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Abstract: Various fungi including Cordyceps farinosa, an entomopathogenic fungus, can produce
steroidal triterpenoids. Protostadienol (protosta-17(20)Z,24-dien-3β-ol) is a precursor of steroidal
triterpenoid compounds. To identify oxidosqualene cyclase (OSC) gene candidates involved in
triterpenoid biosynthesis, genome mining was performed using Illumina sequencing platform. In
the sequence database, two OSC genes, CfaOSC1 and CfaOSC2, in the genome of C. farinosa were
identified. Predicted amino-acid sequences of CfaOSC2 shared 66% similarities with protostadienol
synthase (OSPC) of Aspergillus fumigatus. Phylogenetic analysis showed a clear grouping of CfaOSC2
in the OSPC clade. Function of CfaOSC2 was examined using a yeast INVSc1 heterologous expression
system to endogenously synthesize 2,3-oxidosqualene. GC–MS analysis indicated that CfaOSC2
produced protosta-13(17),24-dien-3β-ol and protostadienol at a 5:95 ratio. Our results demonstrate
that CfaOSC2 is a multifunctional triterpene synthase yielding a predominant protostadienol together
with a minor triterpenoid. These results will facilitate a greater understanding of biosynthetic
mechanisms underlying steroidal triterpenoid biosynthesis in C. farinosa and other fungi.

Keywords: Cordyceps farinosa; fusidic acid; oxidosqualene cyclase; protostadienol synthase; triter-
penoid

1. Introduction

Steroidal triterpenoids such as ganoderic acid, pachymic acid, fusidic acid, and
helvolic acid are produced by fungal cells. These compounds can protect fungal cells
against other pathogens. Ganoderic acid and pachymic acid have anti-cancer, immune-
enhancing, and anti-inflammation effects [1–3]. Fusidic acid and helvolic acid are widely
used as antibiotics against Gram-positive bacteria. The biosynthesis mechanism of fu-
sidic acid and helvolic acid has been recently elucidated using a heterologous expression
system [4,5]. However, the pathway of other steroidal triterpenoid biosynthesis is not
clear yet.

A number of studies have suggested that lanosterol and protostadienol (protosta-
17(20)Z,24-dien-3β-ol) are precursors of steroidal triterpenoid compounds [6,7]. In the case
of triterpene biosynthesis in fungal cells, lanosterol synthase (OSLC) and protostadienol
synthase (OSPC) belonging to a class of oxisqualene cyclases (OSCs) are involved in the
biosynthesis of lanostane-type and fusidane-type triterpenoid, respectively (Figure 1). It
has been reported that these OSCs are key enzymes that regulate biosynthesis [8]. In both
fungi and animals, OSLC is responsible for producing sterol precursors for cholesterol and
ergosterol. OSLC genes from several fungal species, animals, plants, and microorganisms
have been characterized [9–13]. Interestingly, genomes of some fungi encode more than
one OSC. Other OSCs can also produce triterpenoid secondary metabolites via their OSC
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function. So far, only one OSPC gene has been characterized in A. fumigatus through a
heterologous expression system in yeast cells [6]. OSPC gene from other organisms has not
been characterized yet.
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The species Cordyceps farinosa belongs to the Cordycipitaceae family in the Hypocre-
ales order of Ascomycota and is well-known as entomopathogenic fungi with a worldwide
distribution in temporate and tropical zones [14]. These entomopathogenic fungi can also
produce a variety of chemicals that cause severe adverse reactions in other organisms,
including bacteria and other animals. Sarocladium oryzae, Acremonium fusidioides, Metarhiz-
ium anisopliae, and Aspergillus fumigatus are fungi that can produce fusidanes as steroidal
antibiotics [15]. In particular, Cordyceps kogane can produce fusidic acid that is structurally
similar to fusidane [16].

