of the following identifiers:
UniProtKB ID, NCBI protein ID, NCBI protein RefSeq or
NCBI gene ID. Vaxign2 also supports retrieval of the en-
tire proteome amino acid sequences from the corresponding
database identifiers, including UniProt proteome ID, NCBI
bioproject ID or NCBI nucleotide ID, to perform PAg pre-
diction for the entire pathogen proteome. Users then se-
lect options in the web interface and submit the prediction
query. Once all processes are finished, a Vaxign2 summary
page will display the generated Vaxign-ML scores and Vax-
ign predicted biological properties. By default, the result
is ranked based on the Vaxign-ML score (recommended
threshold = 90.0), which is the percentile rank score from
the Vaxign-ML prediction. Vaxign2 also inherits the origi-
nal Vaxign filtering-based method. It allows users to select
output protein based on subcellular localization, the num-
ber of transmembrane domains, adhesin probability, and
similarity to host proteins (human/mouse/pig) if enabled
during Vaxign2 option selection. Finally, users can select
individual protein from the summary page for further post-
prediction analyses, including Vaxitop epitope prediction,
verified epitope mapping, epitope population coverage pre-
diction, protein function prediction and protein ortholog
identification.

Vaxign and Vaxign-ML predictive framework

Vaxign filtering-based protective antigen prediction. Vax-
ign is the first web-based vaccine design program using
RV. The first generation of Vaxign applies a filtering-
based method to select vaccine antigen candidates based
on the user’s prior knowledge of the target pathogen’s
pathogenesis. A typical workflow involves the follow-
ing components: (i) subcellular localization computed by
PSORTb program (19); (ii) transmembrane domains com-
puted using TMHMM 2.0 with default settings (20);
(iii) adhesin probability calculated using SPAAN program
with default settings (21); (iv) similarity to host pro-
teins (human/mouse/pig) using BLAST and NCBI protein
database (22).

Vaxign-ML machine learning-based protective antigen pre-
diction. With the advance of machine learning and accu-
mulation of manually collected protective antigens in Pro-
tegen (23), Vaxign-ML was created and significantly im-
proved vaccine antigen prediction (24). In brief, Vaxign-ML
combined the protein sequences’ biological and physico-
chemical properties as the input features to train five differ-
ent machine learning models. The input protein sequences
were extracted from the Protegen database, a continuous
effort over the past ten years collecting and annotating
experimentally verified protective antigens (23). All ma-
chine learning models were evaluated and selected based on
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Figure 1. The overall workflow of Vaxign2. Users provide the input data in the form of pathogen protein or proteome (blue box). Then the users can select
Vaxign2 options in the web interface and submit the prediction query (yellow boxes). A Vaxign2 summary page will display the Vaxign-ML scores, and
users can perform post-prediction analysis on the selected protein (green boxes).

nested five-fold cross-validation and leave-one-pathogen-
out validation. The best performing model, extreme gradi-
ent boosting, was used to build the Vaxign-ML program.

Vaxign2 post-prediction analysis workflow

Vaxitop epitope prediction and IEDB verified epitope map-
ping. However, the Vaxign and Vaxign-ML predicted
PAgs could be further investigated for their immunogenic
potential as vaccine candidates before experimental verifi-
cation. Vaxign2 provides the immunogenicity assessment by
the post-prediction analysis workflow. The principal mech-
anism of vaccines is the adaptive immune response: hu-
moral (antibody) and cell-mediated responses. The protec-
tion offered by these immune responses is primarily medi-
ated by B cells and T cells. In particular, T cell response can
be mainly categorized into CD4 (helper) and CD8 (cyto-
toxic) T cell responses, which are induced by epitopes bound
to major histocompatibility complex (MHC)-II, and MHC-
I molecules, respectively. Therefore, it is essential to eval-
uate the predicted PAgs based on their B cell and T cell
epitopes.

Vaxign2 supports MHC-I and MHC-II T cell epitope
predictions for input proteins via Vaxitop. In brief, all the
epitopes’ Position-Specific Scoring Matrix (PSSM) for dif-
ferent MHC-I or MHC-II alleles are generated by MEME
(25) based on known epitope data from the IEDB immune
epitope database (26). Then the input proteins are scanned
for epitopes by the PSSMs. The P-value for the predicted
epitope binding to PSSMs is calculated by the MAST se-
quence homology search algorithm (25). Besides epitope
prediction, Vaxign2 also supports the mapping of IEDB ex-

perimentally verified T cell and B cell epitopes to the input
proteins (26).

