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ABSTRACT

Recent genome-wide association studies (GWAS) have identified single 
nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). 
However, investigation of genetic basis from the perspective of systematic biology 
and integrative genomics remains scarce.

In this study, we explored genetic basis of EC based on GWAS data and 
implemented a series of bioinformatics methods including functional annotation, 
expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and 
pathway grouped network analysis.

Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were 
found to have significantly differential gene expression in esophageal tissues by eQTL 
analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were 
enriched into 38 significant GO terms and 17 significant KEGG pathways, which were 
significantly grouped into 9 sub-networks by pathway grouped network analysis. 
The 9 groups of interconnected pathways were mainly involved with muscle cell 
proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol 
oxidation, which might participate in the development of EC.

Our findings provide genetic evidence and new insight for exploring the molecular 
mechanisms of EC.

INTRODUCTION

Esophageal cancer is the 6th leading cause of death 
from cancer and the 8th most common cancer in the world 
[1]. Epidemiological researches have demonstrated that 
both environmental factors (eg. alcohol consumption) and 

genetic factors (genetic variants) contribute to the risk of 
EC development [2]. Meanwhile, genome-wide association 
study (GWAS) offers the opportunity to investigate genetic 
factors involved in this complex disorder and several single 
nucleotide polymorphisms (SNPs) have been identified to be 
significantly associated with risk of EC [3]. However, results 
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from current GWAS of EC mainly focus on individual 
SNPs with highly statistical significance (P-value < 5.0E-
08), investigation of genetic basis from the perspective of 
systematic biology and integrative genomics remains scarce.

Due to the polygenic risk of complex disorders, 
the effect size attributable to individual genetic variants 
was typically modest, suggesting that individual genetic 
variants identified by GWAS may only accounted for 
a very small amount of the genetic risk and heritability 
of complex disorders [4]. The combined effect of multi 
genetic variants or genes with modest effect also plays 
important roles in genetic basis of complex disorders such 
as esophageal cancer [5]. GWAS provides us an important 
data source for the investigation of multi-variant/
gene effect. Moreover, combining GWAS data with 
bioinformatics methods such as expression quantitative 
trait loci (eQTL) analysis, pathway based analysis, and 
network analysis, the integrative genomics approach could 
provide systematic evidence to genetic basis of disease [6].

In this study, we explored genetic basis of EC by 
comprehensive data mining and systematical data analysis 
based on GWAS data and a series of bioinformatics 
methods, which may provide better understanding for the 

molecular mechanisms that contribute to the development 
of EC.

RESULTS

Identification of SNPs associated with risk of 
esophageal cancer

By comprehensive data search and collection, we 
obtained a total of 7 published GWAS of esophageal 
cancer [21]-[27], in which the sample size ranged from 
four thousands to twenty thousands and the ethnic 
groups of samples were mainly Asian descent except one 
study with European descent, detecting 500 thousands 
to one million of SNPs from the whole genome in each 
GWAS. A total of 211 SNPs reported with P-value 
<5.0E-05 were obtained and considered as risk SNPs 
of esophageal cancer. Summary of GWAS including 
disease, ethnic groups, sample size, genotyping 
platform, and number of detected SNPs was shown in 
Table 1 and details of reported SNPs, their P-values and 
odds ratios were shown in Supplementary Table S1. 
As shown in Supplementary Table S5, results of power 

Table 1: Summary of esophageal cancer GWAS

Study Disease Ethnic groups Initial sample 
size (case/
control)

Replicated 
Sample size 

(case/control)

Genotyping 
platform

No. of 
detected 

SNPs

No. of 
reported 

SNPs 
with P < 
5.0E-05

Levine DM [21] EAC European 1,516/3,209 874/6,911 Illumina 922,031 13

Jin G [22] Multiple 
cancers 

(including 
ESCC)*

Asian 
(Chinese)

2,031/4,006 3,006/11,436 Affymetrix NA 1

Wu C [23] ESCC Asian 
(Chinese)

2,031/2,044 8,092/8,620 Affymetrix 666,141 151

Wu C [24] ESCC Asian 
(Chinese)

