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Human speech comprehension is remarkable for its immediacy and
rapidity. The listener interprets an incrementally delivered audi-
tory input, millisecond by millisecond as it is heard, in terms of
complex multilevel representations of relevant linguistic and non-
linguistic knowledge. Central to this process are the neural
computations involved in semantic combination, whereby the
meanings of words are combined into more complex representa-
tions, as in the combination of a verb and its following direct
object (DO) noun (e.g., “eat the apple”). These combinatorial pro-
cesses form the backbone for incremental interpretation, enabling
listeners to integrate the meaning of each word as it is heard into
their dynamic interpretation of the current utterance. Focusing on
the verb-DO noun relationship in simple spoken sentences, we
applied multivariate pattern analysis and computational semantic
modeling to source-localized electro/magnetoencephalographic
data to map out the specific representational constraints that
are constructed as each word is heard, and to determine how
these constraints guide the interpretation of subsequent words
in the utterance. Comparing context-independent semantic mod-
els of the DO noun with contextually constrained noun models
reflecting the semantic properties of the preceding verb, we found
that only the contextually constrained model showed a significant
fit to the brain data. Pattern-based measures of directed connec-
tivity across the left hemisphere language network revealed a
continuous information flow among temporal, inferior frontal,
and inferior parietal regions, underpinning the verb’s modification
of the DO noun’s activated semantics. These results provide a
plausible neural substrate for seamless real-time incremental in-
terpretation on the observed millisecond time scales.
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Understanding spoken language involves an extensive and
complex set of neural computations. Central to these are the

processes involved in semantic composition, whereby the mean-
ings of words are combined into more complex representations,
such as the combination of a modifier and noun (e.g., “green
dress”) or, as in the current study, a verb and its direct object
(DO) noun (e.g., “eat the apple”). These combinatorial pro-
cesses form the backbone of the incremental interpretation of
spoken language, enabling listeners to integrate the meaning of
each word as it is heard into a dynamically modulated multilevel
representation of the preceding words of the utterance.
There has been a long-standing, broad-based interest in se-

mantic combination, initially involving behavioral studies of how
contextual constraints affect semantic access (1) and semantic
flexibility (2) and more recently focusing on the neural substrates
for these processes. In this more recent literature, the combi-
nation of word meanings has principally been discussed either as
a process of integration or unification involving interactions
between the left inferior frontal gyrus (LIFG) and left posterior
middle temporal gyrus (LpMTG) (3–6) or as a syntactically li-
censed combination of individual word meanings involving pri-
marily the left anterior temporal lobe (LATL) (7, 8). Recent
neuroimaging studies have also identified the left angular gyrus
(LAG) (9–11) as well as the LATL (12, 13) as regions involved in
semantic combination, with a recent magnetoencephalographic
(MEG) study showing that LATL activity precedes activity in
the frontal cortex during combinatory semantic processing (13).

However, while this research provides an overall picture of the
brain regions underpinning semantic combination, relatively lit-
tle is known about the specific neural dynamics of these pro-
cesses, or about the combinatorial mechanisms by which the
meaning of each word is selectively integrated into its utterance
context. Historically, most studies have either used poorly time-
resolved functional magnetic resonance imaging (fMRI) meth-
ods or depended on event-related potential measures (most sa-
liently the N400) that are spatiotemporally diffuse and not in
themselves fully understood. Many studies, moreover, depend on
relatively blunt contrasts of phrases or sentences against lists of
words or pseudowords that cannot be combined (10, 12–17) and
have not directly modeled the semantics of the individual words
tested and have not been able to measure the precise timing of
the specific processes involved.
Building on the important but incomplete picture provided by

earlier research, the present study combines real-time neuro-
imaging measurements with recent developments in multivariate
statistics and computational linguistics to probe directly the
specific neurocomputational content of what is being computed
during incremental semantic combination and to determine
where and when in the brain these computations take place. We
used topic modeling, a corpus-based computational linguistic
method that has been widely used in machine learning and
natural language processing (18), to build explicit, quantifiable
models of the semantics of successive words, focusing here on the
integration of the semantics of a verb and its DO noun in verb-DO
noun sequences (e.g., “ate the apple”) placed in short contexts, such
as “the elderly man ate the apple.” The topic modeling method
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makes it possible to specify the context-independent semantics of
each DO noun, and to test how the specific semantic constraints
provided by the preceding verb interact with the activation of DO
noun semantics millisecond by millisecond as the noun is heard.
Critically, using these probabilistic semantic models, we used spa-
tiotemporal searchlight representational similarity analysis (ssRSA)
(19, 20), operating in electro/magnetoencephalographic (EMEG)
source space, to compare the similarity structure of contrasting
models of DO noun semantics with the similarity structure of ob-
served patterns of brain activity, making it possible to determine
which specific semantic contents of the DO noun are encoded
across the brain over time. We also used a novel measure of dy-
namic directed connectivity to probe the precise timing and the
directionality of information flow between critical brain regions (21,
22). Whole-brain EMEG data were collected as participants lis-
tened naturally to these sequences (with no overt task) and was
source-localized for all the analyses reported here.
This combination of methods not only provides uniquely de-

tailed access to the neural infrastructure for human language
comprehension in general, but also enables us to address the
long-standing but still controversial issue of how and whether
word meanings are flexibly interpreted in the context in which
they occur (23–28) or whether they have context-independent
properties that are always present in the neural instantiation of
the meaning of a word (29, 30). Previous psycholinguistic studies
have shown that a word’s meaning is flexibly interpreted in the
context in which it occurs (23, 24) with, in the strongest case, only
the contextually relevant meaning of the word being activated
(25–28). We test this hypothesis for contextualized semantic
representation using topic modeling to transparently represent
the semantic contents of each successive word and to determine
how and when these contents change as a function of dynamic
neurally represented contextual constraints.
In the next section, we present the progression of integrated,

interdependent analyses using a range of different methods, that
are necessary to construct and validate an account of the detailed
neurocomputational underpinnings of dynamic semantic com-
bination in a spoken sentential context. The starting point is the
construction of quantifiable semantic models of the specific se-
mantic properties of each verb and each DO noun, using the
topic modeling approach. The neurocomputational goodness of
fit of these models is then tested against EMEG brain data using
ssRSA, for a set of models of verb semantics. Following the
demonstration of significant verb semantic model fit, we focus on
verb–DO noun interaction, comparing the brain data model fit
of content-independent models of DO noun semantics against
contextualized DO noun models that reflect verb semantic
constraints. Given the strong constraint effects observed in these
comparisons, we then go on to investigate the neuroanatomical
locations of the interactions between verb semantic constraints
and DO noun semantics and, finally, to establish the timing and
directionality of neural information flow between these critical
regions.

