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Chromosome instability has a pivotal role among the hallmarks of cancer,

but its transcriptional counterpart is rarely considered a relevant factor in

cell destabilization. To examine transcription instability (TIN), we first

devised a metric we named TIN index and used it to evaluate TIN on a

dataset containing more than 500 neuroblastoma samples. We found that

metastatic tumors from high-risk (HR) patients are characterized by signifi-

cantly different TIN index values compared to low/intermediate-risk

patients. Our results indicate that the TIN index is a good predictor of

neuroblastoma patient’s outcome, and a related TIN index gene signature

(TIN-signature) is also able to predict the neuroblastoma patient’s outcome

with high confidence. Interestingly, we find that TIN-signature genes have

a strong positional association with superenhancers in neuroblastoma

tumors. Finally, we show that TIN is linked to chromatin structural

domains and interferes with their integrity in HR neuroblastoma patients.

This novel approach to gene expression analysis broadens the perspective

of genome instability investigations to include functional aspects.

1. Introduction

Chromosome instability is a hallmark of cancer

(Hanahan and Weinberg, 2001), but its transcriptional

counterpart is seldom taken into consideration as a

relevant factor in cell destabilization. In the present

work, we systematically approach the study of tran-

scription instability (TIN) in neuroblastomas as an

integral part of genome instability. Neuroblastomas

can occur as a localized or metastatic tumor (Maris

et al., 2007). Metastatic neuroblastoma predominately

occurs in patients older than 1 year of age as a very

aggressive stage 4 disease. Stage 4S metastatic neurob-

lastoma, however, occurs in infants and results in a

good outcome for approximately 70% of cases. Local-

ized neuroblastomas are less aggressive and include

stages 1, 2, and 3 that have a more favorable outcome

of 65–98%. Localized neuroblastoma tumors are char-

acterized by several numerical but few structural chro-

mosomal variations (Coco et al., 2012; Scaruffi et al.,

2007; Schleiermacher et al., 2010). In contrast, stage 4

tumors have more structural than numerical alter-

ations. Stage 4S tumors have intermediate structural

and numerical alterations. These findings imply that

neuroblastoma cells have a significant amount of gen-

ome instability. How this chromosome disruption is

reflected in gene transcription is still unclear. Indeed,

gene expression studies show that several genes are

abnormally expressed in neuroblastoma cells (Tonini

and Romani, 2003). Gene expression profiles of neu-

roblastoma cells have been investigated in numerous

studies and have resulted in a number of gene expres-

sion signatures being used to evaluate the patient’s risk

(De Preter et al., 2010; Oberthuer et al., 2010;
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Vermeulen et al., 2009). This further indicates that an

ensemble of genes, rather than one single gene, are

abnormally expressed in neuroblastoma cells, and this

contributes to tumor development.

Today, thanks to high-throughput transcriptome

technologies, large amounts of data on neuroblastoma

cells are publicly available. In the present work, we

introduce the concept of global TIN as a result of

unusual transcriptome activity as quantified by the

TIN index metric. We observed an overall increase in

TIN in poorer outcome samples in association with

the presence of superenhancers (SE) and correlated

with global stochastic changes in the whole transcrip-

tome. Our observations fit well with recently reported

results in neuroblastoma cells by Valentijn et al. (2015)

and Peifer et al. (2015), where both authors showed,

by whole-genome sequencing, that regions in the vicin-

ity of the TERT gene are prone to rearrangements in

high-risk (HR) neuroblastomas. These genomic alter-

ations were instrumental in positioning SE close to the

breakpoints and were eventually associated with

TERT overexpression. Moreover, most of the tran-

scripts contributing to the TIN are preferentially

located within coordinated expression domains

(CEDs), where neighboring genes show coordinated

expression (Lercher et al., 2002; Woo et al., 2010), and

these, in their turn, show a genome-wide tendency to

colocalize with regulatory features like enhancers

(Acemel et al., 2016; Chepelev et al., 2012; de Laat

and Duboule, 2013; Tang et al., 2015).

In conclusion, our study introduces, for the first

time, the concept of TIN in neuroblastoma cells and

shows that the global transcription alteration in neu-

roblastoma cells is physically associated with CED and

SE.

