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The adaptive immune system reacts against pathogenic nonself, whereas it normally
remains tolerant to self.The initiation of an immune response requires a critical antigen(Ag)-
stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not
completely deleted by thymic selection and partially present in the periphery of healthy
individuals that respond in certain physiological conditions. A number of experimental and
theoretical models are based on the concept that structural differences discriminate self
from nonself. In this article, we establish a mathematical model for immune activation in
which self and nonself are not distinguished. The model considers the dynamic interplay
of conventional T cells, regulatory T cells (Tregs), and IL-2 molecules and shows that the
renewal rate ratio of resting Tregs to naïve T cells as well as the proliferation rate of acti-
vated T cells determine the probability of immune stimulation. The actual initiation of an
immune response, however, relies on the absolute renewal rate of naïveT cells.This result
suggests that thymic selection reduces the probability of autoimmunity by increasing the
Ag-stimulation threshold of self reaction which is established by selection of a low num-
ber of low-avidity autoreactiveT cells balanced with a proper number ofTregs.The stability
analysis of the ordinary differential equation model reveals three different possible immune
reactions depending on critical levels of Ag-stimulation: a subcritical stimulation, a thresh-
old stimulation inducing a proper immune response, and an overcritical stimulation leading
to chronic co-existence of Ag and immune activity.The model exhibits oscillatory solutions
in the case of persistent but moderate Ag-stimulation, while the system returns to the
homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear
as a result of shifted Ag-stimulation thresholds which delineate these three regimes of
immune activation.

Keywords: immune activation, autoimmunity, autoreactive T cells, regulatory T cells, central tolerance, peripheral
tolerance

INTRODUCTION
The immune system is continuously exposed to a wide variety of
disturbances. Such disturbances are recognized by T cells via anti-
gen presentation. Antigen presentation is a process in which anti-
gen presenting cells (APC) capture the antigens, break them into
small peptides, couple them with MHC molecules, and present
them on the cell surface, thus enabling their recognition by T cells
(1–3). The majority of disturbances that the immune system deals
with are pathogenic nonself-antigens. Since the APCs break down
the nonself-antigens into smaller peptides and present them on
their surface, presented peptide of nonself might have overlaps
with self-peptides (4, 5).

In addition, rapidly evolving nonself pathogens, such as Hepati-
tis C virus, might acquire similarities to self-antigens (6). Apart
from nonself, altered self such as cancer cells is also a distur-
bance that has to be recognized by the immune system. Therefore,

an ideal immune system has to find a solution for dealing with
nonself, self-similar nonself, and self-disturbances (Figure 1).

As a general solution, the immune system generates T cell clones
with random specificities that could potentially recognize any pep-
tides, including self-peptides. The classical idea that the T cell
repertoire has to be self-tolerant and T cells should not react to
self-peptides, assumes that self-reactive T cells should be elimi-
nated. This assumption is partially true, as T cell clones which fully
recognize self-peptides in the thymus undergo clonal deletion, in
the so-called negative selection process (7, 8).

The self-tolerance resulting from negative selection is called
central tolerance. A stringent central tolerance induction and dele-
tion of all autoreactive T cells is believed to create holes in the
specificity space of the T cell repertoire (9, 10) by prohibiting
immune responses against self-similar nonself and altered self.
Hence, a too stringent central tolerance does not seem beneficial.

www.frontiersin.org December 2013 | Volume 4 | Article 474 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00474/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00474/abstract
http://www.frontiersin.org/people/u/86973
http://www.frontiersin.org/people/FaribaBahrami/126817
http://www.frontiersin.org/people/MahyarJanahmadi/127988
http://www.frontiersin.org/people/u/108013
http://www.frontiersin.org/people/u/21796
http://www.frontiersin.org/people/u/52175
mailto:mmh@theoretical-biology.de
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Khailaie et al. Modeling immune activation

FIGURE 1 | Conceptual figure of different disturbances in the immune
system. Pathogenic nonself-disturbances are recognized and attenuated by
nonself-specific T cells. However, recognition and attenuation of altered self
and self-similar nonself-disturbances is challenging for the immune system
due to the existence of self-tolerance mechanisms; without self-specific
immune cells, the immune system is not able to initiate an immune
response against these disturbances.

In line with this idea, there is evidence that negative selection only
partially deletes autoreactive T cells because availability of self-
peptides required for negative selection in the thymus is limited
and T cells spend only a limited time in the process of thymic
selection (11–13). Autoreactive T cells escaping negative selection
have been shown to be involved in autoimmunity (14). They nor-
mally exist in healthy individuals and are quiescent in steady state
conditions in the presence of their cognate self-antigen (15).

Escaped autoreactive T cells are under the control of peripheral
tolerance. A prominent mechanism of peripheral tolerance among
others [reviewed in Ref. (16)] is induced by CD4+ Foxp3+ regu-
latory T cells (Tregs) (17). The majority of these cells, known as
natural Tregs, are hypothesized to be selected from autoreactive T
cells in thymus (18, 19). The main role of Tregs is the regulation
of the immune response by suppression of the effector functions
of conventional T cells (Tconv).

Despite the necessity of suppression by Tregs for avoiding
autoimmunity (20, 21), production of too large numbers of Tregs
in the thymus might prevent beneficial effector responses. There-
fore, a too stringent peripheral tolerance induction by selection of
large numbers of Tregs in the thymus does not seem favorable.

In view of this background, how does the immune system
balance the tolerance mechanisms in order to ensure immune
responses to any kind of disturbances including self-disturbances,
yet staying tolerant to self in healthy homeostasis? Here, we address
this question by using a mathematical model of immune activa-
tion that relies on identical components for self and nonself, i.e.,
using the same set of ordinary differential equations. The model
considers the thymic production of Tregs and Tconvs as well as
the dynamic interplay between Tregs, Tconvs, and IL-2 molecules
in the presence of antigen(Ag)-stimulation in the periphery. The
model is exploited to reveal the parametric regime of the immune
system in which an immune response against self is restricted, but
not impossible.

The interplay between Tregs and Tconvs during immune
responses is a topic of extensive mathematical modeling (22–28).
León and co-workers (22) proposed a series of models for studying
immune tolerance by considering APCs, Tconvs, and Tregs. Their
models rely on the assumption that regulatory interaction between

Tregs and Tconvs takes place only in simultaneous conjugation
with an APC. As a result of this assumption, efficient suppression
of Tconvs requires a minimum population of Tregs per APC (29).
As an extension, a crossregulation model is proposed by Carneiro
and co-workers (26) in an attempt to incorporate Tregs in a coher-
ent theory of the immune system. According to their model that
shows a bistable behavior, immunity to a given Ag arises as compet-
itive exclusion of Tregs by the expansion of Tconvs and tolerance
results from limited APC availability or above threshold Treg num-
bers. Since the interactions between Tregs and Tconvs is assumed
to depend on the density of the APCs, increasing the APC avail-
ability decreases the simultaneous conjugate formation of Tregs
and Tconvs with the same APCs and hence, it is sufficient to break
the immune tolerance.

An alternative concept was brought forward in a model pro-
posed by Carneiro and co-workers (23) that assumes APC-
independent interactions between Tconvs and Tregs for immune
suppression which will be also used in our model. A direct inter-
action of Tconvs and Tregs was identified by experiments (30).
The authors concluded that efficient immune suppression still
requires a minimum population of Tregs regardless of the number
of APCs.