Results
Topic Modeling for Verb and DO Noun Semantics. To probe the
neural mechanisms underpinning how verb semantic constraints
are generated and used to constrain the semantic interpretation
of the upcoming DO noun, we constructed sets of 6 spoken
sentences of the form “subject noun phrase (SNP) + verb + DO
noun” (e.g., “The elderly man ate the apple”). To generate a
broad range of variation in degree of constraint between the
verb and the DO noun, 3 different verbs were selected for each
sentence set, with each verb being paired with 2 different DO
nouns. Sixty sets of this type were constructed, giving a total of
360 sentences (Methods). For each DO noun, the 3 preceding
verbs varied in both the content and strength of the semantic
constraints they placed on it. For example, “eat” constrains its

DO noun toward something edible, “hold” is more likely to be
followed by objects that are small or light, while “want” has less
specific preferences over a following DO noun.
To model the semantics of the verbs and the DO nouns, we

adopted the topic modeling method known as latent Dirichlet
allocation (LDA) (31). This is a generative probabilistic ap-
proach aimed at extracting the latent semantic topics from large-
scale corpora. Using the co-occurrence frequency between verb
and DO noun as training data (32), LDA resulted in 200 topics
(Methods and SI Appendix, section 4), with each topic a proba-
bilistic distribution over the whole vocabulary of DO nouns from
the large-scale corpora included in model training. Importantly,
the meaning of a topic can be inferred from the highest-ranking
words in terms of their probability, that is, P(DO nounjtopic).
For example, if a topic prefers words like, “meal,” “meat,” “cake,”
and “bread,” then it could be plausibly labeled a “food” topic (Fig.
1, Lower). Each verb can be represented as a verb topic vector
which quantifies its semantic constraints on the following DO
noun as a unique distribution over the 200 topics, that is, P(topicjverb)
(Fig. 1,Middle). Similarly, a noun topic vector can be obtained to
model the semantics of a DO noun (Methods), which is also a
distribution over the same 200 topics, that is, P(topicjDO noun).
In this way, we quantified verb and noun semantics separately
using vectors in the semantic space constructed by the 200 latent
semantic topics (Fig. 2, Left and Middle).
Within the framework of ssRSA, these verb and noun topic

vectors were then used to construct a series of model represen-
tational dissimilarity matrices (model RDMs), which were cor-
related with data RDMs extracted from source-localized EMEG
data within a spatial-temporal searchlight moving across a bi-
lateral language mask (33–35) (Fig. 3 and Methods). This enabled
us to assess the neurocomputational goodness of fit of these dis-
tributional semantic models and thereby determine whether, when,
and where the information captured by these computational
models is encoded in the brain.

Neural Model Fit for Verb Semantic Models. Testing initially for the
neural distribution of verb semantic constraints, as defined by
topic modeling, we constructed a verb topic model RDM based
on the cosine distance between the topic vectors of verbs in
different sentences. The verb topic RDM was tested against
source-localized EMEG data RDMs within an epoch aligned to
verb onset and extending 600 ms forward from this point (verb
duration 487 ± 116 ms). The mean recognition point (RP) of the

Fig. 1. Example of topic modeling results. Each verb (Upper) (e.g., “eat”) is
represented as a distribution over 200 semantic topics (Middle), P(topicjverb),
which reflects its semantic constraints over the DO noun. Each topic is a
distribution over the vocabulary consisting of all the DO nouns from the
large-scale corpora (Lower), P(DO nounjtopic). Moreover, the meaning of a
topic can be readily interpreted by the top words ranked by probability (e.g.,
topic 50 is a food topic).
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verb—the point in the speech input at which it differentiates
from other cohort candidates and can be uniquely identified
(36)—was 339 ± 82 ms after verb onset as estimated using CELEX
(37) (Fig. 4). During this epoch, we found significant model fit
(i.e., Spearman’s rank correlation between model RDM and data
RDM) for the verb topic RDM in the LpMTG. Weak model fit
can be seen already at verb onset, with stronger effects emerging
within 50 to 100 ms after onset and peaking close to verb RP in
LpMTG. The effects extended anteriorly into the LATL as verb
RP approached and spread posteriorly into the left supra-
marginal gyrus (SMG) and angular gyrus (AG) and persisted
until verb offset (vertex-wise P < 0.01, cluster-wise corrected P <
0.05 with 5,000 nonparametric permutations, as applied to all
reported ssRSA results; ref. 38) (Fig. 4A). Note that the verb
topic effects detectable at verb onset are likely to reflect the
shared properties of the subject noun and verb (SI Appendix, Fig.
S2), which are already activated as soon as the subject noun is
recognized (SI Appendix, section 1). Critically, however, for the
purposes of the current study, these further analyses show that
only verb-specific model fit is seen after verb RP, continuing
until verb offset (SI Appendix, Fig. S3).
The verb topic vector provides information about both the

content (i.e., what topics a verb constrains toward) and the
strength of semantic constraints (i.e., the shape of the distribution
over topics, with a more focused distribution indicating higher
constraint strength and lower uncertainty). Although these 2 as-
pects together determine a verb’s semantic constraints, we can
separate out the strength of constraint by calculating the entropy
embedded in verb topic vectors (Methods). A verb exhibits high
constraint strength by showing preferences for only a few topics
(i.e., low entropy), which results in less uncertainty about the likely
properties of the following DO noun and vice versa for low con-

straint verbs. The wide range of the strength of semantic constraint
across the verbs used in this study is captured by the distribution of
verb topic entropy (SI Appendix, Fig. S4). We constructed the verb
topic entropy RDM by taking the absolute difference between the
entropy of each verb topic vector. Significant model fit for this
model RDM, exhibiting sensitivity to constraint strength, emerged
much later than for the verb topic RDM, first appearing in the left
middle temporal gyrus (LMTG) at 310 ms from verb onset, around
verb RP, and then extending briefly into the LATL and L SMG/AG
before focusing around LpMTG toward verb offset (Figs. 4B and 6B).