Population coverage prediction. As mentioned in the pre-
vious section, epitopes bound to the MHC-I or MHC-II
molecules are presented to T cells to induce an immune re-
sponse. However, human MHC molecules are highly poly-
morphic, and the expression of different MHC molecules is
significantly impacted by human genetic variation. Thus, it
is essential to determine if the predicted PAg contains a set
of epitopes capable of binding to different MHC molecules
and offers a broad coverage to the world population. Based
on the result from Vaxitop MHC-I and MHC-II T cell epi-
tope prediction, Vaxign2 can also calculate the population
coverage of the input proteins using the IEDB Population
Coverage Tool (27). The predicted population coverage of
the different countries is also visualized and highlighted in
the world map.

Protein function and orthologs prediction. The sequences
of all PAgs are scanned for functional domains, including
Clusters of Orthologs (COG) and Gene Ontology (GO)
terms, as well as possible orthologous proteins using HM-
MER2 (http://hmmer.org/) with the hidden Markov models
downloaded from the EggNog database (28).

RESULTS

Vaxign and Vaxign-ML benchmarking

A benchmarking dataset was created to evaluate Vaxign and
Vaxign-ML to other existing open-source RV tools, includ-
ing VaxiJen3 (9) and Antigenic (29). This benchmarking

http://hmmer.org/
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Table 1. Benchmarking performance of Vaxign and Vaxign-ML compar-
ing to other open-source reverse vaccinology tools

Tools Recall Precision WF1 MCC

Vaxign-ML 0.81 0.75 0.76 0.51
Vaxign 0.32 0.79 0.56 0.27
VaxiJen3 0.78 0.71 0.71 0.42
Antigenic 0.5 0.52 0.49 -0.02

Abbreviation: WF1 = weighted F1 score. MCC = Matthew’s correlation
coefficient.

Table 2. Vaxign2 pre-computed queries with at least 10 proteomes. Full
list can be found in Supplemntal Table S1

Pathogen name # of Proteome # of proteins

Streptococcus 53 105 632
Herpesvirus 52 5104
Acinetobacter baumannii 35 131 070
Staphylococcus aureus 33 86 662
Brucella 31 98 888
Salmonella 23 104 009
Vibrio 22 50 267
Mycobacterium 15 64 073
Corynebacterium 14 33 665
Clostridium difficile 13 48 849
Escherichia coli 11 53 932
Campylobacter 10 17 445
Clostridium 10 35 130
Total 398 980 285

dataset was composed of two external resources: (i) Dal-
sass et al.: 100 positive samples (12); (ii) Heinson et al.: 200
positives and 200 negatives (11). To avoid biased evaluation
and over-fitting, all samples were aligned to the Vaxign-ML
training data, and all identical or similar protein sequences
were removed from the benchmarking dataset. The 200 neg-
atives were also checked to ensure that no experimental ev-
idence was reported in the literature. The final benchmark-
ing dataset consisted of 131 positives and 118 negatives. The
benchmarking result showed that Vaxign had the highest
precision with the cost of the lowest recall (Table 1). Over-
all, Vaxign-ML had the highest recall, weighted F1- score,
and Matthew’s correlation coefficient compared to other
RV tools.

Vaxign2 Pre-computed queries

Vaxign2 contains publicly available pre-computed results
of 980,285 proteins from 398 proteomes in 36 pathogens
(Supplementary Table S1), and Table 2 listed 13 pathogens
with at least ten proteomes analyzed. Compared to the
original Vaxign, Vaxign2 added 19, 322 and 789 093 new
pathogens, proteomes and proteins to the pre-computed
queries, respectively. In addition, Vaxign2 also incorpo-
rated the Vaxign-ML predictions into the pre-computed
query pipeline. Compared to the original Vaxign, New post-
analysis features such as epitope population coverage and
ortholog phylogeny generation were also added.

Vaxign, Vaxign-ML and Vaxign2 have been used in many
studies in vaccine design, pathogenesis mechanism studies,
and genome analysis. The Vaxign and Vaxign-ML predic-
tive framework has been applied to predict PAgs for vac-
cine development against over 20 pathogens (Supplemen-

tary Table S2). In many studies, researchers applied Vaxign
and Vaxign-ML to predict vaccine antigen targets, but Vax-
ign was also used to study the virulence of Clostridioides
difficile cell wall protein 22 (Cwp22) (30) and to select vac-
cine targets for antibiotic-resistant Acinetobacter baumannii
(31).