2,031/2,044 3,986/4,157 Affymetrix 666,141 11

Abnet CC [25] ESCC and 
gastric 
cancer*

Asian 
(Chinese)

1,898/2,100 NA Illumina 551,152 7

Wang LD [26] ESCC Asian 
(Chinese)

1,077/1,733 7,673/11,013(Han 
Chinese), 

303/537(Uygur-
Kazakh Chinese)

Illumina 506,666 18

Cui R [27] ESCC Asian 
(Japanese)

182/927 782/1,898 Illumina 359,195 12

EAC: esophageal adenocarcinoma; ESCC: esophageal squamous cell carcinoma; NA: not applicable.
*Only SNPs associated with ESCC were included in this study.
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analysis demonstrated for two-stage designed GWAS, in 
the initial analysis, studies with initial sample size larger 
than 3000 had more than 90% power of detecting risk 
SNPs. While initial sample size of study [27] was 1109, 
the power of detecting risk SNPs with allele frequency 
of 0.1 and 0.9 was less than 70%. When combining 
initial sample and replicated sample, all studies achieved 
more than 90% power at any allele frequency level.

Functional annotation and expression 
quantitative trait loci (eQTL) analysis

As shown in Supplementary Table S2, for 211 
risk SNPs, related chromosome, genome position, allele 
change, and mapped gene/region were annotated. These 
211 risk SNPs were mapped into 170 genes, which were 
considered as genes associated with risk of esophageal 
cancer. By eQTL analysis, among 211 risk SNPs, we 
observed 44 SNPs with significant gene expression 
changes in several esophageal tissues, including esophagus 
muscularis (sample size: 241), esophagus mucosa (sample 
size: 218), esophagus gastroesophageal junction (sample 
size: 235), with permutation adjusted P–values < 0.05. 
Detailed results including SNPs, esophageal tissues, gene 
with altered expressions and P-values were displayed in 
Supplementary Table S3.

Pathway enrichment analysis

By pathway enrichment analysis, with the threshold 
of Benjamini-adjusted P-value < 0.05, we obtained 38 
significant GO terms and 17 significant KEGG pathways, 
which were considered as significant pathways of 
esophageal cancer. Meanwhile, fold enrichment of risk 
genes in each significant pathway were all larger than 
1.5, demonstrating risk genes were significantly enriched 
in these pathways. The details of significant pathways 
including pathway ID, P-values, involved genes, and fold 
enrichment were shown in Table 2.

Pathway grouped network analysis

As shown in Supplementary Table S4, a pathway 
grouped network was constructed with significant 
interacted pathways involved and 55 pathways of EC were 
significantly grouped into 9 sub-networks with Group 
P-value < 0.05. As shown in Figure 1, Group 1 included 
smooth muscle cell proliferation related pathways; Group 
2 included phosphatidylcholine biosynthetic process 
related pathways; Group 3 were cellular response to 
interleukin-6 involved pathways; Group 4 were muscle 
cell proliferation related pathways; Group 5 and Group 
6 was related with cell adhesion molecule binding and 
Cell adhesion molecules (CAMs) respectively; Group 7 
was amyloid precursor protein catabolic process; Group 
8 was related with ethanol oxidation and Group 9 was 
negative regulation of cAMP biosynthetic process. 

Besides, 3 significant pathways including protein O-linked 
glycosylation, positive regulation of synapse assembly, 
glycerolipid metabolism were independent and not 
grouped into any cluster.

DISCUSSION

In this study, we employed an integrative genomics 
approach to investigate genetic risk factors and 
biological functions of EC. By systematic data analysis, 
evidence from large-scale GWAS, eQTL, pathway and 
network were obtained. As shown in Supplementary 
Figure S1, nine risk SNPs on alcohol dehydrogenase 
genes (eg. ADH4, ADH1C) were identified to have 
significantly differential gene expression levels under 
different genotypes on esophageal tissues including 
esophagus muscularis and esophagus mucosa, as 
alcohol drinking has been considered as an important 
risk factor of EC [2], and previous animal studies also 
demonstrated impairment of aldehyde dehydrogenase 
could increase accumulation of acetaldehyde-derived 
DNA damage in the esophagus after ethanol ingestion 
[7]. Our eQTL results indicated compared with non-risk 
alleles/genotypes, risk alleles/genotypes of these GWAS 
identified SNPs had differential gene expression levels, 
thus altered expression of risk genes might contribute to 
the molecular mechanisms of EC and were worthy of 
further investigation.