2. Material and methods

2.1. Transcription Instability

2.1.1. Gene expression data

Gene expression values of 504 NB samples from the

E-MTAB-161 dataset (ArrayExpress database at

EMBL) were used in this study. Primary data were

retrieved from the database entry as preprocessed nor-

malized data. The corresponding probes’ sequences

were remapped onto the hg19 reference genome using

BOWTIE2 software (Langmead and Salzberg, 2012) and

only high-confidence, unambiguous mapping probes

were retained for further analyses. The preprocessed

normalized expression intensities of the probes were

then collapsed onto the corresponding hg19 RefSeq

gene, using the median signal intensity in case multiple

probes mapped to the same gene. Gene entries with

more than 25% of their values missing were discarded.

Gene expression values were rank-ordered using the

function ‘rank’ from the package ‘base’ of the R statis-

tical software (R core team, 2013). The gene rank-

ordered entries in the data matrix were finally ordered

by chromosome and their physical position according

to the hg19 genome coordinates. The resulting gene-

centered data matrix was then used for all subsequent

analyses.

2.1.2. Clinical data

Available clinical information about the sample in the

database was used to define two risk groups according

to the High Risk Neuroblastoma Study 1.7 of SIOP-

Europe (SIOPEN) specifications. A HR group con-

sisted of samples at stages 2, 3, 4, and 4S with MYCN

gene amplification or stage 4 samples with an age at

diagnosis over 12 months of age. As a consequence,

the remaining samples were grouped into the ‘low/in-

termediate-risk’ (LIR) group. All the functions and

packages mentioned hereafter and used for analysis

and graphical representation are tools of the R statisti-

cal software, unless otherwise specified. Stratification

of relevant clinical features was represented using the

functions ‘boxplot’ and ‘beeswarm’ from the packages

‘graphics’ and ‘beeswarm’, respectively; the P-values

reported in Fig. 1 and Fig. S1 were calculated using

the function ‘wilcox.test’ from the package ‘stats’.

2.2. TIN index and TIN-signature

For each sample, we defined the TIN index of a gene

(gene-wise TIN index) as the squared deviation of the

gene expression value from its expression value in a ref-

erence sample. The reference sample could be a single

specimen or a set of samples whose expression values

will be reduced to a single estimate through their aver-

age or their median; in cases of no clear consensus

about what a good reference for the study should be,

the entire set of samples could also be considered.

Indeed in the present study, lacking a common consent

on what a good reference would be for a neuroblas-

toma specimen, we first used all the samples as refer-

ence, as the dataset composition in terms of tumors

clinical characteristics mirrored the observed prevalence

in the population. Although there is a slight bias of the

stage distribution toward favorable cases, these distri-

butions appear to be substantially in line with their

general prevalence in the population according to

Haupt et al. (2010) (Table S1). The global TIN index,
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which we simply refer to as the TIN index throughout

this work, is the average of all the gene-wise TIN

indexes (for all the genes considered) in a given sample:

TIN index ¼
PN

i¼1

ðexpri � ExpriÞ2

N
ð1Þ

In the formula, for each gene i, Expri represents the aver-

age expression value of that gene in the reference samples;

expri is its expression in a single sample; and N is the total

number of genes considered in the analysis. The TIN index

is therefore a metric related to each sample.

We then calculated the squared Pearson correlations

between the expression of each probe and the TIN index

across all the samples in the dataset with the aim of eval-

uating both positive and negative correlations. The

resulting correlation values were then ranked and the

probes unambiguously mapped to known RefSeq genes

with squared Pearson correlations above 0.425 were

then included in a shortlist named ‘TIN-signature’. The

correlation threshold was identified by selecting the top

2.5% of the squared Pearson correlation values which

allowed the selection of some hundred genes (namely

184), a number that granted an informative pathway

analysis aimed at pinning down important aspects

underlying the TIN index. Nine probes in the dataset

(namely A_32_P440054, A_32_P526498, A_32_P6008,

A_32_P73532, A_32_P73535, Hs135492.1, Hs22245.1,

Hs23691.1, and RNU6-71P) were not unambiguously

mapped to known RefSeq genes therefore excluded

from the TIN-signature. An unsupervised hierarchical

clustering using the TIN-signature genes was performed

using the function ‘heatmap.plus’ from the package

‘heatmap.plus’ and the ‘minkowski’ distance and

‘ward.D2’ clustering methods. The resulting hierarchical

heatmaps were then generated using the function ‘heat-

map3’ from the package ‘heatmap3’.