Use case study

The emerging Coronavirus Disease 2019 (COVID-19) pan-
demic poses a massive crisis to global public health, and
WHO declared the COVID-19 as a pandemic on 11 March
2020. The causative agent of COVID-19 is SARS-CoV-2,
which shares high sequence identity with SARS-CoV (32).
As of 6 February 2021, this on-going COVID-19 pandemic
had caused over 105 million infection cases and over 2.3 mil-
lion deaths globally. To effectively control the spread of this
deadly virus, it is important to develop safe and effective
COVID-19 vaccines.

Use Case 1: dynamic analysis of SARS-CoV-2 S protein eval-
uation. The SARS-CoV-2 S protein is a commonly used
vaccine antigen in current COVID-19 vaccine development.
Figure 2 showed how Vaxign2 was used to dynamically as-
sess the S protein as a vaccine target by Vaxign/Vaxign-ML,
and to evaluate the immunogenicity and biological func-
tions of S protein in post-prediction analyses. The SARS-
CoV-2 S protein’s NCBI protein ID (YP 009724390.1) was
input to the Vaxign2 dynamic analysis (Figure 2A). Vax-
ign2 computed Vaxign/Vaxign-ML results, including the
Vaxign-ML score and adhesin probability. Vaxign-ML pre-
dicted S protein to be a good vaccine antigen with a score
of 97.6 (Figure 2B). Vaxign calculated S protein’s adhesion
probability of 0.635; with the cutoff of 0.51, this protein
was protected to be an adhesin contributing to viral entry
into the host cell. The Vaxign/Vaxign-ML results both sug-
gested S protein as a promising vaccine antigen target.

The S protein was then evaluated for its immunogenic-
ity and functional profile by Vaxign2 post-prediction analy-
ses. Vaxitop predicted 94 MHC-I (Supplementary Table S3)
and 54 MHC-II (Supplementary Table S4) unique promis-
cuous epitopes for S protein (P-value ≤ 0.01) (Figure 2C).
The MHC-I & -II reference alleles represent the majority of
human MHC alleles in the world population (33,34), and
epitope promiscuity is defined to bind four or more MHC-
I or MHC-II alleles in the reference set (35). Vaxign2 also
found 12 and 45 verified epitopes for T and B cells, re-
spectively (Figure 2D, Supplementary Tables S5 and S6).
Furthermore, S protein was predicted to have high popu-
lation coverage in most countries (Figure 2E). Note that
some countries with low or no predicted population cov-
erage might be due to the lack of reported allele frequen-
cies in the Allele Frequency Net Database (36) and did not
reflect the actual population coverage. Vaxign2 also com-
puted the Gene Ontology (GO) terms for S protein and
identified virulence-related terms (Figure 2F), such as viral
entry into host cell (GO:0046718), host cell surface recep-
tor binding (GO:0046789), and receptor-mediated virion at-
tachment to host cell (GO:0046813) (Supplementary Table
S7). Finally, a total of 51 S protein orthologs were identified
(Figure 2G, Supplementary Table S8) in Orthocoronaviri-
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Figure 2. Dynamic analysis of SARS-CoV-2 S protein in Vaxign2. (A) The protein accession number of S protein was used as the input, together with the
selection of specified parameters. (B) The basic analysis results were provided for the S protein. (C) Vaxitop predicted human MHC-I & -II epitopes and
users could select the result based on different MHC Classes, MHC Alleles and epitope length. (D) Population coverage of S protein’s predicted epitopes
was computed using the MHC-I & -II reference alleles for the general population of each country. Note that some countries with low predicted population
coverage might not reflect the actual population coverage due to the lack of reported allele frequencies in the Allele Frequency Net Database (36). (E)
Vaxign2 searched the IEDB Epitope database to provide a list of experimentally verified epitopes for both B and T cells. (F, G) EGGNOG was used as a
database to identify matching functions, Gene Ontology terms, and known orthologs to facilitate rational vaccine antigen selection.

nae, which is a subfamily related to human coronaviruses. In
summary, the Vaxign2 post-prediction analyses suggested
S protein had good epitope profiles and contributed to an
important role in viral infection. Such analyses provided by
Vaxign2 provided valuable biological rationales on the se-
lection of S protein as a vaccine candidate. Indeed, S protein
has been the primary target of many COVID-19 vaccines
such as Pfizer and Moderna (16,17).