In contrast to the aforementioned studies, we do not consider
the conjugate formation of Tregs and Tconvs with APCs and there-
fore, there is not a competition between these cells for Ag. Instead,
the role of APCs is indirectly captured by an Ag-stimulation factor
which is the activation rate of naïve T cells and resting Tregs with
identical Ag-specificity by APCs bearing their cognate Ag. In addi-
tion, we explicitly consider the dependency of Tregs on Tconvs
through the growth factor IL-2.

Burroughs and co-workers (24) investigated Treg-induced inhi-
bition of cytokine secretion by effector T cells. By assuming that
Tregs are activated by self Ag and locally maintained by nonlinear
competition for tissue-derived cytokines that are solely utilized
by Tregs, the authors analyzed the role of local active Treg popula-
tion size in the balance between suppressor and effector responses.
Stimulation of Tregs and Tconvs is described by independent para-
meters. In contrast to their model, thymic output maintains the
homeostatic population of Tregs in our model. Another essential
difference is that Ag-stimulation of Tregs and Tconvs is described
with a unified self-nonself concept and Tregs are assumed to also
respond to nonself Ag-stimulation (31).

Parametric steady state analysis of the model provides insights
about the physiological range of model parameters, and deter-
mines the overall conditions under which immune responses
against self are possible. Furthermore, the impact of model para-
meters on the requirements for the initiation of immune reactions
against self is analyzed. The model proposes that disturbed home-
ostatic balance between autoreactive T cells and Tregs increases
the susceptibility to autoimmunity or cancer.

RESULTS
The mathematical model is constructed starting from a simple
model of the immune response including essential components
only. Then, additional complexity is incrementally added to the
model to a degree allowing for validation and analysis of tol-
erance versus immunity. The scheme of the complete model is
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Khailaie et al. Modeling immune activation

FIGURE 2 | Model of dynamic interplay between conventional T cells and
regulatory T cells. Nonself-specific as well as some self-specific thymocytes
that survived negative selection and were not selected as Tregs enter the
periphery as naïve T cells. A part of detected autoreactive thymocytes
differentiate into Tregs in the thymus and reside in the periphery in resting
state. Upon Ag-stimulation by APCs, naïve T cells and resting Tregs become

activated. In contrast to activated T cells, activated Tregs do not secrete IL-2,
but both activated populations proliferate in dependence on the presence of
IL-2 (46). Activated Tregs suppress activated T cells in a cell-contact-
dependent and cytokine-driven manner. Activated T cells undergo Fas-
induced apoptosis by interacting with each other (fratricide). In contrast, Tregs
are resistant to Fas-induced apoptosis (68).

depicted in Figure 2. The model is conceptually independent of
the self/nonself nature of the immune response, and differences of
the immune responses against self versus nonself are reflected in
different parameter values of the same model.

AN IMMUNE RESPONSE REQUIRES SUFFICIENT DIVISION AND IL-2
SECRETION RATE OF ACTIVATED T CELLS
Immune responses arise from massive proliferation of activated T
cells and their subsequent effector function. Our simplest model
attempts to capture the dynamic characteristics of an activated T
cell population (T ):

dT

dt
= aIT − bT

dI

dt
= dT − eIT − f I

(1)

Activated T cells have a mean lifespan 1/b and secrete IL-2 (I )
with rate d. Available IL-2 decays with rate f and is consumed by
activated T cells with rate e. Activated T cells are able to proliferate
(with rate aI ) in the presence of IL-2. This IL-2 dependent prolif-
eration rate is considered as a linear function of IL-2 in model (1).
The impact of considering a nonlinear proliferation rate (a Hill-
function of IL-2) instead of the linear term aIT is given in Section
“Nonlinear Proliferation Rate of Conventional and Regulatory T
Cells” in Appendix.

Steady state analysis of the model (1) is given in Section “Steady
State Analysis of Model (1)” in Appendix. This model has two
equilibrium points:

(T1, I1) = (0, 0), (T2, I2) =

(
bf

ad − be
,

b

a

)
(2)

By assuming the biological range of parameters (all parameters
are positive), the trivial equilibrium point (T 1, I 1) is stable and the

nontrivial equilibrium (T 2, I 2) is unstable. T 2 is positive if and
only if:

ad − be > 0 (3)

The unstable equilibrium point imposes a threshold for initial
conditions of the model in which the activated T cells prolifer-
ate unlimitedly, which in this simplest model, corresponds to an
efficient immune response. This can be visualized by the phase
portrait of the model as shown in Figure 3A. The condition (3)
imposes a quality constraint on activated T cell clones to enter a
highly proliferative state and implies that among T cell clones that
are in the activated state, only the T cell clones with a sufficiently
high proliferation rate (a) or IL-2 secretion rate (d) are able to
contribute to the immune response against Ag. Since both, the
proliferation and IL-2 secretion rate of activated T cells depend on
the affinity/avidity of their TCR to the presented Ag (32–34), con-
dition (3) implies that the existence of T cell clones with sufficiently
high specificity for the presented Ag is required for induction of
an immune response. Similar implications were derived from a
model that considers a nonlinear IL-2 dependent proliferation rate
of activated T cells (Nonlinear Proliferation Rate of Conventional
and Regulatory T Cells in Appendix).

The major focus of central tolerance is to eliminate T cells that
are self-specific. Therefore, it is unlikely that highly self-specific
T cells escape from central tolerance, as they are more effectively
detected and eliminated in the thymus (12, 34). It is thus expected
that autoreactive T cells in the periphery are less aggressive than
the ones that undergo clonal deletion in the thymus, and may not
fulfill condition (3).

INITIATION OF AN IMMUNE RESPONSE REQUIRES A MINIMUM
HOMEOSTATIC POPULATION OF NAÏVE T CELLS AND ANTIGEN
STIMULATION
Continuous thymic production of naïve T cells maintains the
peripheral number and diversity of mature naïve T cells (35),
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although other mechanisms such as stimulation of T cells with
self-antigens and IL-7 have been shown to be involved (36). Upon
Ag-stimulation by activated APCs, naïve T cells with high avidity to
the presented Ag become activated. Here, we take into account the
dynamics of the naïve T cell population (N ) and T cell activation
by Ag-stimulation (β), as described in equations (4). We assume
that naïve T cells with identical Ag-specificity have a homeosta-
tic population in the periphery that is established by naïve T cell
renewal (by rate N 0) and natural cell death (with rate g ):

dN

dt
= f (N ) = N0 − gN − βN

dT

dt
= aIT − bT + βN

dI

dt
= dT − eIT − f I

(4)

T cell activation k(t ) is defined as

k(t ) = βN (t ) (5)

Steady state analysis of model (4) is given in Section “Steady
State Analysis of Model (4)” in Appendix. This model has either
2 or no equilibrium points dependent on the steady state value of
T cell activation (k). According to the bifurcation diagram of the
model depicted in Figure 3B, which is obtained by treating k as
bifurcation parameter, model (4) has no equilibrium points for:

k > k− =
adf

e2

(
1−

√
1−

be

ad

)2

(6)

which corresponds to the unlimited proliferation state of activated
T cells. Therefore, condition (6) has to be satisfied for initiation of
an immune response. However, according to model (4), the steady
state value of T cell activation (k) is limited by naïve T cell renewal
(N 0) and Ag-stimulation (β):

k =
βN0

g + β
(7)

Therefore, according to equations (6) and (7), there exists an
Ag-stimulation range

β >
g k−

N0 − k−
(8)

in which an immune response is initiated if:

N0 > k− (9)

Condition (9) implies that the renewal rate of naïve T cells
plays a critical role for the initiation of immune responses. In
other words, without a sufficient renewal rate of naïve T cells,
the immune response cannot be initiated by any Ag-stimulation.
Instead, Ag-stimulation results in a subcritical immune response
which is interpreted as insufficient for pathogen clearance. By
increasing the proliferation rate or IL-2 secretion of activated T
cells or the renewal rate of naïve T cells, the threshold of Ag-
stimulation required for initiation of an immune response is
decreased [equations (6) and (8)]. Therefore, central tolerance
is able to tune the initiation criterion of self reaction not only
by limiting the quality of autoreactive T cells, but additionally
by restricting the renewal rate of autoreactive T cells. As central
tolerance does not limit nonself-specific T cells, according to the
model, these cells exhibit a lower threshold of activation by nonself
Ag-stimulation.