To discover genes related to triterpenoid biosynthesis, Cordyceps farinosa mycelium was
chosen as a biosynthesis model of steroidal triterpenoid. We chose C. farinosa because, in
the preliminary comparative genome analysis of Hypocrealean species, we recognized that
a gene cluster of C. farinosa was similar to a well-known gene cluster related to helvolic acid
biosynthesis in A. fumigatus. In the present study, whole genome sequences of C. farinosa
KMCC47486 were analyzed and two OSC genes, lanosterol synthase and protostadienol
synthase, were found. We isolated a gene encoding a putative protostadienol synthase from
C. farinosa mycelium. Its function was then determined using a heterologous expression
system in yeast along with product analysis using GC-MS. In addition, a gene cluster
including OSPC gene was identified. It consisted of seven genes highly conserved in
A. fumigauts for helvolic acid biosynthesis. We also discussed triterpenoids produced by
discovering genes that matched with the gene cluster related to helvolic acid biosynthesis.

2. Materials and Methods
2.1. Strain of C. farinosa

A strain of C. farinosa (KACC47486) was obtained from Korean Agricultural Culture
Collection (KACC), Rural Development Administration (RDA), Republic of Korea. The
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mycelium of C. farinosa was cultured on PDA (Potato Dextrose Agar) medium at 25 ◦C in
darkness for 2 weeks. To identify the strain through sequence comparison of its ITS rDNA
region, phylogenetic tree analysis was performed using the Neighbor-Joining method.

2.2. Genome Sequencing and Assembly

Genomic DNA was extracted from freeze-dried mycelium using a DNeasy Plant
Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Con-
centration and purity of the extracted genomic DNA were assessed using a NanoDrop
ND-1000 spectrophotometer (Thermo–Fisher Scientific, Waltham, MA, USA). Next genera-
tion sequencing (NGS) library construction and sequencing were carried out by Macrogen
Inc. (Seoul, Korea). Paired-end and mate-pair libraries with insert sizes of 300 bp and
5 kbp, respectively, were prepared. Subsequently, NGS was carried out using an Illumina
HiSeq platform (KAPA Biosystems, Roche, San Francisco, CA, USA) with a coverage of
approximately 350×. Generated sequence reads with low-quality scores or short lengths
were filtered out using a FASTX Toolkit 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit
(accessed on 28 May 2021)). Trimmed paired-end and mate-pair reads were then assembled
using a Velvet 1.2.01 assembler [17]. All reads were deposited at NCBI, and can be accessed
in the BioProject data base under project accession number PRJNA314175.

2.3. Phylogenetic Analysis

Amino acid sequences of OSCs in C. farinosa and its related species were extracted
using tblastn of NCBI BLAST 2.2.28+ package [18] with a query sequence of A. fumigatus
OSLC (XP_747936) against selected fungal genomes belonging to the order Hypocreales:
Beauveria bassiana ARSEF2860 (PRJNA38719), Claviceps purpurea 20.1 (PRJEA76493), Cordy-
ceps militaris CM01 (PRJNA41129), Epichloë festucae FI1 (PRJNA51625), Epichloë typhina
E8 (PRJNA174036), Fusarium graminearum PH-1 (PRJNA243), Fusarium oxysporum Fo5176
(PRJNA68027), Fusarium verticillioides 7600 (PRJNA15553), Metarhizium acridum CQMa
102 (PRJNA38715), Metarhizium anisopliae ARSEF23 (PRJNA38717), Tolypocladium inflatum
NRRL8044 (PRJNA73163), Trichoderma atroviride IMI206040 (PRJNA19867), Trichoderma ree-
sei QM6a (PRJNA15571), Trichoderma virens Gv29-8 (PRJNA19983), Beauveria pseudobassiana
KACC47484 (PRJNA314175), Beauveria sungii KACC47481 (PRJNA314175), Cordyceps pru-
inosa KACC44470 (PRJNA314175), Cordyceps farinosa KACC47486 (PRJNA314175), and
Cordyceps tenuipes KACC47485 (PRJNA314175). Predicted amino acid sequences were
aligned using Clustal Omega [19] with default settings and then manually adjusted. Phylo-
genies were inferred using neighbor joining (NJ) and maximum likelihood (ML) methods
of a MEGA6 software [20]. Relative robustness of individual branches was estimated with
500 replicates using bootstrapping (BS).