Receiver operating characteristic (ROC) and

Kaplan–Meier curves were calculated on the validation

subset and were generated using the functions ‘roc’

and ‘survfit’ from the packages ‘pROC’ and ‘survival’,

respectively.

We tested the significance of the difference between

each pair of ROC curve AUCs present in Fig. 3A by

means of the ‘roc.test’ function within the ‘pROC’ R

package (using either the default ‘delong’ or the

‘bootstrap’ methods, both with 10 000 bootstrap repli-

cates).

The multivariate analysis was performed applying

the Cox proportional hazard model using the ‘coxph’

function within the ‘survival’ package of R statistical

software.
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Fig. 1. TIN index distribution. Boxplots representing the distribution of TIN index values (calculated using stage 1 samples as a reference)

stratified by clinical feature. Wilcox test P-values of statistically significant differences are reported on top. Not Amp., not amplified; Amp.,

amplified; Ons., onset; Prog., progression; Rel., relapse; Aw/oE, alive without event; AwP/R, alive with progression or relapse; DoD, dead of

disease; m, months.
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Pathway enrichment analysis was carried out using

EGAN software (v1.5); functional interaction networks

were generated using EGAN (version 1.4; Paquette and

Tokuyasu, 2010). Overrepresented association nodes

were tested by both Fisher’s exact test and Westfall–
Young (Westfall et al., 1993) minP with 10 000

permutations.

2.3. Chromatin domains and transcription

To graphically represent the correlation patterns of

genome-ordered expression values, the corresponding

correlation matrixes were first 2D-smoothed using the

‘interp.loess’ function from the package ‘tgp’. This

process allowed us to capture and visualize the correla-

tions among average gene expression levels of entire

regions of the genome as ‘plaid patterns’ (Fig. 2, Figs

S2 and S3). The upper triangular part of the resulting

2D-smoothed correlation matrices was then extracted

using the function ‘upper.tri’ from the ‘base’ package,

rotated 45° counterclockwise using the ‘grid.raster’

function from the ‘raster’ package and plotted as heat-

maps using the ‘heatmap3’ function from the ‘heat-

map3’ package.

2.4. Colocalizing genomic features

Colocalization analyses were carried out to ascertain

statistical enrichment in overlap between TIN-signa-

ture genes and CEDs, as well as between these two

series and functionally meaningful genome features in

neuroblastoma cells such as SE, CTCF binding

regions, and early/late-replicating intervals. We did

this by comparing the counts of the overlap of occur-

rences between TIN-signature genes and CEDs with

the expected overlap count generated after randomly

shuffling the positions of the second series and testing

the results using the two-tailed test of proportions

(using the ‘pnorm’ function from ‘stats’ package). The

neuroblastoma features derived from the above

Fig. 2. Unsupervised clustering of the training and validation sets. Heatmaps of the unsupervised clustering in the training (A) and validation

(B) sets. We selected 184 genes with the highest correlation with the TIN index values across the training set for an unsupervised

clustering and then tested them in the validation set. Relevant clinical features, TIN index, and the identified clusters are reported on top;

black bars represent unfavorable scores, while light gray bars represent favorable scores. Black bars for the ‘Age at Diagn.’ identify cases

with ages over 60 months at diagnosis. Color code for the staging is shown in the legend on the left of each panel.

1649Molecular Oncology 11 (2017) 1646–1658 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

C. Zanon and G. P. Tonini Transcription instability in neuroblastoma



analysis are the positions of TIN-signature genes, the

CED’s cores, and the edge regions, whereas the geno-

mic features of neuroblastoma cell lines are the CTCF

and cohesin complex binding regions and the early

and late replication timing regions of the SK-N-SH

cell line along with the clusters of the H3K27ac peaks

as defined according to Fig. 1 of Pott and Lieb (2014)

and to Hnisz et al. (2013) (marker of SE, open chro-

matin) of the Kelly, SH-SY5Y, NB1, NB2 and NB3

cell lines and the H3K4me3 peaks (marker of com-

pacted, silenced chromatin) of BE(2)-C cell line. Bed

files with the positions and spans of the top ranking

TIN-signature genes and CEDs core and edge regions

were produced using hg19 as the reference genome.