FRATRICIDE: A MECHANISM TO LIMIT BUT NOT TO SUPPRESS
IMMUNE RESPONSES
The immune response in model (4) is characterized by unlimited
proliferation of activated T cells which is physiologically unreal-
istic. The linear death term of natural death of activated T cells
in model (4) is not sufficient to limit proliferation, and requires a
nonlinear limiting factor. A potential mechanism of limiting the
immune response is activation-induced cell death (AICD) in acti-
vated T cells, known as fratricide (37). Upon T cell activation,
death ligand (FasL) and receptor (Fas) proteins are expressed on

FIGURE 3 | (A) Qualitative phase portrait of model (1): the stable manifold of
saddle node defines a threshold for the initial conditions that allow for
unlimited proliferation of activated T cells. (B) Bifurcation diagram of

model (4) by treating k as bifurcation parameter. Stable and unstable
equilibrium points are shown by black and red lines, respectively. For k > k−,
the immune response enters the regime of unlimited proliferation.
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the surface of T cells. Followed by expression of these proteins,
T cells eliminate themselves in a cell-contact-dependent manner.
The fratricide mechanism is modeled by a nonlinear death term
(cT 2), as proposed by Callard et al. (37):



dN

dt
= f (N ) = N0 − gN − βN

dT

dt
= aIT − bT − cT 2

+ βN

dI

dt
= dT − eIT − f I

(10)

The steady state analysis of model (10) is provided in Section
“Steady State Analysis of Model (10)” in Appendix. This model
has either 3 or 1 equilibrium points, depending on the value of
fratricide death rate c. The bifurcation diagram of the model (10)
with respect to c is depicted in Figure 4A for (β = 0). When c
satisfies

c < c− = f −1
(√

ad −
√

be
)2

(11)

the stable equilibrium point (T 3) exists and corresponds to a sat-
urated population of activated T cell. When the conditions (3)
and (11) are fulfilled, the model (10) exhibits the bifurcation dia-
gram plotted in Figure 4B with respect to the steady state value
of T cell activation (k). The fratricide mechanism added a large
stable equilibrium point (T 3) to the model which imposes a sat-
uration level to the activated T cell population. The larger the c,
the smaller the saturated population of activated T cells is. Simi-
lar to model (4), model (10) shows an initiation threshold of the
immune response (k > ki). Despite solving the issue of unlim-
ited proliferation of activated T cells by the fratricide mechanism,
model (10) bears a hysteresis characteristic so that the immune

response cannot be suppressed when Ag-stimulation (β) is
removed.

DYNAMIC INTERPLAY OF ACTIVATED T CELLS AND TREGS
Tregs are essential in maintaining self-tolerance and immune
homeostasis by preventing autoimmunity and limiting chronic
inflammation in the periphery. However, they might also limit
beneficial responses by inducing tolerance to pathogens (38, 39)
or limiting anti-tumor immunity (40, 41). One functional role of
Tregs is to shut down the cell-mediated immune response via cell-
contact-dependent and inhibitory cytokine-driven suppression of
activated T cells (42). Two different subsets of Tregs were iden-
tified. Natural Tregs are the dominant subset of peripheral Tregs
(43) and are selected in the thymus. In our model, we consider
only natural Tregs and neglect the induced Treg subset that dif-
ferentiates from naïve T cells. Like for naïve T cells, the thymus
contributes to the renewal of resting Tregs

(
N̂
)

by continuously
selecting them from thymocytes. The renewal of resting Tregs is
assumed to occur by rate N̂0. Since we are interested in the relative
renewal of resting Tregs and naïve T cells, we assume that:

N̂0 = λN0 (12)

Tregs remain in the resting state until they are stimulated by
Ag (β) and become activated in a TCR-dependent manner. The
dynamic population of the resting Treg compartment is assumed
to be the same as the naïve T cell compartment in (4) and (10)
(dN̂/dt = f (N̂ )). Activated Tregs (R) are assumed to suppress
activated T cells (by rate γ ). Survival and proliferation of activated
Tregs depends strictly on IL-2, produced by activated non-Tregs
(44–46). The IL-2 dependent proliferation rate of Tregs is con-
sidered as a linear function of IL-2 (see Nonlinear Proliferation
Rate of Conventional and Regulatory T Cells in Appendix for a
nonlinear case). In contrast to activated T cells, activated Tregs

FIGURE 4 | (A) Bifurcation diagram of model (10) with β =0 using the
fratricide death rate c as bifurcation parameter. No immune response
exists for fratricide death rates larger than c− due to extensive
activation-induced cell death. The trivial equilibrium point is omitted in
this figure. (B) Bifurcation diagram of model (10) using k as bifurcation

parameter: an immune response can be initiated for large values of k.
However, due to hysteresis characteristic in this model, the immune
response is not suppressed after decreasing T cell activation (k ). Stable
and unstable equilibrium points are shown by black and red lines,
respectively.
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lack the ability to secrete IL-2 (47). The relative proliferation
rate of activated Tregs and activated T cells is controlled by the
parameter ε:

dT

dt
= aIT − bT − cT 2

− γRT + βN

dR

dt
= εaIR − bR + βN̂

dI

dt
= dT − eI (T + R)− fI

(13)

The parameters are given in Table 1 and the model components
are illustrated in Figure 2. Treg activation k̂(t ) is defined as

k̂(t ) = βN̂ (t ) (14)

According to equations (7) and (12), the steady state value of
Treg activation (̂k) is given by

k̂ = λ
βN0

g + β
= λk (15)

The equilibrium points of model (13) are given in Section
“Steady State Analysis of Model (13)” in Appendix. By incor-
porating the Treg compartment to model (10), two additional
equilibrium points (T 4 and T 5) emerged for β = 0. The equilib-
rium point of interest (T 4), which depends on the Treg-associated
parameters (ε, γ ), has an impact on the topological changes of
the phase portraits of the model under variations of the bifur-
cation parameter k. The value of ε and γ are assumed to be in
a range where the model does not inherit the hysteresis char-
acteristics of immune responses from model (10) in which the
immune response is not suppressed after resolving Ag-stimulation
(β). Then, the bifurcation diagrams of model (13) for two different
values of λ are obtained by treating k as the bifurcation parameter
(Figure 5). Depending on the value of k, the model has either 5 or
3 equilibrium points.