2.4. Generation of Plasmid Vectors

Sequences for two C. farinosa genes were deposited in GenBank with accession num-
bers of MF972281 for CfaOSC1 and MF972287 for CfaOSC2. To amplify the CfaOSC2
gene, forward (5′-TGATGCCTGTCGCCGATATTGAC-3′) and reverse (5′-TTATCCTTTGTA
AAAGGACGCTC-3′) primers were designed. PCR was then performed with an Ex-taq
DNA polymerase (Takara, Tokyo, Japan) using the following cycling conditions: 30 cycles
at 95 ◦C for 1 min, 58 ◦C for 1 min, and 72 ◦C for 2 min; followed by a final extension step at
72 ◦C for 10 min. The obtained fragment was purified and cloned into a pYES2.1 vector us-
ing a TOPO TA-expression kit (Invitrogen, Carlsbad, CA, USA), enabling the construction
of an expression plasmid pYES-CfaOSC2 in yeast cells. After sequence (pYES-CfaOSC2)
confirmation, the plasmid was used for yeast transformation.

2.5. Functional Expression of CfaOSC2 in Yeast

Functional characterization was carried out in yeast strain INVSc1 purchased from
Invitrogen (Carlsbad, CA, USA). Yeast transformation and insert-DNA overexpression were
carried out as described by Kushiro et al. [21]. Single clones including pYES–CfaOSC2 were
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incubated in 15 mL of a synthetic complete medium containing 2% glucose without uracil
at 30 ◦C with shaking at 220 rpm for two days. After three-day induction with 2% galactose,
cells from two 50 mL conical tubes were collected into one tube, refluxed with 8 mL of
20% potassium hydroxide (KOH) and 50% ethanol (EtOH), and extracted three times with
hexane at the same volume. Extracts were concentrated under a stream of nitrogen gas (N2)
and resuspended in 1 mL of chloroform (CHCl3). Subsequently, 100 µL of the extract was
transferred into a new vial and concentrated under a stream of N2 at 70 ◦C. For GC–MS
analysis, the extract was silylated with 50 µL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA) and 50 µL of pyridine for 30 min at 70 ◦C.

2.6. GC-MS Analysis

GC–MS analyses were run under the same conditions as described by Wang et al. [22].
Briefly, a 1-µL aliquot of the solution was analyzed using a 7890N gas chromatography
(Agilent Technologies, Santa Clara, CA, USA) equipped with a 5973-inert mass spectrom-
eter (MS) detector (Agilent Technologies, Santa Clara, CA, USA) and an Agilent HP-5
capillary column (length of 30 m, i.d. of 250 µm, film thickness of 0.25 µm). The injec-
tion temperature was set at 50 ◦C for 2 min. The column-temperature program was as
follows: 40 ◦C/min ramp to 200 ◦C, a hold at 200 ◦C for 2 min, followed by an increase
to 320 ◦C at a rate of 3 ◦C/min; and lastly a hold at 320 ◦C for 30 min. Triterpenoids
were identified by comparison with authentic extracts from yeast cells co-expressing Afu-
OSC3 (A. fumigatus protostadienol synthase) and CYP5081A1 (A. fumigatus cytochrome
P450 oxidase) as reported by Mitsuguchi et al. [7]. The constructed vector of pESC(-Ura)-
AfuOSC3/CYP5081A1 was kindly provided by Dr. Tetsuo Kushiro (Meiji University, Tokyo,
Japan). As previously described, the same protocol was applied for the transformation and
culturing of yeast strain INVSc1 with the vector.

2.7. Synteny Analysis

The OSC gene cluster of A. fumigatus Af293 proposed by Lodeiro et al. [6] was retrieved
from GenBank (XP_751348-XP_751356), including a series of genes catalyzing monooxy-
genation, dehydrogenation, and acyl transfer to convert protostadienol into helvolic acid.
Based on the result of our phylogenetic analysis, the synteny of OSC gene cluster of A. fu-
migatus was searched within the three selected hypocrealean species., viz. M. anisopliae,
B. sungii, and C. farinosa (Group III in Figure 4). Orthologous regions were identified using
the reciprocal best hit (RBH) approach [23]. First, local databases were created from genome
sequences of C. farinosa. After BLAST-searching AfuOSC3 gene clusters in databases, nu-
cleotide sequences highly matched with protein sequences of AfuOSC3 were extracted
from each genome. They were then conversely queried against the AfuOSC3 gene cluster.
In each pair-wise comparison, reciprocally best-matched genes (or regions) were regarded
as orthologs.