Verb Semantic Constraints and the Activation of Noun Meaning. In
the context of these results for models of verb semantic con-
straints, we can then ask how these constraints interact with the
access and interpretation of the following DO noun. Are only the
subset of noun semantics preferred by the verb significantly ac-
tivated when listeners hear the DO noun? Or are the initially
activated semantics of the noun unaffected by verb constraints,
providing evidence for exhaustive access to its context-independent
semantics? To model the potential effects of a verb’s semantic
constraints on its DO noun, we constructed verb-weighted noun
topic vectors through element-by-element multiplication be-
tween the verb topic and noun topic vectors. This results in a
verb-weighted noun topic vector that contains only topics pre-
ferred by both the verb and its DO noun (Fig. 2, Right). Since
each topic is a probabilistic distribution over the vocabulary of
DO nouns from the large-scale corpora, the verb topic vector
reflects the semantic constraints of a verb, that is, what a verb
“expects.” In contrast, the noun topic vector models the semantic
contents of a DO noun by specifying what it potentially “offers.”
Thus, although the multiplication between topic vectors is a
symmetrical manipulation, the verb-weighted noun topic vector
depicts the DO noun’s semantic representation in the directional

Fig. 2. Examples of verb (Left) and noun (Middle) topic vectors that separately capture verb semantic constraints and DO noun semantics. The verb-weighted
noun topic vector (Right) models the meaning of the DO noun in the context of a prior verb by emphasizing topics that are preferred by the preceding verb
through element-by-element multiplication between verb and noun topic vectors.

Fig. 3. Illustration of the pipeline for ssRSA that correlates the dissimilarity generated by topic modeling (i.e., model RDM) and that encoded by brain activity
(i.e., data RDM) using a spatiotemporal searchlight moving within a bilateral language mask at each time point during speech input. Model fits reflect when
and where the information captured by the model is represented in the brain.
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context of the prior verb’s semantic constraints. The resulting
verb-weighted topic RDM and noun topic RDM capture verb-
constrained noun semantics and context-independent noun se-
mantics, respectively. These model RDMs were obtained by
calculating the cosine distances between the corresponding topic
vectors. Note that the noun topic RDM is considered to capture
context-independent semantics because the topic modeling in-
cluded every occurrence of a DO noun across very large corpora,
resulting in DO noun semantic representations not biased by any
specific context.
We generated an epoch aligned to DO noun onset, 640 ms

long (mean DO noun duration 523 ± 114 ms). The RP of these
DO nouns in their sentential contexts was on average 233 ±
95 ms from noun onset, as estimated by a behavioral gating test
(39, 40) (Methods). The verb-weighted noun topic RDM showed
significant effects in both left temporal regions and the LIFG

concurrent with identification of the noun (around noun RP),
starting from 198 ms and 244 ms after noun onset, respectively
(Fig. 5A). The temporal lobe effects first emerged anteriorly, in
the LATL, and then propagated to posterior temporal regions
with stronger model fit, finally ceasing before noun offset (Figs.
5A and 6C). Effects in the LIFG began slightly after those in the
temporal cortex and peaked in BA47 after noun RP, lasting until
noun offset. In striking contrast, the context-independent noun
topic RDM showed no significant effects at any point across this
epoch (Fig. 5B). Taken together, these results strongly support the
hypothesis that only the subset of a word’s semantics constrained
by the current sentential context is initially activated (25–28).

Interactions between Verb Semantic Constraints and Noun Semantics.
To investigate the neural substrates subserving the strong in-
teraction that we observed between verb semantic constraints

Fig. 4. ssRSA results of model RDMs during the verb epoch (aligned to verb onset, extending 600 ms afterward to cover 1 SD of verb duration). (A) Verb topic
RDM that captures verb semantics. (B) Verb topic entropy RDM modeling the strength of a verb’s semantic constraints. Significance was determined by
5,000 nonparametric permutations with vertex-wise P < 0.01 and cluster-wise P < 0.05. Horizontal orange bars indicate periods during which different model
RDMs showed significant effects. Gray shading indicates the range of 1 SD for verb RP and verb offset.

Fig. 5. ssRSA results of model RDMs during the noun epoch (aligned to noun onset, extending forward by 640 ms to cover 1 SD of noun duration). (A) Verb-
weighted noun topic RDM that captures noun semantics as modified by the prior verb. (B) Noun topic RDM that models the context-independent semantics of
the DO noun. (C) Verb–noun interaction RDM reflecting the interaction between verb and noun semantics. (D) Verb constraint error RDM measuring the ease
with which the DO noun fits into the semantic constraints placed by the prior verb. Significance was determined by 5,000 nonparametric permutations with
vertex-wise P < 0.01 and cluster-wise P < 0.05. Horizontal orange bars indicate significant periods for different model RDMs. The gray shading indicates the
range of 1 SD for noun RP and noun offset.
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and noun semantics, we partialled out both the verb topic RDM
and the noun topic RDM from the verb-weighted noun topic
RDM. Any remaining model fit across the DO noun epoch can
be attributed to the interaction between the verb and its DO
noun. We found significant effects primarily in left BA45 around
noun RP, followed by later model fit in left BA47 (Figs. 5C and
6D). In contrast to the verb-weighted noun effects, which peaked
in left BA47 (Fig. 6C), the relatively stronger effects in BA45 for
the verb–DO noun interaction may reflect the different roles of
these LIFG subdivisions (41–43).
We also constructed a verb constraint error RDM to quantify

the processing load involved during the process of semantic in-
tegration in fitting DO noun semantics to the constraints placed
by the prior verb. Verb constraint error was defined as the cosine
distance between the verb topic and noun topic vectors. The
greater the overlap between a verb’s semantic constraints and the
following DO noun’s semantics, the smaller the distance between
the corresponding topic vectors, as reflected by a lower con-
straint error. Significant effects of this model RDM initially
appeared in the left BA45 and LATL around DO noun RP and
then extended into more posterior temporal regions as well as
the L SMG/AG, peaking in the LpMTG after the DO noun was
identified (Figs. 5D and 6E).