By varying the relative renewal rates of resting Tregs and naïve
T cells [λ in equation (12)] a λth can be found, so that no immune

response can be initiated for any value of k, if λ>λth (Figure 5A).
For λ<λth (Figure 5B), there exists a T cell activation threshold
(ki) such that for k > ki the immune response can be initiated.
However, in contrast to model (10), the immune response is com-
pletely suppressed by activated Tregs if k decreases to a lower value
than ki (gray region in Figure 5B). For persistent Ag-stimulation
with k > ki, two scenarios are possible. An oscillating immune
response is induced when k remains in the range of ki< k < ks

(red region in Figure 5B). For k > ks the immune response is sup-
pressed after its initiation to a minor immune response with an
activated T cell population T 4 due to over-suppression of activated
T cells by over-activation of Tregs (magenta region in Figure 5B).
In the latter case (k > ks), despite proper T cell stimulation, only a
minor immune response is induced (and antigen is not cleared).
Instead a chronic co-existence of antigen and inefficient immune
activity is established. Therefore, according to the model, a range of
T cell and Treg activation (ki< k < ks) exists in which an efficient
immune response is induced. Outside of this range, the antigen
persists because of under-stimulation of naïve T cells, or over-
stimulation of Tregs. According to equation (7), the existence of
Ag-stimulation thresholds β i and βs which correspond to the val-
ues of ki and ks, respectively, depends on the renewal rate of naïve
T cells (N 0); β i exists if N 0> ki and βs exists if N 0> ks. Increas-
ing the renewal rate of naïve T cells reduces the Ag-stimulation
required for initiation(β i)/over-suppression(βs) of the immune
response.

The peak immune response depends on the value of the
Treg-associated equilibrium point (T 4) which in turn depends
on Treg-associated parameters. However, the fratricide-associated
equilibrium point (T 3) is a limiting factor for the maximum
population of activated T cells if the fratricide death rate (c) is
sufficiently high.

According to our model, sufficient activated Tregs are required
to suppress the proliferative response of activated T cells. These
are supplied by two processes: Treg activation (̂k) which depends
on Ag-stimulation (β), and Treg proliferation which depends on
the IL-2 secretion by activated T cells. With a low Ag-stimulation
and insufficient Treg activation (̂k = βN̂ ), Treg proliferation has
to account for immune suppression. Since Treg proliferation is

Table 1 | Parameters used for model analysis.

Parameter Value Description Dimension

a 0.4 Proliferation rate of activated T cells molecules−1time−1

b 0.1 Natural death rate of activated T cells and Tregs mime−1

c 10−5 Fratricide death rate of activated T cells cells−1time−1

d 0.01 IL-2 secretion rate by activated T cells molecules cells−1time−1

e 0.01 IL-2 consumption rate by activated T cells and Tregs cells−1time−1

f 1 IL-2 decay rate time−1

g B Natural death rate of naïve T cells and resting Tregs time−1

β [0,∞) Ag-stimulation of naïve T cells and resting Tregs time−1

γ 0.1 Treg-mediated suppression rate cells−1time−1

ε 0.6 Proliferation rate ratio Treg/Tconv –

N0 4 Renewal rate of naïve T cells cells time−1

λ 0.006, 0.02 Relative renewal rate of resting Tregs and naïve T cells N̂0/N0 –

N̂0 λ N0 Renewal rate of resting Tregs cells time−1
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FIGURE 5 | Bifurcation diagram of model (13) using k as the
bifurcation parameter with (A) λ = 0.02 and (B) λ = 0.006. Stable and
unstable equilibrium points are drawn by black and red solid lines,
respectively. Dashed black lines represent the stable limit cycles by
showing the maximum and minimum populations of oscillating activated T
cells for persistent k. Depending on the values of λ and k, an immune

response is not initiated (gray), is initiated (red) or over-suppressed
(magenta). With parameter values given inTable 1, the threshold becomes
λth =0.01183. The time-courses of the activated T cell population T (t ) were
deduced from a numerical solution of model (13) with zero initial
conditions and persistent β. The unstable negative equilibrium point (T 5) is
not shown in the plots.

dependent on the availability of IL-2, sufficient activated T cells are
required to secrete IL-2 and induce immune suppression. There-
fore, activated T cells undergo the proliferation up to a level that
sufficient IL-2 is available for Treg proliferation and subsequent
immune suppression. In contrast, by facilitated Treg activation
(̂k), less Treg proliferation is required for suppressing activated
T cells which means that the dependency of immune suppres-
sion on proliferation of activated T cells decreases. Consequently,
by increasing Ag-stimulation (β) in the range of β i<β <βs

(red region in Figure 5B), Treg activation (̂k) increases as well
which results in a reduced maximum population of activated T

cells (Figure 5B, dashed black line) and an increased frequency
of oscillations. By further increasing Ag-stimulation to β >βs

(magenta region in Figure 5B), Treg activation (̂k) completely
prevent oscillating immune response.

In the same way, by increasing the relative homeostatic popu-
lation of resting Tregs and naïve T cells (λ>λth), Treg activation
increases up to a level that Treg suppression does not depend on the
proliferative response of activated T cells. Thus,activated T cells are
not able to enter the massive proliferation for any Ag-stimulation
level, as shown in Figure 5A. Similar results were derived from a
model that considers a nonlinear IL-2 dependent proliferation rate
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of activated T cells and Tregs (see Nonlinear Proliferation Rate of
Conventional and Regulatory T Cells in Appendix).

DISCUSSION
In this study, a model of the dynamic interplay between effec-
tor and regulatory immune responses was examined to investigate
the requirements for the initiation of an immune response by
Ag-stimulation. The model unifies several components developed
in previous studies, such as IL-2 dependent proliferation of T
cells (48), fratricide-induce programed cell death (37), IL-2 com-
petition between activated T cell and activated Tregs (24), and
Treg-mediated immune suppression (23, 24, 28). Homeostatic
division of T cell compartments was not considered in the present
study, such that the main renewal source of T cells in the absence
of Ag-stimulation is the thymus. While the presented model is
still simplifying the real situation in many aspects, the stability
analysis revealed a number of reasonable results matching many
experimental findings and allowing for an analysis of reasons for
immune failure and autoimmunity.

The model predicts three qualitatively different immune
responses depending on the level of antigenic stimulation. At first,
a threshold stimulation β i is required in order to get an immune
response at all. Secondly, in a limited range of Ag-stimulation
β ∈ (β i, βs) an efficient immune response is induced. Tregs limit
the duration of the immune response. If the antigen was cleared by
the first immune response, further immune activity would be sup-
pressed by Tregs. However, if the first peak of the immune response
fails to clear the antigen, but keeps the antigen in the stimulation
range β i<β <βs, the immune system attempts to clear the anti-
gen with subsequent immune responses, which corresponds to the
oscillatory solution depicted in Figure 5B. If the immune response
failed to control the antigen spread, antigenic stimulation would
be further increased toβ >βs, leading to the third class of immune
responses. Tregs are over-stimulated and suppress immune activ-
ity. In this situation, a chronic persistence of the antigen would
develop. Treg-mediated over-suppression of immune responses
in chronic infections is well-established (reviewed in Ref. (49)).
According to our model, depletion of resting Tregs restores the
immune response by transiently decreasing λ and by this increas-
ing βs. This notion is consistent with the experimental model of
chronic infections according to which depletion of Tregs results
in the restoration of effector immune response and restriction
of antigen spread (50, 51). A key feature of our model is that
the immune response does not rely on a stable equilibrium point
with a dominant population of activated T cells which is typi-
cally derived from existing bistable models. It rather relies on a
transient response (or stable limit cycles in the case of persistent
Ag-stimulation) which originates from T-cell-mediated suppres-
sion and IL-2 consumption by Tregs. Moreover, the role of Tregs
in the chronic state of the immune response is not represented by
available models.