By functional annotation with genome information, 
211 risk SNPs were mapped into 170 genes, which were 
enriched into 38 significant GO terms and 17 significant 
KEGG pathways by pathway enrichment analysis. Then 
these EC related pathways were significantly grouped 
into 9 sub-networks according to shared risk genes among 
pathways. Two pathway groups related to muscle cell 
proliferation were identified, with genes such as FGFR2 
and FOXP1 involved. In accordance with our results, have 
shown FGFR2 are able to promote tumor development 
and progression in esophageal carcinoma [8] and FOXP1, 
as a member of Forkhead-box (FOX) family genes, was 
reported to be associated with poor prognosis of multi-
cancer [9]. In addition, the alcohol related pathway group 
including alcohol dehydrogenase (NAD) activity, aldehyde 
dehydrogenase (NAD(P)+) activity, ethanol oxidation, 
alcohol catabolic process was identified, which provided 
genetic evidence and biological explanation for the risk of 
alcohol drinking on development of EC [2]. Meanwhile, 
some interleukin-6 (IL-6) mediated immunity pathways 
were also grouped, such as cellular response to IL-6, 
T-helper cell differentiation and positive T cell selection, 
which also demonstrated an important involvement of 
IL-6 on the development of EC [10]. Moreover, the 
identification of cell adhesion molecules (CAMs) related 
pathway groups were supported by previous studies 
reporting altered expression of CAMs during prognosis 
and tumor behavior in EC [11].
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Results from pathway grouped network analysis 
demonstrated some pathways were shared among 
different groups, such as immune related pathways 
including T-helper cell differentiation, alpha-beta T 
cell activation and positive regulation of interferon-
gamma production; as well as muscle development 
related pathways such as regulation of muscle organ 
development and smooth muscle cell proliferation, 
indicating EC related genes and pathways did not 
function independently, but functioned in the form of 
interacting with each other. Therefore, results from our 

study revealed the multi-gene effect on genetic basis of 
EC, supporting the view indicating that combined effect 
of multi genetic variants or genes with modest effect 
were also involved in genetic basis of complex disorders 
such as EC [5].

In conclusion, in this study, we explored genetic 
basis of EC by comprehensive data mining and 
systematical data analysis based on GWAS data, evidence 
from SNP, gene, gene expressions, pathway and network 
were identified, which might provide new insight for 
exploring the molecular mechanisms of EC.

Table 2: Significant pathways of esophageal cancer

Pathway ID Pathway title Adjusted 
P-value*

Associated Risk Genes 
Found

% Associated 
Risk Genes

Fold 
enrichment

GO:0002377 immunoglobulin production 6.79E-03 FOXP1, IL6, XBP1, 
XRCC4

4.44 7.83

GO:0002700 regulation of production of 
molecular mediator of immune 
response

7.54E-03 FOXP1, IL6, TGFB2, 
XBP1

4.26 7.50

GO:0004022 alcohol dehydrogenase (NAD) 
activity

1.50E-10 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7

75.00 132.18

GO:0004030 aldehyde dehydrogenase 
(NAD(P)+) activity

1.08E-04 ADH4, ADH7, ALDH2 37.50 66.09

GO:0005178 integrin binding 3.50E-03 ADAMTS5, FN1, ITGA6, 
PPAP2B, PTPN2

4.35 7.66

GO:0005501 retinoid binding 6.21E-03 ADH4, ADH7, UGT2B7 6.82 12.02

GO:0006069 ethanol oxidation 2.66E-11 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
ALDH2

63.64 112.15

GO:0006493 protein O-linked glycosylation 8.74E-03 ADAMTS5, GALNT13, 
MUC4, ST6GAL1