Mechanisms of Combination: Temporal Patterns of Information Flow
between Active Brain Regions. To understand the neural mecha-
nisms underpinning how different brain regions cooperate to
generate semantic constraints during the meaning composition
of adjacent words, we adopted a data-driven method to estimate
the information flow between brain regions using their data
RDMs (21, 22). The underlying logic here is the same as that of
Granger causality analysis (GCA) (44)—that is, if region A has
causal effects on region B, then the current activity of B is better
explained by taking the previous activity of A into account rather
than only using the previous activity of B itself. We quantified
the directed connectivity from A to B as the partial correlation
coefficient between the activity of A at a previous time point and
the current activity of B (as captured by their data RDMs),
partialling out the previous activity of B itself (Fig. 7, Upper). To
avoid possible bias due to the choice of any specific previous time
point, we calculated directed connectivity based on a series of
time points ranging from 2 ms to 120 ms before the current time
point (Methods). Based on this extended temporal dimension
(i.e., dt in Fig. 7, Lower), we can determine the extent to which
the current activity in the target region is correlated with the
source region’s activity at each time point within the previous
120 ms, which can be used to further infer the delay and duration
of potential directed connectivity effects. This method differs
from traditional GCA by providing a highly time-resolved profile
for the temporal dynamics of information flow between brain
regions, adding additional precision to the investigation of the
neural dynamics underpinning incremental speech interpretation.

Looking first at the verb epoch, the most significant model fit
for the verb topic RDMwas found in the LpMTG and L SMG/AG
(Fig. 6A). On the assumption that the simultaneous model fit
in these 2 areas reflects likely information flow between them,
we examined the potential directed connectivity between these
2 regions. Prominent effects of directed connectivity from the
LpMTG to L SMG/AG were consistently apparent, with a dt value
of ∼20 ms (Fig. 8 A, Lower), indicating that the current activity in
the L SMG/AG was significantly correlated with the activity in the
LpMTG 20 ms earlier. This suggests that information originating in
the LpMTG was constantly delivered to the L SMG/AG with a
delay of ∼20 ms as the verb unfolded over time. In contrast, the
inferred information flow from the L SMG/AG to LpMTG could
be detected only after the verb RP (Fig. 8 A, Upper).
Turning to the DO noun epoch (Fig. 8B), we calculated the

directed connectivity for the regions in the LMTG and LIFG
that showed the most significant model fits for the verb-weighted
noun topic RDM (Fig. 6C). Information flow from the LMTG to
LIFG showed a similar temporal pattern to the relationship
between the LpMTG and L SMG/AG in the verb epoch, with a
continuous correlational relationship rapidly updated at delays
of ∼20 ms (Fig. 8 B, Lower). However, the correlation effects
associated with these pulses were more short-lived, generally
dying away within 40 ms. In contrast, responses from the LIFG to
LMTG were relatively slower but long-lasting, characterized by
delays >20 ms and sustained effects as long as 100 ms (Fig. 8 B,
Upper). In addition, while the LIFG to LMTG effects were some-
what stronger after the noun RP, clear evidence of information flow

Fig. 6. Vertex-wise peak t value and significance duration of model RDMs
during the verb epoch—verb topic RDM (A) and verb topic entropy RDM
(B)—and during the noun epoch—verb-weight noun topic RDM (C), verb–noun
interaction RDM (D), and verb constraint error RDM (E).

Fig. 7. Directed connectivity analysis based on data RDMs constructed
separately from two brain regions. (Left) The logic is that if region A has
causal effects on region B, then the activity of A at a previous time point can
be used to explain the current activity in B better than using only the pre-
vious activity of B alone, which is quantified by the partial correlation co-
efficients. (Right) The horizontal axis indicates the real time at which the
speech unfolds, and the vertical axis indicates the time interval between the
current time point and the previous time point used to calculate directed
connectivity, thereby providing additional temporal information about the
onset and duration of directed connectivity. t0, current time point; dt, time
interval between current and previous time points.
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from the LIFG to LMTG already can be seen at noun onset,
suggesting that early processing of the DO noun may be subject to
LIFG-generated cognitive control.
Although the regions in the directed connectivity analyses

were selected based on their significant effects for particular
model RDMs, this method is still largely data-driven. Therefore,
2 additional sets of control analyses were conducted to in-
vestigate whether our findings are specific to speech compre-
hension or simply driven by intrinsic interactions between brain
regions. The results support the former possibility (SI Appendix,
section 3).

Discussion
In this study, we investigated the neural mechanisms underpin-
ning semantic composition—the rapid combinatorial processes
that support integration of the meanings of successive spoken
words in an utterance, and the ways in which the meaning of one
word affects the interpretation of an upcoming word during real-
time incremental speech comprehension. The specific instance
we focused on concerns how a DO noun is flexibly interpreted in
the context of the preceding verb in a short sentence. Given our
focus on semantic composition, we held the syntactic context
constant, using the same simple sentential structure across all the
stimulus materials. In what follows, we lay out the framework that
emerges from this study, providing spatiotemporally well-specified
insight into the qualitative and quantitative properties of the neural
processes that underpin core aspects of incremental interpretation.

Accessing and Integrating Verb Semantics. Developing an account
of how verb semantics interacts with the semantic properties of
the following DO noun first requires an understanding of how
the relevant semantic properties of the verb are themselves ac-
tivated and made available as constraints on subsequent words.
These processes were assessed here using 2 model RDMs based
on topic modeling estimates of verb semantics: the verb topic

RDM and verb topic entropy RDM. The model fit for these
RDMs across the verb epoch, as summarized in Fig. 6 A and B,
implicates a network of regions across the left temporal lobe
from the LATL to the posterior temporal cortex and extending
dorsally into the SMG and AG, with the strongest model fit seen
in the LpMTG and SMG/AG. The verb topic RDM in particular
engages the LpMTG throughout the verb epoch (Fig. 6A). The
nature of the processing interactions between these regions is
illuminated by the directed connectivity analyses during this
epoch (Fig. 8A).
The verb topic RDM captures the representational content of