According to our model, the qualitatively different immune
responses and their requirements are dependent on the quality
and quantity of Tconv and Treg clones responding to the Ag-
stimulation. The proliferation rate of activated T cells, which
depends on their avidity to the stimulating antigen determines the
existence of an Ag-stimulation threshold (β i) which is required

for the initiation of an immune response. The absolute renewal
rate of naïve T cells (N 0) adjusts the Ag-stimulation threshold β i,
which exists when the renewal rate of resting Tregs remains below
a threshold value (λ<λth). Further Treg-associated parameters,
namely the proliferation rate of Tregs (ε) and the Treg-mediated
suppression rate (γ ), also affect the existence and the level of the
Ag-stimulation required for initiation (β i) and over-suppression
(βs) of immune responses. By increasing the proliferative (ε) and
suppressive (γ ) activity of Tregs,β i increases, whereasβs decreases
up to a level where the initiation of an immune response is
completely impossible for any Ag-stimulation. Interestingly, when
proliferation rate of activated Tregs exceeds the one for activated
T cells (ε > 1) a massive proliferation of activated T cells is still
required for subsequent immune suppression by Tregs. Thus, IL-
2 secretion by sufficiently large numbers of activated T cells is a
strict requirement for immune suppression. Note also that with-
out Tregs, a return to the homeostatic state is not possible, even
when the antigen was cleared.

Considering all aforementioned parameters controlling the ini-
tiation of an immune response, is it beneficial for the immune sys-
tem to completely avoid self reaction, or is there a benefit in allow-
ing self reaction? Clearly, autoreactive T cells exist in the periphery
of healthy individuals as a normal component of the T cell reper-
toire (12, 14, 52, 53). These cells respond to self-tissue destruction
even in the presence of Tregs and without genetic predisposition to
autoimmunity (15). Although the activation of autoreactive T cells
has been shown to be involved in autoimmunity (12), several lines
of evidences indicate that these cells are required for limiting self-
destruction by supporting self-regenerative processes (54–56). In
addition, the anti-tumor immune responses evoked by autoreac-
tive T cells are beneficial (34, 57). Therefore, it seems unlikely that
autoreactive T cells escaping from the thymus are simply a result of
thymic selection error that can disturb self-tolerance under certain
physiological conditions. Instead, these evidences imply that ben-
eficial self reaction is allowed in the immune system. According to
the mathematical model, immune reactions against self are only
possible with a critical homeostatic population of autoreactive T
cells (or sufficient renewal rate N 0) which is balanced by a proper
number of Tregs (λ<λth) which corresponds to region (C) or
(D) in Figure 6. Since the T cell repertoire is normally stimulated
with an endogenous level of self-antigens in the periphery which
does not evoke any self reaction, the Ag-stimulation threshold for
initiating an immune response (β i) should be sufficiently high in
comparison to a typical nonself Ag-stimulation. According to our
model, this is achieved by ensuring a low renewal rate (N 0) of low-
avidity autoreactive T cells and a high, but balanced renewal rate
of Tregs (high λ but lower than λth). In other words, according to
Figure 6, by choosing N 0 close to ki and higher value of ki which
is obtained by higher λ, a large Ag-stimulation threshold (β i) for
the initiation of immunity against self can be achieved.

Aging of the immune system, the so-called immunosenescence,
is characterized by involution of thymus, decreased number of
thymic output, contraction in T cell diversity, and disturbed T cell
homeostasis which all result in attenuated immune function and
susceptibility to infectious diseases and cancer in the elderly (58,
59). By decreasing thymic output, the homeostatic population of
some T cell clones diminishes which leads to the creation of holes
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FIGURE 6 |The balance between renewal rate of naïve T cells and
restingTregs. The relative renewal rate of naïve T cells and resting Tregs
(λ = N̂0/N0) determines the existence of an immune response. The
initiation of an immune response requires a sufficient renewal rate of
naïve T cells (N0). (A) For λ>λth, the immune response does not exist for
any value of N0 and Ag-stimulation (β). (B) For N0 < ki, no immune response
can be initiated for any value of β. (C) For N0 > ki, immune response can be
initiated for β >β i. In this regime, the Ag-stimulation that results in
over-suppression of immune response (βs) does not exist. (D) In this
regime, immune response is initiated for β >β i, and is over-suppressed for
β >βs. Note that ki and ks are dependent on the value of λ. For any point in
the plane (e.g., blue point), the values of k ∗s and k ∗i are obtained by
projecting the intersections of the line created by connecting the point to
the origin (slope= λ*) with the nonlinear curves N0 = ki(λ) and N0 = ks(λ)
onto the N0-axis. By decreasing λ*, the effective range of T cell activation
(k ∗s − k ∗i ) or equivalently, the effective range of Ag-stimulation (β∗s − β

∗

i )

which evoke immune response without over-suppression increases. We
hypothesize that a healthy individual bears the potential to evoke self
reaction and therefore its immune system is located in parametric regime
(C) or (D); however, higher self Ag-stimulation compared to nonself
Ag-stimulation is required for initiating immune response due to low
renewal rate of autoreactive T cells (N0).

in the T cell repertoire (60). According to our model, a decreased
renewal rate of a naïve T cell clone (N 0) per se could prevent an
immune response or increase the Ag-stimulation level required for
initiation of an immune response. In addition, as shown in many
studies, the frequency of Tregs increases with age (61, 62) which
results in a disturbed balance between the population of naïve T
cells and resting Tregs (increased λ). In line with these results, in
the mathematical model an increased λ prevents the initiation of
an immune response corresponding to the age-related immune
hyporesponsiveness in infection and cancer.

Based on the reasonable and physiologically realistic results that
we could derive from the model, we dare to speculate about the
self versus nonself concept emerging from the model. As men-
tioned before, the naïve T cells and resting Tregs are two major
components of the immune reaction. The model does not dis-
tinguish self and nonself, but rather derives different responses
to self and nonself from quantitative differences in the nature
of Ag-stimulation. According to the model, by adjusting differ-
ent parameters, different requirements in terms of Ag-stimulation

level are found for the initiation of immune responses to self versus
nonself. If the immune system responds according to a universal
set of Ag-stimulation thresholds, regardless of whether the stim-
ulus arises from self or nonself-antigens, a change of systemic
parameters can lead to immune failure or autoimmunity. Self is no
more considered as self if it exceeds an Ag-stimulation threshold
determined by the stringency of central and peripheral tolerances.
Similarly, nonself is considered as self if it does not properly stimu-
late the T cell repertoire. Autoimmunity might occur due to either
a failure in tuning the Ag-stimulation threshold by the thymus
that leads to unwanted self reaction in the periphery, or a chronic
self Ag-stimulation in the periphery that leads to an oscillating
self reaction and tissue destruction like in type 1 diabetes (63) and
multiple sclerosis (64). Cancer or chronic infection would arise
as the result of an imbalance in central and peripheral tolerances
such as insufficient release of autoreactive T cells as well as high
production or induction of Tregs that results in over-suppression
of immune responses.

An early elegant mathematical modeling study analyzed a series
of models to investigate self/nonself discrimination by T cells with-
out explicitly considering suppressive Tregs (48). As a result of their
critical assumption that memory cells accumulate in poor stimula-
tory conditions, the authors suggested that due to high stimulation
by self antigens the lack of memory accumulation for T cell clones
with high affinity to self accounts for self-tolerance. Also in our
model, a high self Ag-stimulation (β >βs in Figure 5B) results
in over-activation of Tregs and by this in over-suppression of self
reaction. In both models an increased stimulation by self anti-
gen would not lead to autoimmunity. The fact that autoreactive T
cells do respond in the presence of Tregs when their stimulatory
requirements are provided (15) makes it unlikely that this is the
mechanism of self-tolerance induction. In the framework of our
model, the view is supported that immune tolerance is induced
by an increased stimulation threshold for self antigen and keeping
self Ag-stimulation in a subcritical regime (β <β i).