3. Results and Discussion
3.1. Identification of C. farinosa

The mycelium of putative C. farinosa, which was provdied by the KACC (Korean
Agriculture Culture Collection), was cultured on PDA medium for 2 weeks (Figure 2a). To
identify the strain, the fungal source was analyzed by ITS gene sequencing. The BLAST
search of the ITS sequence of the strain showed the highest similarity to Cordyceps and
the phylogenetic tree was constructed using MEGA 5.2 software. As shown in Figure 2b,
this strain clearly was grouped with C. farinosa. In addition, Isaria farinosa as the scientific
name has long been used for this fungus. However, the genetic position of Isaria was
changed to the Cordyceps by the principal of priority because of the discontinuance of dual
nomenclature for pleomorphic fungi in 2011 [24]. After confirmation of the strain, we
performed genome sequencing.
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3.2. Sequence Features of Two OSC Genes

Mass DNA-sequence data were produced using an Illumina sequencing platform to
identify OSC genes involved in triterpenoid biosynthesis. In the sequence database, two
OSC genes, CfaOSC1 (C. farinosa lanosterol synthase) and CfaOSC2 (C. farinosa protosta-
dienol synthase), were identified from the genome of C. farinosa. Both genes contained
full-length cDNAs. Open reading frames (ORFs) of CfaOSC1 and CfaOSC2 were 2223
bp and 2205 bp in length, respectively. These ORFs were predicted to encode CfaOSC1
and CfaOSC2 proteins having 741 and 735 amino acids with masses of 84.407 kDa and
82.615 kDa, respectively. Deduced amino acid sequences of CfaOSC1 (70%) and CfaOSC2
(66%) were orthologous to lanosterol synthase (Afu5g04080) and protostadienol synthase
(AfuOSC3) of A. fumigatus, respectively. As shown in Figure 3, CfaOSC1 and CfaOSC2
contained repeats of the QW motif [25], a typical feature of the triterpene-synthase super-
family. CfaOSC2 consisted of 699ACPGGMR705 motif in the C-terminal region. This motif
is known to play a role in protostadienol formation [26].

To determine the relationship of these two CfaOSCs with other fungal OSCs, phyloge-
netic analysis was performed as to determine its relationships with other fungi (Figure 4).
As expected, CfaOSC1 and CfaOSC2 were clearly grouped in OSLC and OSPC clades,
respectively. Therefore, CfaOSC2 is likely to have function in protostadienol production.
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3.3. Functional Characterization of CfaOSC2 in Yeast

Full-length cDNA of CfaOSC2 was amplified using polymerase chain reaction (PCR)
to elucidate the function of CfaOSC2 gene in steroidal triterpenoid biosynthesis. The full-
length cDNA was cloned into a yeast expression vector pYES2.1 under the control of a
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GAL1 promotor. The CfaOSC2 gene functionally was characterized using a heterologous
expression system in yeast INVSc1 that could endogenously synthesize 2,3-oxidosqualene.
After three days of galactose induction, yeast cells were harvested and then extracted with
hexane. To check whether or not alcohol triterpenes were extracted from yeast cells, we
added lupeol as a internal standard before the extraction. Results of gas chromatography–
mass spectrometry (GC–MS) analysis indicated that CfaOSC2-overexpressing yeast cells
produced two products not present in control yeast cells carrying an empty vector pYES2
(Figure 5a). Peaks of yeast cells co-expressing AfuOSC3/CYP5081A1 as described by Mit-
suguchi et al. [7] were used as authentic standards. Results of retention-time comparison
indicated that these two products at a ratio of 5:95 were protosta-13(17),24-dien-3β-ol
(1) and protosta-17(20)Z,24-dien-3β-ol (2, protostadienol), respectively. In addition, the
pattern of mass fragments of these identified compounds in yeast cells overexpressing
AfuOSC3/CYP5081A1 was compared. Results are shown in Figure 5b. Both peaks were
alcohol triterpenes as they comprised the m/z 498 molecular ion which was trimethylsily-
lated (TMS). In addition, the characteristic fragment ions in MS spectrum of protostadienol
were m/z = 191, 339 and 429, and these values were consistent with those reported by
Ledro et al. [6] (Supplementary Figure S1). Therefore, CfaOSC2 is a multifunctional triter-
pene synthase producing compounds 1 and 2.
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Figure 5. Identification of triterpenoids in CfaOSC2-overexpressing yeast cells by gas chromatography–mass spectrometry
(GC–MS) analysis. (a) GC chromatograms from the strain expressing the CfaOSC2 gene, the control yeast strain harboring
the pYES2 vector, and the authentic standards from the yeast strain co-expressing AfuOSC3/CYP5081A1 genes. IS means
internal standard (Lupeol). (b) MS spectra of trimethylsilylated triterpenoids produced from the CfaOSC2-expressing strain
(left) and the standard (right).