verb semantic constraints. It shows a weak early model fit in the
LMTG from verb onset, with stronger effects emerging around
100 ms later. Model fit spreads from the initial focus in the
LpMTG to both the LATL and L SMG/AG around verb RP,
as the verb is being recognized. The directed connectivity be-
tween the LpMTG and L SMG/AG—the 2 regions showing the
strongest model fit to the verb topic RDM (Fig. 6A)—suggests
that information flow originating from the LpMTG is continu-
ously delivered to the L SMG/AG at very short delays (generally
around 20 ms) throughout the verb epoch (Fig. 8 A, Lower). In
contrast, information flow in the opposite direction, from the L
SMG/AG to LpMTG, is much more intermittent and does not
begin until verb RP, 300 ms after verb onset (Fig. 8 A, Upper).
These patterns of connectivity suggest that information about
verb semantic content is continuously generated in the LpMTG
as the speech input accumulates (34, 45–47) and is continuously
delivered to the L SMG/AG (among other regions) for further
integration, consistent with the widespread view that the L SMG/AG
plays an important role in semantic integration at both phrasal
and sentential levels (10, 11, 48–50). The timing of information flow
from the SMG/AG to LpMTG, occurring only as the verb is rec-
ognized, suggests that this reflects modulation of lexical analysis
activities in the LpMTG, triggered by the integration of verb se-
mantic properties into the current utterance representation.
The critical role of verb RP, where the semantics of the actual

verb come to dominate the neural response to different models,
is reflected in the timing of model fit for the verb topic entropy
model (Fig. 4B). This model RDM reflects not the representa-
tional content of the verbs, but rather how constraining that
representation is. A verb with preferences for fewer topics is
more constraining and thus has lower entropy, resulting in less
uncertainty about the likely properties of the following DO noun.
This information is critical for processes of incremental combi-
nation, since it determines how strongly different semantic
constraints can be placed on the upcoming word. These entropy
values can only be computed once the topic distribution of the
actual verb is known, and it is precisely around verb RP that the
model fit for this RDM is first seen (Fig. 4B). Consistent with
this account and the proposed role in semantic integration for
the LATL and L SMG/AG (50), the topic entropy RDM shows a
strong model fit in these 2 regions as well as in the LpMTG
(Fig. 6B).
Finally, when considering the semantic constraints projected

by the verb (in the context of its preceding subject noun) on the
following DO noun, it is important to define the likely nature of
these constraints. Given that a topic is a probabilistic distribution
over the whole vocabulary of DO nouns rather than specific
semantic features of a concept, the constraints represented by
the verb topic vector typically take the form of general semantic
categories such as “food” rather than specific entities such as
“bread.” This suggests that a broad semantic representation that
shares the topics preferred by the verb is generated after the verb
has been recognized. This broad semantic set is then used to
guide interpretation of the following DO noun (51). In fact, the
topic vector may represent semantic structure in terms of cate-
gory organization, with a topic representing, for example, con-
cepts relating to a food, plant, or animal and so forth, which

Fig. 8. Directed connectivity results for (A) the L SMG/AG and LpMTG,
showing significant model fit to the verb topic RDM during the verb epoch,
and (B) the LIFG and LMTG, exhibiting significant model fit to the verb-
weighted noun topic RDM during the noun epoch. Significance was de-
termined by 5,000 nonparametric permutations with time point-wise P <
0.001 and cluster-wise P < 0.01. dt, time interval between the current time
point and the previous time-point used to calculate directed connectivity;
PCC, partial correlation coefficient.
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provides a plausible account for the involvement of the left
posterior inferior temporal cortex for the verb topic effects, given
its important role in processing categorical semantic information
(47, 52, 53).

Contextual Constraints in Semantic Combination. Turning to the DO
noun epoch and the access of noun semantics as the noun is
heard, we addressed the controversial issue of how the meaning
of an upcoming word is modulated by its context (25–30). The
combination of topic modeling, EMEG source space, and ssRSA
allowed us to ask (and answer) this basic question about flexible
meaning by constructing model RDMs of DO noun semantics
that were either context-independent or context-sensitive and
then determining which of these models showed a significant fit
to neural activity as the DO noun was heard, and when and
where these effects occur. The verb-weighted noun topic RDM
contained only topics preferred by both a verb and its DO noun,
while the noun topic RDM represented the full context-
independent semantics of the noun.
The results reveal a striking contrast in model fit over the noun

epoch. The verb-weighted noun topic RDM shows significant
effects in the LIFG and LMTG, beginning around the noun RP
and continuing through to noun offset (Figs. 5A and 6C), but the
context-independent noun topic RDM shows no significant
model fit at any point throughout the noun epoch (Fig. 5B). This
seems to provide direct evidence that the DO noun is flexibly
interpreted in the context of the semantic preferences of its pre-
ceding verb. In first-pass processing of the speech input, the se-
mantic properties of the word that are not prioritized in the prior
context are either only very weakly activated, such that they are
not detected by the methods used here, or else not activated at all.
The issue of how DO noun semantics is selectively activated

was addressed by 2 other model RDMs designed to probe dif-
ferent aspects of the processes supporting semantic combination.
These are the verb and noun interaction RDM (Fig. 5C),
designed to identify the processing mechanisms involved, and the
verb constraint error RDM (Fig. 5B), which taps into the varia-
tions in processing activity generated by the process of integration
itself—the contact between noun semantic representations and
the semantic preferences projected by the preceding verb. Both
models, like the verb-weighted noun model, show a strong model
fit in the LIFG, in all cases either around or after noun RP.
The LIFG is widely considered a key region for semantic re-

trieval (47), especially for the controlled selection of semantic
knowledge (54, 55), and it plays a central role in semantic in-
tegration in the MUC (memory, unification, control) model (3–6).
Different subdivisions of the LIFG are generally assigned differ-
ent roles in semantic controlled processing, with BA45 likely more
involved in selection and integration and BA 47 more engaged in
semantic retrieval (41–43). Consistent with this, the verb-weighted
noun topic RDM, which captures the contextualized semantic
representation generated as the noun is heard, shows effects
peaking in BA47 from noun RP to noun offset, with varying de-
grees of anterior and posterior L temporal engagement (Figs. 5A
and 6C). In contrast, BA45 is more strongly engaged by the verb
and noun interaction RDM, which generates model fit primarily
in BA45 and extends to BA47 only later (Figs. 5C and 6D), while
the verb constraint error RDM similarly shows model fit at noun
RP for BA45 and extending into BA47 over the next 200 ms (Figs.
5D and 6E). This is consistent with a dominant role for BA45 in
the control processes that select contextually relevant semantic
properties (41). Note, however, that the peak effects of the verb
constraint error RDM were found in the LpMTG (Fig. 6D),
suggesting its strong involvement in representing the relevant se-
mantic properties of the verb and its DO noun during the process
of semantic combination.
The salient role of the LIFG in these noun epoch RDMs is