Undoubtedly, other mechanisms besides clonal deletion and
Treg selection in the thymus also contribute to the fine tuning of
the Ag-stimulation threshold required for initiation of immune
reactions to self and nonself, such as anergy in the periphery (65)
or activation threshold tuning in the thymus (66, 67). However,
our simple model emphasizes the subtle balance between the gen-
eration of Tregs and autoreactive T cells which are both needed for
beneficial autoimmunity. The model supports the view according
to which self and nonself do not differ on a qualitative level. It
is rather quantitative differences of the immune status and Ag-
stimulation level that determine which molecule is treated as self
or nonself.
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APPENDIX
A.1. STEADY STATE ANALYSIS OF MODEL (1)
The equilibrium points of model (1) can be obtained from the following:

Equilibrium points =

(T1, I1) = (0, 0)

(T2, I2) =

(
bf

ad − be
,

b

a

)
(A1)

For a positive nontrivial equilibrium point (T 2, I 2), we have to assume that:

ad − be > 0 (A2)

The stability of equilibrium points can be determined from the sign of real part of eigenvalues of Jacobian matrix (J ). An equilibrium
point is stable if all the eigenvalues of J evaluated at the equilibrium point have negative real parts, and it is unstable if at least one of
the eigenvalues has a positive real part.

Jacobian Matrix J =

[
aI − b aT
d − eI −eT − f

]
(A3)

Characteristic Equation Q(λ) = det

{[
λ− aI + b −aT
−d + eI λ+ eT + f

]}
= λ2

+
[
eT + f + b − aI

]
λ+

[
−af I+ beT + bf − adT

]
= 0

(A4)

The eigenvalues (λ1,2) of J for trivial equilibrium point (T 1, I 1) are obtained by solving the characteristic equation (A4):

λ1,2
∣∣
(T1,I1) : Q (λ)

∣∣
(T1,I1)

= λ2
+
(
f + b

)
λ+ bf = 0 (A5)

By checking Routh–Hurwitz stability Criterion (RHC) it can be easily confirmed that the eigenvalues have negative real parts since
all the coefficients of polynomial Q(λ) are positive, and hence, the trivial equilibrium point (T 1, I 1) is locally stable. For stability of
nontrivial equilibrium point, the characteristic equation (A4) is evaluated and solved in (T 2, I 2):

λ1,2
∣∣
(T2,I2) : Q (λ)

∣∣
(T2,I2)

= λ2
+

(
afd

ad − be

)
λ− bf = 0 (A6)

With the assumption (A2), the coefficient of λ is positive. The sign of Q(λ) coefficients change only once and hence, there exists one
positive eigenvalue. Therefore, the nontrivial equilibrium point (T 2, I 2) is a saddle point and unstable.

A.2. STEADY STATE ANALYSIS OF MODEL (4)
The equilibrium points of model (4) with definition of T cell activation (k(t )) given in equation (5) can be obtained from the following

N =
N0

g + β
=

k

β
(A7)

I =
dT

eT + f
=

bT − k

aT
(A8)

(ad − be)T 2
+
(
ek − bf

)
T + fk = 0 (A9)

By keeping the assumption (A2), if the coefficient of T in (A9) is negative, the equilibrium points (T ), if exist, will be positive:

ek − bf < 0→ k <
bf

e
(A10)
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Otherwise, the equilibrium points will be negative. According to equation (A8), for T ≥ 0, I ≥ 0. Now, let’s check the condition for
existence of equilibrium points:

1 = 0→
(
ek + bf

)2
− 4afdk =

(
ek + bf + 2

√
afdk

)
︸ ︷︷ ︸

>0

(
ek + bf − 2

√
afdk

)
︸ ︷︷ ︸

=0

= 0 (A11)

(
ek + bf − 2

√
afdk

)
= 0→ k+ =

adf

e2

(
1+

√
1−

be

ad

)2

, k− =
adf

e2

(
1−

√
1−

be

ad

)2

(A12)

The model does not have any equilibrium points for k−< k < k+, and two equilibrium points otherwise. It can be verified that by
keeping assumption (A2), we always have:

0 < k− <
bf

e
< k+ (A13)

Therefore, for 0< k < k−, condition (A10) is satisfied and the model has two positive equilibrium points and for k > k+, condition
(A10) is not satisfied and model has two negative equilibrium points. Let’s assume that the model has two positive equilibrium points
(1> 0 and 0< k < k−). In the following, the linear stability of equilibrium points is analyzed:

Jacobian Matrix J =

−g − β 0 0
β aI − b aT
0 d − eI −eT − f

 (A14)

Characteristic Equation Q (λ) = det


λ+ g + β 0 0
−β λ− aI + b −aT

0 −d + eI λ+ eT + f


=
[
λ+

(
g + β

)] [
(λ− aI + b)

(
λ+ eT + f

)
+ aT (eI − d)

]︸ ︷︷ ︸
Q∗

= 0
(A15)

The model has one negative eigenvalue λ=−(g +β) for all equilibrium points. For the other two remaining eigenvalues, polynomial
Q* has to be checked for existence of positive eigenvalue.

Q∗ = λ2
+
[
eT + f + b − aI

]︸ ︷︷ ︸
U

λ+
[
−af I+ beT + bf − adT

]︸ ︷︷ ︸
V

= 0 (A16)

From equation (A8) it can be easily verified that b− aI > 0 and hence, coefficient U is positive. Therefore, the stability depends on
the sign of coefficient V.

V = −af I+ beT + bf − adT
I=

dT
eT+f

−−−−−→ V = −
afd

eT + f
T − (ad − be)T + bf (A17)

V1 = TV = −
afd

eT + f
T 2
−
[
(ad − be)T 2

+
(
ek − bf

)
T + fk

]︸ ︷︷ ︸
According to (A9)→=0

+k
(
eT + f

)
(A18)

V2 =
1

k
(
eT + f

)V1 = −
af

kd

(
dT

eT + f

)2

+ 1
I=

dT
eT+f

−−−−−→ V2 = −
af

kd
I 2
+ 1 (A19)

According to equations (A8) and (A9), the equilibrium values of I are:

I2 =
1

2

((
ek + bf

)
+
√
1

af

)
, T2 =

k

b − aI2
, N2 =

N0

g + β
(A20)

I1 =
1

2

((
ek + bf

)
−
√
1

af

)
, T1 =

k

b − aI1
, N1 =

N0

g + β
(A21)
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where I 2> I 1 and:

1 =
(
ek + bf

)2
− 4f kad =

(
ek − bf

)2
− 4f k (ad − be) (A22)

Next, the sign of V 2, which is similar to V 1 and V, has to be checked in the equilibrium points. For the larger equilibrium point
(T 2, I 2):

V2
∣∣I2 = −

1

2f kad

[
e2k2
+ 2ekbf + ek

√
1+ b2f 2

+ bf
√
1− 4f kad

]
= −

1

2f kad

[
1+

(
ek + bf

)√
1
]

︸ ︷︷ ︸
+

< 0
(A23)

V 2, V 1, and V are negative for (T 2, I 2). Therefore, the model in this equilibrium point has a positive eigenvalue and it is locally unstable.
For (T 1, I 1),

V2
∣∣I1 = −

√
1

2f kad

[√
1−

(
ek + bf

)] According to (A22)
========= −

√
1

2f kad

[√(
ek + bf

)2
− 4f kad−

(
ek + bf

)]
︸ ︷︷ ︸

−

> 0 (A24)

V 2, V 1, and V are positive for (T 1, I 1). Therefore, all the eigenvalues of the model in this equilibrium point are negative and it is
locally stable.