3.4. Synteny Comparison of a Gene Cluster for Helvolic Acid Biosynthesis

Whole fungi-genome sequences are available from public databases. Lodeiro et al. [6]
and Mitsuguchi et al. [7] have identified a gene cluster related to helvolic acid biosynthesis
that consists of OSPC, four cytochrome P450 (CYP) monooxygenases, two transferase-
family proteins, and two dehydrogenase genes. Nine of these gene-cluster genes have been
recently characterized using a heterologous-expression system in Aspergillus oryzae NSAR1,
resulting in the detection of helvolic acid together with 21 protostadienol derivatives [4].
We compared the gene cluster of A. fumigatus for helvolic acid biosynthesis with that of
C. farinosa based on DNA sequences (Figure 6). A gene cluster of C. farinosa consists of
seven genes, encoding one protostadienol synthase, three cytochrome P450 (CYP), one
acyltransferase, one short-chain dehydrogenase/reductase and one ketosteroid dehydroge-
nase. Among seven genes, amino acids of five genes are highly similar to those of HelA
(65%), HelB1 (64%), HelB2 (60%), HelC (61%) and HelB4 (66%). However, amino acids
of two genes encoding acyltransferase and ketosteroid dehydrogenase showed the low
level of similarity to those of HelD2 (38%) and HelE (26%). The gene cluster of C. farinosa
showed deletion of a CYP gene (Gene No. 5) and an acyltransferase gene (Gene No. 6)
compared to the helvolic acid cluster. We performed HPLC analysis to determine helvolic
acid in C. farinosa (Supplementary Figure S2). The result indicated that a peak which was
not consistent with that of helvolic acid was detected. Therefore, the result might indicate
that helvolic acid is not biosynthesized because of deletion of the two genes in C. farinosa.
Based on these results, we depicted a putative pathway of triterpenoid biosynthesis in
C. farinosa (Figure 7). We inferred that the final product of operating this gene cluster might
be 16β-acetyloxy-29-norprotosta-1,17(20)Z,24-trien-3-one-21-oic acid considering that those
two genes (Gene No. 5 and Gene No. 6) were deleted in the gene cluster. Future studies
are needed to identify all genes except OSPC gene using a heterologous expression system.
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Figure 7. Putative pathways of triterpenoid biosynthesis in C. farinosa.

4. Conclusions

This study revealed that the CfaOSC2 gene encoded an enzyme that could catalyze
the transformation of oxidosqualene to a predominant protostadienol along with a minor
triterpenoid and that CfaOSC2 was associated with protostane-type triterpenoid biosynthe-
sis using a heterologous expression system in yeast cells. However, the next catalytic step
of the cycling triterpenoid remains unclear. Based on our DNA-sequence database, future
studies need to elucidate the function of candidate genes in the gene cluster associated
with CfaOSC2. In addtion, it will be necessary to identify 16β-acetyloxy-29-norprotosta-
1,17(20)Z,24-trien-3-one-21-oic acid or any triterpene compound in C. farinosa cells. Results
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of this study provide a greater understanding about biosynthetic mechanisms underlying
steroidal triterpenoid biosynthesis in C. farinosa and other fungi.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060848/s1, Figure S1: Putative fragmentation mechanism of protostadienol leading
to the characteristic fragment ions observed in the GC-MS spectrum, Figure S2: HPLC analysis of
helvolic acid. Two chromatograms of HPLC analysis, (a) an authentic helvolic acid and (b) the extract
from C. farinosa mycelium.
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