4.00 7.05

GO:0006656 phosphatidylcholine biosynthetic 
process

3.32E-03 CHEK2, FABP5, SLC44A5 9.38 16.52

GO:0006805 xenobiotic metabolic process 3.34E-04 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
ALDH2, SULT1A1

4.40 7.75

GO:0007431 salivary gland development 1.22E-03 FGFR2, IL6, TGFB2, XBP1 8.70 15.32

GO:0010883 regulation of lipid storage 5.73E-03 IL6, PTPN2, SREBF2 7.14 12.59

GO:0030134 ER to Golgi transport vesicle 2.11E-04 HLA-A, HLA-DPA1, 
HLA-G, KIAA0368, 
SREBF2

9.62 16.95

GO:0030176 integral component of 
endoplasmic reticulum 
membrane

2.05E-04 CLN3, HLA-A, HLA-
DPA1, HLA-G, SREBF2, 
TBL2, XBP1

5.65 9.95

GO:0030818 negative regulation of cAMP 
biosynthetic process

4.25E-03 EDNRA, GNAI2, GRM3 8.33 14.69

(Continued )
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Pathway ID Pathway title Adjusted 
P-value*

Associated Risk Genes 
Found

% Associated 
Risk Genes

Fold 
enrichment

GO:0031016 pancreas development 7.75E-03 GATA6, GNAI2, IL6, 
XBP1

4.17 7.34

GO:0031069 hair follicle morphogenesis 3.32E-03 FGFR2, RUNX1, TGFB2 9.38 16.52

GO:0032729 positive regulation of interferon-
gamma production

2.19E-03 HLA-A, HLA-DPA1, 
IL18R1, PDE4D

7.02 12.37

GO:0033002 muscle cell proliferation 3.53E-04 EDNRA, FGFR2, FOXP1, 
GATA6, IL6, PDE4D, 
TGFB2

5.07 8.94

GO:0034774 secretory granule lumen 3.71E-03 FN1, GNAI2, IL6, TGFB2 5.63 9.93

GO:0042093 T-helper cell differentiation 5.42E-03 FOXP1, IL18R1, IL6 7.50 13.22

GO:0042307 positive regulation of protein 
import into nucleus

2.01E-03 IL18R1, IL6, KANK1, 
XBP1, ZIC1

5.32 9.37

GO:0042439 ethanolamine-containing 
compound metabolic process

7.43E-03 CHEK2, CLN3, FABP5, 
SLC44A5

4.30 7.58

GO:0042987 amyloid precursor protein 
catabolic process

1.42E-03 CLN3, FKBP1A, HAP1 14.29 25.18

GO:0043368 positive T cell selection 2.16E-03 DOCK2, IL6, PTPN2 11.54 20.33

GO:0046164 alcohol catabolic process 1.17E-02 ADH4, ADH7, ALDH2 5.08 8.96

GO:0046631 alpha-beta T cell activation 3.06E-03 DOCK2, FOXP1, HLA-A, 
IL18R1, IL6

4.59 8.08

GO:0048634 regulation of muscle organ 
development

2.68E-03 BDNF, FGFR2, FOXP1, 
GATA6, IL6

4.81 8.47

GO:0048659 smooth muscle cell proliferation 1.91E-03 EDNRA, FGFR2, FOXP1, 
IL6, PDE4D

5.43 9.58

GO:0050839 cell adhesion molecule binding 7.84E-05 ADAMTS5, FN1, ITGA6, 
NRXN1, POSTN, PPAP2B, 
PTPN2, PTPRM, TRPC4

4.84 8.53

GO:0051965 positive regulation of synapse 
assembly

2.16E-03 BDNF, CBLN1, NRXN1 11.54 20.33

GO:0055025 positive regulation of cardiac 
muscle tissue development

2.77E-03 FGFR2, FOXP1, GATA6 10.34 18.23

GO:0060038 cardiac muscle cell proliferation 9.07E-04 FGFR2, FOXP1, GATA6, 
TGFB2