Next, let’s assume that k > k+ which means that the equilibrium points exist and the steady state values of T are negative, whereas
the equilibrium values of I is positive. According to equation (A8), coefficient U in equation (A16) is negative since:

T =
k

b − aI
< 0→ b − aI < 0, I =

dT

eT + f
> 0

dT<0
−−−→ eT + f < 0 (A25)

Therefore, the model at least has one positive eigenvalue in the equilibrium points. Let’s check the sign of coefficient V in the
equilibrium points:

V = −af I+ beT + bf − adT
T=

k
b−aI

− f (aI − b)+ (ad − be)
k

aI − b
(A26)

V2 = (aI − b)V aI−b>0
− f (aI − b)2 + (ad − be) k

aI−b=−
k
T
− f

k2

T 2
+ (ad − be) k

V3 =
T 2

f k2
V2 = −1+

(
ad − be

fk

)
T 2 (A27)

The sign of V 3 in equation (A27) which is the same as the sign of V in equation (A16) can be determined by substituting T with its
equilibrium values from equation (A9):

V3
∣∣T2 =

1

4 (ad − be) fk
[21+ 2

√
1
(
bf − ek

)
]︸ ︷︷ ︸

sign?

(A28)

According to equation (A13) and reminding that k > k+, it can be verified that V 3 or equivalently V is positive. Therefore, the
equilibrium point (T 2, I 2) has one positive eigenvalue and is unstable. For (T 1, I 1),

V3
∣∣T1 =

1

4 (ad − be) fk
[21+ 2

√
1
(
ek − bf

)︸ ︷︷ ︸
+

]

︸ ︷︷ ︸
+

(A29)

V 3 and equivalently, V are positive and therefore, the equilibrium point (T 1, I 1) has one positive eigenvalue and it is unstable.
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A.3. STEADY STATE ANALYSIS OF MODEL (10)
The equilibrium points of model (10) for β = 0 can be obtained from the following

(T1, I1, N1) =

(
0, 0,

N0

g

)
(A30)

N2,3 : N2,3 =
N0

g
(A31)

T2,3 : ceT 2
+ (cf + be − ad)T + bf = 0,


T3 = −

1
2ce

[
−
(
cf + be − ad

)
+
√
1
]

T2 = −
1

2ce

[
−
(
cf + be − ad

)
−
√
1
]

1 = (cf + be − ad)2 − 4cf be

(A32)

I2,3 : I2,3 =
cT2,3 + b

a
(A33)

According to equation (A32), the nontrivial equilibrium points, if available, are positive only if:

cf + be − ad < 0 (A34)

The condition of the existence of positive equilibrium points can be obtained from equation (A32):

1 =
(
cf + be − ad

)2
− 4cebf = f 2c2

− 2f (ad + be) c + (ad − be)2 ≥ 0 (A35)

According to equation (A35), the nontrivial equilibrium points exist only if:

{c < c−} ∪ {c > c+} (A36)

where c− =

(√
ad −

√
be
)2

f

 <
ad − be

f
=

(√
ad +

√
be
) (√

ad −
√

be
)

f

 <
c+ =

(√
ad +

√
be
)2

f

 (A37)

Therefore, according to conditions (A34) and (A36) and inequality (A37), the two positive equilibrium points exist only if:

0 < c < c− (A38)

Next, we assume that the condition (A38) is satisfied, and we analyze the stability of the equilibrium points:

Jacobian Matrix J =

−g − β 0 0
β aI − b − 2cT aT
0 d − eI −eT − f

 (A39)

Characteristic Equation:

Q(λ) = det


λ+ g + β 0 0
−β λ− aI + b + 2cT −aT

0 −d + eI λ+ eT + f


=
[
λ+ g + β

]λ2
+
[
eT + f + b − aI + 2cT

]︸ ︷︷ ︸
U

λ+
[
−af I+ 2ceT 2

+ beT + bf + 2cf T− adT
]︸ ︷︷ ︸

V


(A40)

All the equilibrium points have a negative eigenvalue λ=−g −β. For the sign of other eigenvalues, the sign of coefficients of the
characteristic equation has to be checked in equilibrium points. These coefficients are positive for the trivial equilibrium point and
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therefore, all eigenvalues have negative real value. Hence, the trivial equilibrium point is stable. For stability analysis of nontrivial
equilibrium points, the sign of U and V in equation (A40) has to be analyzed:

U = eT + f + 2cT + (b − aI )
(A33): b−aI=−cT

eT + f + cT > 0 (A41)

Coefficient U is positive for the positive equilibrium points. Therefore, their stability depends on the sign of V in equation (A40):

V = f (b − aI )+ 2ceT 2
+ beT + 2cfT − adT

(A33): b−aI=−cT
2ceT 2

+ (be − ad)T + cfT (A42)

= ceT 2
+
[
ceT 2
+
(
cf + be − ad

)
T + bf

]︸ ︷︷ ︸
According to (A32): =0

−bf = ceT 2
− bf (A43)

V
∣∣T3 =

1

2ce

1− (
cf + be − ad

)︸ ︷︷ ︸
According to (A34): <0

√
1

 > 0 (A44)

The sign of V for the larger equilibrium point is positive and hence, this equilibrium point is stable.

V |T2
=

√
1

2ce

√1+ (
cf + be − ad

)︸ ︷︷ ︸
According to (A34): <0


︸ ︷︷ ︸

According to (A32):<0

< 0 (A45)

The sign of V for the smaller equilibrium point is negative and therefore, this equilibrium point is unstable. The equilibrium points
of the model with β > 0 and by considering βN (t )= k(t ) are obtained by solving:

− ceT 3
−
(
cf + be − ad

)
T 2
+
(
ek − bf

)
T + kf = 0 (A46a)

I =
dT

eT + f
(A46b)

By keeping the assumptions (A2) and (A38), the equation (A46a) has either one positive real equilibrium point or three positive
real equilibrium points depending on the value of k. The stability of equilibrium points that are obtained from (A46a) and (A46b) by
varying the value of k is hard to be checked analytically; instead, it is analyzed numerically by solving equation (A40).

A.4. STEADY STATE ANALYSIS OF MODEL (13)
The equilibrium points of model (13) for βN (t )= k(t )= 0 can be obtained from the following

(T1, I1, R1, N1) =

(
0, 0, 0,

N0

g

)
(A47)

T2,3 : ceT 2
2,3 + (cf − ad + be)T2,3 + bf = 0, I2,3 =

dT2,3

eT2,3 + f
, R2,3 = 0, N2,3 =

N0

g
(A48)

T4 =
b(eR5 + f )

εad − be
, I4 =

b

εa
, R4 =

(
b

ε

)(
−ε(cf + be − ad)+ be(ε − 1)− ε(εad − be)

cbe + γ (εad − be)

)
, N4 =

N0

g
(A49)

T5 = 0, I5 =
b

εa
, R5 =

−f

e
, N5 =

N0

g
(A50)

The sign of the equilibrium point T 4 changes by changing the Treg-associated parameters (ε, γ ). T 4 is positive if

εad − be > 0, R > −
f

e
(A51)

or

εad − be < 0, R < −
f

e
(A52)
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The physiologically relevant regime of the model occurs by satisfying the condition (A51) which means both T 4 and R4 are positive.
The equilibrium points of model (13) for β N (t )= k(t ) 6= 0 can be obtained from the following

N =
βN0

g + β
(A53)

R =
−λk

εaI − b
(A54)

T =
−I

(
−eλk + f εaI − bf

)
(εaI − b) (−d + eI )

(A55)

P5I 5
+ P4I 4

+ P3I 3
+ P2I 2

+ P1I + P0 = 0 (A56)

where

P5 = a3f ε2e (A57)