Use Case 2: pre-computed queries for coronaviruses vac-
cine selection. The complete proteome of SARS-CoV-2
was uploaded to the Vaxign2 pre-computed queries and
was compared to seven other coronaviruses (Figure 3). The
causative agents for the Middle East respiratory syndrome
(MERS) and Severe acute respiratory syndrome (SARS)
are MERS-CoV and SARS-CoV, respectively. SARS-CoV,
SARS-CoV-2, and MERS-CoV are all beta-coronaviruses,
which are very virulent and cause severe respiratory syn-
dromes. On the other hand, human coronavirus OC43
(HCoV-OC43) and HKU1 (HCoV-HKU1) belong to the
beta-coronavirus, while human coronavirus 229E (HCoV-
229E) and NL63 (HCoV-NL63) are alpha-coronaviruses.

These four strains only cause mild cold symptoms in hu-
mans. In addition to the human coronaviruses mentioned
above, a murine coronavirus MHV-1 was also included in
the comparison to SARS-CoV-2. The hypothesis is that
some coronavirus virulence factors only exist in the se-
vere form of SARS-CoV/SARS-CoV-2/MERS-CoV but
not in the other mild or non-human coronaviruses. The pre-
computed coronavirus results in Vaxign2 could be queried
(Figure 3A) to address this hypothesis. Specifically, our Vax-
ign2 query found seven proteins that were conserved in the
three virulent human coronaviruses (SARS-CoV, SARS-
CoV-2 and MERS-CoV), but not in the other five mild or
non-human coronaviruses. These seven proteins included
Non-structural protein 7–10 (nsp7–10), Uridylate-specific
endoribonuclease (nendoU), 2′-O-methyltransferase (2′-O-
MT), and nucleocapsid phosphoprotein (N) (Figure 3B).
Among the seven conserved proteins, three proteins (nsp8–
10) were predicted as adhesion proteins by Vaxign, but only
nsp8 protein was predicted to be PAg by Vaxign-ML. There-
fore, nsp8 was selected for further analysis (Figure 3C). In
particular, the genome group phylogeny analysis (Figure
3D) showed that nsp8 was predicted to be more closely re-
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Figure 3. Comparison of multiple coronavirus strains for uniquely conserved strains. (A) Query for SARS-CoV-2 proteins that share orthologs in SARS-
CoV and MERS-CoV but not in four other human coronaviruses and one murine coronavirus strain. (B) The results of seven proteins including nsp8
predicted as a protective antigen and three proteins (nsp8–10) as adhesin proteins. (C) Selection of nsp8 for further analysis. (D) The result of nsp8’s
genome group ortholog phylogeny.

lated to the SARS-CoV than MERS-CoV and the other
four mild human coronaviruses (Figure 3D). It could be a
feasible strategy to create a COVID-19 cocktail vaccine, as
described in our COVID-19 vaccine prediction study (37),
that combines multiple proteins to target different aspects
of host immunity for better protection.

CONCLUSION AND FUTURE DIRECTION

Vaxign2 is a comprehensive system providing protective
antigen (PAg) prediction and post-prediction analysis to
support accurate and efficient antigen selection during the
early step of vaccine development. The original Vaxign is
one of the most popular open-source Reverse Vaccinology
(RV) tools. Vaxign-ML is a machine learning (ML)-based
RV prediction tool that facilitates vaccine candidate selec-
tion with high accuracy. The current Vaxign-ML was pri-
mariy developed for bacterial and viral PAg prediction, and
will be extended to predict parasitic PAgs. By integrating
Vaxign and Vaxign-ML, Vaxign2 provides an accurate PAg
predict and yet supports customizable selection based on
the user’s prior knowledge. Furthermore, Vaxign2 facili-
tates post-prediction analysis of the predicted PAgs for im-
munogenicity and functional assessments.

Vaccine informatics (38) is a rapidly developing field, and
many new technologies could be integrated into the Vax-
ign2 system to not only improve the antigen selection pro-
cess but also support antigen optimization. First, with the
accumulation of PAgs in the literature, it is feasible to ap-
ply deep learning to improve the RV-based antigen selection
process further. The type of immune responses (e.g. Th1 and
Th2 responses) induced by these PAgs and post-translation
modification (e.g., glycosylation sites) could also be mined
from the literature and enhance Vaxign2 predictions. Sec-

ond, Structural Vaccinology (SV) is an emerging field to ra-
tionally design vaccine antigens and has been applied to the
respiratory syncytial virus (39) and SARS-CoV-2 (40). In-
tegration of Vaxign2 and SV can promote antigen selection
and optimization. The continuous development of Vaxign2
presents the best opportunity for the rapid development of
effective and safe vaccines.
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