reflected in the directed connectivity between the LIFG and

LMTG (Fig. 8B). Despite the absence of model fits to the DO
noun-relevant RDMs before DO noun RP, information flow
between the LIFG and LMTG in both directions was found from
noun onset. Similar to the pattern revealed during the verb ep-
och, information flow from the LMTG was rapidly updated with
a delay of 20 ms, suggesting that retrieved lexical-semantic
properties are immediately projected to the LIFG for further
neural computations. This finding is consistent with the results of
a recent MEG study that identified the middle temporal regions
as an outflow hub sending widespread output to other language-
relevant brain areas (56). In the opposite direction, information
flowing to the left MTG is characterized by intermittent occur-
rence, longer delays, and relatively sustained effects as long as
100 ms. Importantly, however, directed connectivity effects from
the LIFG to LMTG were already present at DO noun onset,
implying that the semantic interpretation of the upcoming noun
was already subject to probabilistic verb semantic constraints at
noun onset. While neurocognitive models have highlighted the
general role of the LIFG in combining individual words into
larger units (3, 4), these directed connectivity results reveal the
detailed spatiotemporal structuring of these processes.

Conclusions. In this study, we developed quantitative semantic
models based on topic modeling and tested them against real-
time brain activity recorded by source-localized EMEG using
ssRSA, to reveal the spatiotemporal neural dynamics of how the
prior semantic context drives the semantic interpretation of an
upcoming noun. Further directed connectivity analysis revealed
distinct temporal patterns of top-down and bottom-up informa-
tion flow between critical language regions, which reveal the
neural mechanisms underpinning an essential property of spoken
language—our ability to combine sequences of words into
meaningful expressions.

Methods
Participants. Sixteen right-handed native British English speakers participated
in this study (age 18 to 39 y, 10 females) and provided written consent. All
participants had normal hearing, and none had any preexisting neurological
conditions ormental health issues. This studywas approved by the Cambridge
Psychology Research Ethics Committee.

Stimuli. We constructed 60 sets of 6 spoken sentences of the form “SNP +
verb + DO noun” (e.g., “The elderly man ate the apple”). Fourteen different
human subjects (e.g., “man,” “neighbor”) were used to build SNPs modified
by an adjective (e.g., “elderly man,” “next-door neighbor”), making them
likely to be interpreted as the agent of the actions depicted by the verb. The
frequent repetition of the same SNP (each repeated a mean of 25.7 ±
9.0 times) was intended to minimize their influence on the semantic in-
terpretation of the verb. In contrast, to generate a wide range of variation
in constraint between the verb and the DO noun across the stimulus set,
3 different verbs were selected for the 6 sentences in each set, and each verb
was paired with 2 different concrete DO nouns, giving 360 sentences in
total. Verbs were in the past tense, and there was a determiner (“the”)
between the verb and its DO noun. All of the verbs used in this study had a
strong preference for a DO complement phrase according to their sub-
categorization (SCF) distribution provided by VALEX (57) (average proba-
bility of DO SCF, 0.60 ± 0.17). Thus, we constructed sentences in which the
combined meaning of the verb and DO noun was highly semantically
transparent, in the sense that the semantic relationships between them are
consistent with the syntactic structure (7), and where this syntactic structure
(as simple active declarative sentences) was held constant across the stimulus
set. For each DO noun, the 3 verbs varied in both the content and strength
of their semantic constraints. Verb constraint strength was quantified by
verb topic entropy (SI Appendix, Fig. S4 and described in more detail below).
The lemma frequency, familiarity, and imageability were, respectively,
106.5 ± 240.4, 519.2 ± 72.5, and 456.3.5 ± 96.1 for the verbs and 55.1 ± 62.7,
559.9 ± 52.1, and 605.5 ± 31.1 for the DO nouns. Lemma frequency was
obtained from CELEX (37), and familiarity and imageability were obtained
from the MRC psycholinguistic database (58).
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Procedure. Participants were required to listen attentively and to answer
occasional questions that appeared on the screen in front of them with a
response box to maintain alertness (treated as filler trials). These filler trials
were excluded from the subsequent analyses. Instructions were visually
presented on a monitor screen situated in front of the participant. Auditory
stimuli were delivered binaurally through MEG-compatible ER3A insert
earphones (Etymotic Research). There was a mean 26 ± 2 ms delay in sound
delivery due to transmission of the auditory signal from the stimulus com-
puter to participants’ ears. To ensure that participants were able to hear the
stimuli through both earphones, a short hearing test was conducted before
the main experiment.

The experimental stimuli (360 spoken sentences) were equally divided into
4 blocks with 90 experimental trials in each. To maintain participants’ at-
tention, the experimental trials in each block were interspersed with 9 filler
trials consisting of questions related to the preceding sentence. These
questions were presented in written form on the monitor screen, and a
“yes” or “no” response was required. Each filler trial was followed by an
additional filler sentence to ensure that no residual task effects would be
picked up in the next experimental trial. The orders of blocks and also of
trials within blocks were pseudorandomized across participants. Each ex-
perimental trial began with a fixation cross presented at the center of the
screen for 650 ms, which was followed by a variable gap (750 or 1,350 ms)
before sentence onset. Participants were asked to avoid blinking while lis-
tening to sentences; there was 1,000 ms of silence at the end of each sentence,
followed by a “blink” cue lasting for 1,400 ms, during which participants could
blink. E-Prime Studio version 2 (Psychology Software Tools) was used to pre-
sent the stimuli and record the participants’ responses.

Gating Pretest.We used a behavioral gating task (39, 40) to determine the RP
of the DO noun in the sentential context. The RP is the point in the speech
input at which the word can be uniquely differentiated from its phono-
logical competitors and thus the point at which the word is recognized (36).
Twenty-four native British English speakers (age 18 to 40 y) who did not
participate in the main experiment were recruited for the gating test. The
same sentences used in the main experiment were presented in 50‐ms seg-
ments from the onset of the DO noun. For example, participants heard “The
elderly man ate the...”, “The elderly man ate the a...”, “The elderly man ate
the app...” over headphones in a sound-attenuated room. They were re-
quired to provide a continuation word, with a confidence score scaled from
1 to 7 (where 1 = not confident at all and 7 = very confident). The same
sentence was repeated with increasing increments of 50 ms until the par-
ticipant provided the same response with a confidence score of 7 twice.
Noun RP was defined as the gate where 80% of participants gave the correct
response twice in a row.