9.52 16.78

GO:0060337 type I interferon signaling 
pathway

5.32E-03 HLA-A, HLA-G, PTPN2, 
USP18

4.94 8.70

GO:0071354 cellular response to interleukin-6 2.09E-03 IL6, PHB, PTPN2 12.00 21.15

GO:0071556 integral component of lumenal 
side of endoplasmic reticulum 
membrane

2.77E-03 HLA-A, HLA-DPA1, 
HLA-G

10.34 18.23

GO:1901019 regulation of calcium ion 
transmembrane transporter 
activity

1.42E-02 FKBP1A, HAP1, PDE4D 4.69 8.26

(Continued )
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Pathway ID Pathway title Adjusted 
P-value*

Associated Risk Genes 
Found

% Associated 
Risk Genes

Fold 
enrichment

GO:1902106 negative regulation of leukocyte 
differentiation

5.32E-03 HLA-G, PTPN2, RUNX1, 
THOC5

4.94 8.70

KEGG:00010 Glycolysis / Gluconeogenesis 6.91E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
ALDH2

10.45 18.41

KEGG:00071 Fatty acid degradation 8.27E-07 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
ALDH2

15.91 28.04

KEGG:00350 Tyrosine metabolism 2.92E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7

17.14 30.21

KEGG:00561 Glycerolipid metabolism 1.17E-02 ALDH2, DGKH, PPAP2B 5.08 8.96

KEGG:00830 Retinol metabolism 6.54E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
UGT2B7

10.77 18.98

KEGG:00980 Metabolism of xenobiotics by 
cytochrome P450

9.68E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
UGT2B7

9.59 16.90

KEGG:00982 Drug metabolism 7.40E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
UGT2B7

10.14 17.88

KEGG:04514 Cell adhesion molecules (CAMs) 8.57E-05 ALCAM, HLA-A, HLA-
DPA1, HLA-G, ITGA6, 
NRXN1, PTPRM, VCAN

5.63 9.93

KEGG:04940 Type I diabetes mellitus 5.97E-03 HLA-A, HLA-DPA1, 
HLA-G

6.98 12.30

KEGG:05030 Cocaine addiction 7.63E-03 BDNF, GNAI2, GRM3 6.12 10.79

KEGG:05204 Chemical carcinogenesis 3.40E-06 ADH1A, ADH1B, ADH1C, 
ADH4, ADH6, ADH7, 
SULT1A1, UGT2B7

9.76 17.19

KEGG:05320 Autoimmune thyroid disease 8.87E-03 HLA-A, HLA-DPA1, 
HLA-G

5.66 9.98

KEGG:05321 Inflammatory bowel disease 
(IBD)

2.96E-03 HLA-DPA1, IL18R1, IL6, 
TGFB2

6.15 10.85

KEGG:05330 Allograft rejection 4.82E-03 HLA-A, HLA-DPA1, 
HLA-G

7.89 13.91

KEGG:05332 Graft-versus-host disease 8.75E-04 HLA-A, HLA-DPA1, 
HLA-G, IL6

9.76 17.19

KEGG:05410 Hypertrophic cardiomyopathy 
(HCM)

5.64E-03 CACNG6, IL6, ITGA6, 
TGFB2

4.82 8.49

KEGG:05416 Viral myocarditis 1.17E-02 HLA-A, HLA-DPA1, 
HLA-G

5.08 8.96

*P-value was adjusted by Benjamini-Hochberg methods.
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MATERIALS AND METHODS

Identification of SNPs associated with risk of 
esophageal cancer

In order to identify SNPs associated with risk of 
esophageal cancer, GWAS of esophageal cancer were 
collected from GWAS catalog (https://www.genome.
gov/gwastudies/), which collected all currently published 
GWAS of various traits. Besides, we also searched public 
database of Pubmed to collect recently published GWAS 
of esophageal cancer. Information of GWAS studies 
including sample size, genotyping platform, ethnic groups, 

reported SNPs and their P-values were collected. Due 
to the polygenic risk of complex disorders, individual 
genetic variants may only accounted for a very small 
amount of the genetic risk and heritability of complex 
disorders such as esophageal cancer [4], in order to more 
comprehensively capture SNPs with small effect size, we 
used genetic association P-value of 5.0E−05 as a criterion 
for identifying SNPs that are associated with risk of 
esophageal cancer. To detect the power of each GWAS in 
identifying risk SNPs, we performed power analysis by 
QUNTO (http://biostats.usc.edu/Quanto.html) [12]. To 
comprehensively investigate the power of GWAS, three 
levels of risk allele frequency was assumed, which were 