P4 = −bf ε2a2e + cf 2ε2a2
− kε2a2e2

− a3f ε2d − 2 a2f ε be − a2e2λ kε (A58)

P3 = be2λ kε a − 2 cf 2ε ab + ae2λ kb + 2 a2f ε bd + γ λ kf ε ae + ab2fe + bf ε2a2d

+ 2 kε2a2de − 2 ceλ kf ε a + 2 b2f ε ae + a2eλ kε d + 2 kε abe2 (A59)

P2 = 2 ceλ kbf − 4 kε abde − γ λ kbfe − b2e2λ k − kb2e2
− beλ kε ad − b3fe − aeλ kbd + cb2f 2

+ ce2λ2k2
− ab2fd − kε2a2d2

− γ λ2k2e2
− 2 b2f ε ad − γ λ kf ε ad (A60)

P1 = γ λ
2k2ed + b2eλ kd + 2 kb2de + 2 kε abd2

+ b3fd + γ λ kbfd (A61)

P0 = −kb2d2 (A62)

A.5. NONLINEAR PROLIFERATION RATE OF CONVENTIONAL AND REGULATORY T CELLS
In the models (1), (4), (10) and (13) it is assumed that proliferation rate of Tconvs and Tregs is a linear function of IL-2. This simplifying
assumption is made in order to allow parametric stability analysis of the model in a closed form and to find explicitly the dependency
between parametric variations and topological changes of the model. Here, we show that the simplifying assumption does not affect
the three regimes of qualitative immune responses that could be derived from the model. The linear IL-2-dependent proliferation rate
is replaced with a nonlinear function of IL-2, named8 (I ) in models (1), (4), and (13):


dT

dt
= 8(I )T − bT + k

dI

dt
= dT − eIT − fI

(A63)

where8 (I ) is considered as a Hill-function of IL-2

8(I ) = a
I n

hn + I n
(A64)

The models (1) and (A63) are compared by steady state analysis. The equilibrium points of the modified model (A63) (with
k = βN0

g+β = 0) are

(T1, I1) = (0, 0) (A65)

(T2, I2) =

 f I2

d − eI2
, h

(
b

a − b

) 1
n

 (A66)

The nontrivial equilibrium point (T 2, I 2) is positive and biologically meaningful only if

(a − b)dn
− benhn > 0 (A67)
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The local stability of the equilibrium points can be determined by obtaining the eigenvalues from the characteristic equation:

Characteristic Equation Q(λ) = det

{[
λ− a I n

hn+I n + b −aT nhnI n−1

(hn+I n)2

−d + eI λ+ eT + f

]}
(A68)

= λ2
+

[
eT + f − a

I n

hn + I n
+ b

]
λ

+

[(
−a

I n

hn + I n
+ b

) (
eT + f

)
+ aT

nhnI n−1

(hn + I n)2
(−d + eI )

]
= 0 (A69)

By checking Routh–Hurwitz stability Criterion (RHC) it can be easily confirmed that the eigenvalues have negative real parts for
trivial equilibrium point since all the coefficients of polynomial Q(λ) are positive, and hence, the trivial equilibrium point (T 1, I 1) is
locally stable. For checking the stability of the nontrivial equilibrium point, the characteristic equation (A69) is evaluated in (T 2, I 2):

λ1,2|(T2,I2) : Q(λ)|(T2,I2) = λ
2
+
[
eT2 + f

]︸ ︷︷ ︸
U

λ+

[
−

nbhnT2

I2(hn + I2
n)
(d − eI2)

]
︸ ︷︷ ︸

V

= 0 (A70)

By assuming the condition (A67), the coefficients U and V are positive and negative respectively. Therefore, the sign of the coef-
ficients of Q(λ) (U and V ) changes only once and hence, there exists an eigenvalue with positive real part. Therefore, the nontrivial
equilibrium point (T 2, I 2) is a saddle node and unstable.

Similar to the model (1), the stable manifold of saddle node in the model (A63) defines a threshold for the initial conditions that
allow for unlimited proliferation of activated T cells. By comparing the conditions (A67) and (3), the dependencies of these conditions
to the model parameters, specifically the proliferation rate (a) and IL-2 secretion rate (d), are positively correlated. In other words,
in both models, only T cell clones with sufficiently high proliferation rate (a) and/or high IL-2 secretion rate (d) are able to undergo
major T cell proliferation.

For k 6= 0, the equilibrium points of the model (A63) are obtained from the following equations:

T =
f I

d − eI
(A71)

I :
[
(a − b)f − ke

]
I n+1
+ [kd] I n

−
[
hn(bf + ke)

]
I + kdhn

= 0 (A72)

The stability of equilibrium points is analyzed by evaluating the characteristic equation and is shown in Figure A1 for parameter
values given in Table 1 and Hill-function parameters n= 2 and h= 0.5. By comparing the bifurcation diagram in Figures A1 and 3B,
the qualitative similarity between model (4) and (A63) is evident. This qualitative similarity also holds true between model (13) and
the following model: 

dT

dt
= 8(I )T − bT − cT 2

− γRT + k

dR

dt
= ε8(I )R − bR + βN̂

dI

dt
= dT − eI (T + R)− f I

(A73)

where8 (I ) is identical to (A64).
The equilibrium points of model (A73) are calculated and their stability is analyzed by deriving the characteristic equation of the

model and obtaining the eigenvalues. By keeping assumption (12), the bifurcation diagrams of model (A73) for two different values of
λ are obtained by treating k = βN0

g+β > 0 as the bifurcation parameter (depicted in Figure A2). Depending on the value of k, the model

has either 8 or 6 equilibrium points (4 or 2 equilibrium points with T > 0, identical to model (13)) with parameter values given in
Table 1 and Hill-function parameters n= 4 and h= 1. The additional equilibrium points resulted from considering the Hill-function
nonlinearity are all in the negative space of the model variables. As it can be seen from Figure A2, similar to the model (13), the three
qualitatively different responses still could be derived from the modified model. It is clear that the value of ki, ks, and λth are different
from their corresponding values in the model (13).

In summary, imposing the nonlinear IL-2 dependent proliferation rate of cells results in a more restricted condition for initiation
of an immune response in comparison to the linear IL-2 dependent proliferation rate, namely the requirement of higher T cell avidity
(higher a and d), higher Ag-stimulation (increased β i), and lower Treg/Tconv ratio (lower λth); but three qualitatively different immune
reactions depending on the critical levels of Ag-stimulation could still be derived, very similar to model (13).
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FIGURE A1 | Bifurcation diagram of model (A63) with Hill-function parameters n = 2 and h = 0.5 by treating k as bifurcation parameter. Stable and
unstable equilibrium points are shown by black and red lines, respectively. For k > k−, the immune response enters the regime of unlimited proliferation. The
unstable negative equilibrium point is omitted in this figure.

FIGURE A2 | Bifurcation diagram of model (A73) with Hill-function
parameters n = 4 and h = 1 using k as the bifurcation parameter with
(A) λ = 0.0016 and (B) λ = 0.0008. Stable and unstable equilibrium points are
drawn by black and red solid lines, respectively. The stable limit cycles are not
shown for all value of ki < k < ks except for k =12. Depending on the values
of λ and k, an immune response is not initiated (gray), is initiated (red) or

over-suppressed (magenta). With parameter values given inTable 1 and
Hill-function parameters n=4 and h=1, the threshold becomes λth =0.00111.
The time-courses of the activated T cell population T (t ) were deduced from a
numerical solution of model (A73) with zero initial conditions and persistent β.
The negative equilibrium points which are all unstable are not shown in the
plots.
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