EMEG and MRI Acquisition. Participants were seated in amagnetically shielded
room (IMEDCO) with the head placed in the helmet of theMEG scanner. MEG
data were collected using a Neuromag Vector View system (Elekta) with
102 magnetometers and 204 planar gradiometers at a 1-kHz sampling rate.
Simultaneous electroencephalography (EEG) was recorded at a 1-kHz sam-
pling rate from 70 Ag-AgCl electrodes within an elastic cap (ESAcYcAP).
Vertical and horizontal eye movements were recorded by 2 electrooculog-
raphy (EOG) electrodes attached below and lateral to the left eye, and cardiac
signals were recorded by 2 electrocardiography (ECG) electrodes attached
separately to the right shoulder blade and left torso. Five head position
indicator (HPI) coils were used to monitor head motion. A 3D digitizer was
used to record the position of EEG electrodes, HPI coils and ∼100 to 150 head
points on participants’ scalp relative to the 3 anatomic fiducials (i.e., nasion
and bilateral preauricular points). To source localize EMEG data, T1-
weighted MPRAGE structural magnetic resonance imaging (MRI) with 1-mm
isotropic resolution was acquired using a Siemens Prisma 3-T scanner. All EMEG
and MRI data were collected at the MRC Cognition and Brain Sciences Unit,
University of Cambridge.

EMEG Preprocessing and Source Localization.Maxfilter (Elekta) was applied to
raw MEG data for bad channel removal and head motion compensation.
Signals outside the brain were removed using the temporal extension of
signal-space separation (59). EMEG data were then down-sampled to 500 Hz.
Independent component analysis (ICA) was conducted using EEGLAB, and
components related to blink, eye movement, and physiological noises were
removed according to the correlation with EOG and ECG signals and further
visual inspection. The following preprocessing steps were conducted using
SPM12. A low-pass fifth-order bidirectional Butterworth filter at 40 Hz was
applied to ICA-deartifacted EMEG data. Two epochs were extracted from
continuous data with auditory delivery delay corrected; one was aligned to

verb onset and extended to 600 ms afterward, and the other was aligned to
noun onset and extended to 640 ms afterward. Epoch length was de-
termined by the summation of the mean ± 1 SD of the duration of the verb
or DO noun speech input (verb, 487 ± 116 ms; DO noun, 523 ± 114 ms).
Baseline correction was performed by subtracting the time-averaged signal
of a silent period (i.e., −200 ms to 0 ms relative to sentence onset) from the
epoched data. Finally, automatic artifact rejection was conducted to exclude
trials with signals that exceeded amplitude thresholds (60 ft/mm for gradi-
ometers, 3,000 ft for magnetometers, and 200 μV for EEG electrodes). The
mean ratio of rejected trials was 4.5% for the verb epoch and 5.2% for the
noun epoch.

EMEG data source localization was performed using SPM12. Source space
was modeled by a cortical mesh consisting of 8,196 vertices. The sensor
positions were coregistered to individual T1-weighted structural images by
aligning fiducials and the digitized head shape to the outer scalp mesh. The
MEG forward model was constructed using the single-shell model (60), and
the EEG forward model was built using the boundary element model (61).
Inversion of EMEG data was performed for verb epoch and noun epoch
separately using the least squares minimum norm method (62) and an em-
pirical Bayesian MEG and EEG data fusion scheme (63) implemented in
SPM12. In general, MEG is insensitive to radially oriented sources, which are
prominent in EEG, while EEG suffers from relatively lower spatial resolution
in source localization due to distortion caused by heterogeneous electrical
conductivity through the skull and scalp. The combination of EEG and MEG
gives more accurate reconstructions by integrating the complementary in-
formation provided by the 2 modalities (63–66).

Topic Modeling. Topic modeling was adopted to quantify verb and DO noun
semantics using the LDA algorithm (31). LDA is a generative probabilistic
model originally proposed to discover the latent semantic topics within
massive collections of documents (18). Topics are represented by multino-
mial distributions over the whole vocabulary consisting of words from all
documents in large-scale corpora. The generative process of topic modeling
assumes that each document is created by first being assigned with a dis-
tribution over topics, and then each word in this document is chosen from a
topic selected according to this document’s distribution over topics. The
training of LDA aims to reveal the hidden topics and each document’s dis-
tribution over topics.

Given the distributional hypothesis of semantics—that is, words that are
used and occur in the same contexts tend to have similar meanings (67, 68)—
LDA was used to quantify a verb’s semantic constraints based on its fre-
quency of co-occurrence with DO nouns. Specifically, we used the Local
Mutual Information (LMI) from the Distributional Memory tensor (32), which
is calculated based on the raw co-occurrence frequency count between a
verb and its DO noun and has considerable computational advantages, in-
cluding avoiding bias toward overestimating the significance of low-
frequency items. Based on the co-occurrence frequency (i.e., LMI value) be-
tween a verb and its DO nouns, we can construct a verb document that
includes all the DO nouns of this particular verb. In such a verb document,
each DO noun is repeated N times, where N is the co-occurrence frequency
between the verb and this DO noun. Thus, a verb document depicts the
semantic constraints of this verb through the DO nouns with which it co-
occurs in large-scale corpora. The training of LDA was restricted to the re-
lationship between a verb and its DO nouns, with the intention of focusing
on semantic modeling by keeping the syntactic structure constant (i.e., verb
and DO noun). Note that although the verb document is not a realistic
document, the verb and DO noun co-occurrence embedded in it are indeed
extracted from real corpora containing 2.83 billion tokens (32). The training
data set consisted of 4,217 verb documents (all transitive verbs with a
nonzero DO SCF probability according to VALEX) with a vocabulary of
20,373 DO nouns (92.5 million tokens) from the corpora. The topics inferred
from these verb documents constitute a semantic space in which each verb’s
semantics can be characterized by a verb topic vector, that is, the unique
distribution over topics given a verb, PðtopicjverbÞ. On the other hand, the
multinomial distribution of topics provides the probability of each DO noun
given a certain topic, PðDO  nounjtopicÞ. By applying the Bayes theorem, we
can also obtain the distribution over topics given a DO noun:

PðtopicjDO  nounÞ= PðDO  nounjtopicÞ× PðtopicÞ=PðDO  nounÞ.