Figure 1: Pathway grouped network of esophageal cancer.
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0.1, 0.5 and 0.9 respectively. The odds ratio was assumed 
as 1.20, demonstrating a “weak to moderate” gene effect, 
and two-tailed α  was set as 0.05.

Functional annotation and expression 
quantitative trait loci (eQTL) analysis

To identify genes of SNPs and candidate regulatory 
SNPs at disease-associated loci, we annotated genome 
information to SNPs including related chromosome, 
genome position, allele changes, mapped genes by using 
data from 1000 Genomes Project [13] and ENCODE 
(Encyclopedia of DNA Elements) projects [14]. Genes 
mapped by risk SNPs were considered as risk genes of 
esophageal cancer.

Meanwhile, some GWAS identified SNPs had 
regulatory functions by causing differential gene 
expressions with different genotypes and understanding 
the functional consequence of genetic variants was 
essential for biological interpretation on genetic etiology 
of disease [15]. Expression quantitative trait locus (eQTL) 
analysis was the most common approach used to dissect 
the effects of genetic variation on gene expression. As 
esophageal cancer occurred in esophageal tissues, the 
expression effect of risk SNPs in these tissues was worthy 
of being investigated. To detect the potential impact 
of risk SNPs on gene expression in esophageal tissues, 
we performed eQTL analysis by investigating the tissue 
specific expression distributions of SNPs in diverse human 
tissues using the Genotype Tissue Expression portal 
(GTEx) [16], a database that contained RNA sequencing 
data from 1641 samples across 43 tissues from 175 
individuals. For each tissue, significance correlations 
between genotypes and gene expression levels were 
determined by linear regression on quantile normalized 
gene-level expression values, with permutation-adjusted 
P–value < 0.05 as significance. As referred in [16], The 
eQTL was calculated for SNPs within ±1 Mb of the 
transcriptional start site (TSS) of each gene. If more than 
one target gene was identified for one SNP by eQTL 
analysis, gene with the most significant P-value was 
chosen.

Pathway enrichment analysis

To investigate whether risk genes of esophageal 
cancer identified from GWAS were enriched in 
functional pathways, we performed pathway enrichment 
analysis. Information from Kyoto encyclopedia of 
genes and genomes (KEGG) database [17] and Gene 
ontology (GO) terms [18] was used to annotate related 
pathways. The pathway enrichment test was based 
on hypergeometric test, the P-value was corrected by 
Benjamini-Hochberg methods and the significance 
was set as 0.05. To measure the magnitude of risk 
gene enrichment, we calculated the fold enrichment 

of involved risk genes in each pathway. The fold 
enrichment was obtained by calculating proportion of 
involved risk genes versus proportion of involved genes 
in human genome with a total of 29960 genes in each 
pathway according to the method applied in [19], with 
a suggested threshold of fold enrichment as 1.5 and 
above.

Pathway grouped network analysis

To investigate whether identified pathways were 
biologically interconnected, we constructed a pathway 
grouped network of risk genes of esophageal cancer by 
using a Cytoscape plug-in called “ClueGO” [20]. The 
relationship between pathways was defined based on 
their shared genes and calculated by chance corrected 
kappa statistics. Then the created network represented 
the pathways as nodes which were linked based on a 
predefined kappa score level. In our pathway grouped 
network analysis, we set the kappa score level as “0.4” 
as ClueGo referenced. The group P-value was determined 
by hypergeometric test, the P-value was corrected by 
Benjamini-Hochberg methods and the significance was set 
as 0.05. The final network was visualized by Cytoscape 
software (Version 3.1.1).
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