Thus, noun semantics can be represented by a noun topic vector. By doing
this, verb and noun semantics were represented using the same set of topics.

Topic modeling was conducted using an open-source implementation of
Bayesian variational method for LDA (https://github.com/blei-lab/lda-c). The
optimal number of topics was determined by evaluating the results for topic
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models with different topic numbers (SI Appendix, section 4). As mentioned
above, each topic is a distribution over the whole vocabulary from the
corpora; however, the degree of semantic dispersion can vary across topics,
potentially undermining the estimation of topic entropy (see definition in
Cognitive Models). For example, the entropy of a verb with less specific se-
mantic constraints (e.g., “want,” “like”) could be underestimated if the
uncertainty of its constraints were reflected by the preference for only a few
less informative topics (i.e., a more concentrated pattern over topics), which
leads to a low entropy value. We quantified the informativeness of each
topic and applied it to the loading of this topic in both verb and noun topic
vectors to alleviate the semantic dispersion across topics (SI Appendix,
section 5).

Cognitive Models. A series of computational cognitive models were con-
structed using verb and noun topic vectors obtained from LDA. Verb topic
vectors provide information about both the content of constraints (i.e., which
topics are preferred) and the strength of constraints (i.e., whether they show
a focused or distributed pattern over topics). The strength of semantic
constraints can be isolated by calculating the entropy embedded in the verb
topic vector,

HðvÞ=−
X

i

Pi · logðPiÞ,

where Pi is the probability (i.e., normalized loading) of the i th topic for
verb v.

The verb topic RDM was constructed by calculating the cosine distance
between verb topic vectors, while the verb topic entropy RDM was a dif-
ference matrix constructed by calculating the absolute difference between
the entropy values of verb topic vectors. The noun topic RDM, which captures
the semantics of DO nouns, was constructed by calculating the cosine distance
between noun topic vectors. To model the verb-constrained DO noun se-
mantic representation, we built the verb-weighted noun topic RDM through
element-by-elementmultiplication between verb topic vector and noun topic
vector. Thus, within the noun topic vector, only topics preferred by both the
verb and the DO noun are preserved, while those irrelevant to the verb are
suppressed. The cosine distance between verb-weighted noun topic vectors
was used to construct the verb-weighted noun topic RDM, which captured the
semantic representation of a DO noun in the context of the preceding verb.

In a further analysis, we also partialled out both verb and noun topic RDMs
from the verb-weighted noun topic RDM on the hypothesis that any
remaining effects would be due to the interaction between the verb and DO
noun semantics. Finally, we quantified the ease of fitting the noun into the
semantic constraints of the preceding verb by calculating verb constraint
error, defined as the cosine distance between the verb topic vector and noun
topic vector. The smaller the verb constraint error, the easier it is to fit the
noun into the verb semantic constraints. The verb constraint error RDMwas a
differencematrix constructed by calculating the absolute difference between
verb constraint error values of different verb and DO noun combinations. All
the model RDMs described above had the same matrix size (360 × 360), and
each off-diagonal element indicates the dissimilarity between 2 of the
360 spoken sentences to which the participants were exposed.

ssRSA. The ssRSA method combines both temporal and spatial multivariate
patterns to reveal the neural substrates underlying cognitive processes by
correlating the dissimilarity generated by cognitive models with the dis-
similarity generated by the corresponding brain activity (19, 20). We used a

spatiotemporal searchlight with a 10-mm spatial radius and 30-ms temporal
radius (i.e., a 60‐ms sliding time window), which was mapped across the
source space of EMEG. The ssRSA analysis was restricted to a bilateral lan-
guage mask that covered regions that have been consistently reported in
studies on language processing, including the bilateral temporal cortex, in-
ferior frontal gyrus, supramarginal gyrus, and angular gyrus (33–35). To
construct data RDMs for each searchlight, we composed data vectors by
extracting source-localized EMEG data corresponding to each of the
360 spoken sentences and calculated the pairwise Pearson correlation dis-
tance (i.e., 1 − Pearson r) among them, which resulted in a 360 × 360 data
RDM. Multivariate normalization was applied to the data RDMs to improve
the reliability of distance measures and reduce the task-irrelevant hetero-
scedastic structure across trials and vertices (69). The data RDM of a
searchlight centered at each vertex and time point was compared against
the cognitive model RDMs using Spearman’s rank correlation, which resulted
in a time course of model fit for each vertex. In the verb epoch, we tested
verb topic RDM and verb topic entropy RDM. In the noun epoch, we tested
verb-weighted noun topic RDM, noun topic RDM, verb–noun interaction
RDM (partialling out both verb and noun topic RDMs from verb-weighted
noun topic RDMs), and verb constraint error RDM. For each time point, a
1-tailed 1-sample t test was conducted at each vertex with the fits of all par-
ticipants for 1 model RDM to test whether the mean model fit is larger than
0. Cluster permutation tests were performed for multiple comparison cor-
rection with 5,000 nonparametric permutations (38), vertex-wise P < 0.01
and cluster-wise P < 0.05.

Information Flow between Brain Regions. To reveal how information is
transferred between brain regions, we calculated directed connectivity based
on the data RDMs of 2 regions that showed significant model fits for a specific
model RDM (21, 22). The logic is that if region A has causal effects on region
B, then the activity of A at a previous time point can be used to explain the
current activity in B better than simply using the previous activity of B alone.
We define the data RDM of region X at time point t as D(X, t); the directed
connectivity from A to B is quantified as the partial correlation coefficient
between D(A, t − dt) and D(B, t) partialling out D(B, t − dt), where dt is the
time interval between the current time point and the previous time point
used to calculate directed connectivity. To avoid bias due to the choice of dt,
we calculated directed connectivity with a series of dt values ranging from
2 ms to 120 ms, which precisely described the onset and duration of the
directed connectivity between 2 brain regions. Note that data RDMs were
recalculated by only using data at each time point instead of that within a
sliding time window, to avoid contamination from neighboring time points.
Regions of interest were determined by selecting the 100 most significant
vertices, as quantified by the summation of t values (for a particular model
RDM) at each significant time point within an epoch, restricted to the ana-
tomic areas defined by the automated anatomic labeling template (70).

Data Availability. Dataset relevant to this study is available at ref 71.
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