CED position and spans were defined using the direc-

tionality index (Dixon et al., 2012), with cores identi-

fied by the central quartiles of the CED interval and

the edge the terminal interval. The bed files with the

features positions were generated from bigWig track

files.

3. Data accessibility

The preprocessed normalized expression data of 504

neuroblastoma samples belong to the E-MTAB-161

dataset, retrieved from the following source: https://

www.ebi.ac.uk/arrayexpress/files/E-MTAB-161/E-

MTAB-161.processed.1.zip.

The data used for the colocalization studies were

retrieved from the following sources: neuroblastoma

cell lines CTCF sites from the GEO sample accession

GSM1003633, UCSC accession wgEncodeEH003371;

cohesin complex from the GEO sample accession

GSM1003627, UCSC accession wgEncodeEH003377;

the early and late replication timing regions form

GEO sample accession GSM923441, UCSC accession

wgEncodeEH002384 for the SK-N-SH cell; the clusters

of the H3K27ac peaks of the Kelly cell line from GEO

sample accession GSM1532401, of SHSY5Y cell line

from GEO sample accession GSM1532408, of NB1

cell line from GEO sample accession GSM1532414, of

NB2 cell line from GEO sample accession

GSM1532415 and of NB3 cell line from GEO sample

accession GSM1532417; the H3K4me3 peaks of BE

(2)-C cell line from GEO sample accession

GSM945241, UCSC accession wgEncodeEH001906.

4. Results

4.1. Transcription instability

In this study, we analyzed a publicly available dataset

of gene expression profiles of 504 neuroblastoma

tumor samples (E-MTAB-161 dataset, see Material

and methods, subsection 2.1.1) annotated with the

most relevant clinical information (Fig. S4). To quan-

tify the TIN in these neuroblastoma samples, we

defined a metric named ‘TIN index’, as a measure of

the global transcriptional alteration (Material and

methods, subsection 2.2 for details). As the dataset

was lacking samples to be used as reference, we started

by measuring, in each sample, the deviation of each

gene expression from its average value in the entire

dataset, provided that the dataset composition in terms

of clinical features reflected the observed prevalence in

the population (Table S1). We found that the TIN is

less perturbed in LIR tumors, mirroring the scarcity of

structural aberrations that are associated with unfavor-

able outcomes in the more aggressive HR neuroblas-

toma patients (Janoueix-Lerosey et al., 2009).

We stratified the TIN index by main clinical and

biological features and observed that it strongly corre-

lates with the patient’s clinical stage, age at diagnosis,

5-year overall survival, and MYCN (single gene copy

versus amplified) status of the tumor (Fig. S1). High

TIN index values are strongly associated with stage 4

tumors, the occurrence of MYCN gene amplification,

and the patient’s age (> 18 months) at the time of

diagnosis. This finding indicates that stage 4 tumors

have a significant amount of transcriptional deregula-

tion compared to localized tumors and suggests a cor-

relation of TIN with high tumor aggressiveness. Of

note, stage 4S tumors, although metastatic, are less

aggressive than stage 4 tumors and TIN index values

closer to stage 1 and 2 tumors, as expected. The TIN

indexes of stage 3 tumors display more variable values

compared to that of other stages, suggesting more

heterogeneous transcriptional alterations (Fig. S1).

Lastly, HR patients (those with tumors at stages 2, 3,

4, and 4S with MYCN amplification or stage 4

patients over 12 months of age) are characterized by a

high TIN index compared to those found in the LIR

group, confirming that elevated TIN is associated with

very aggressive tumors.

To confirm and further investigate the correlation

between the TIN index and patient’s outcome, we

adopted an additional approach for calculating the

TIN index. As we are primarily focused on evaluating

TIN and its role in HR neuroblastoma patients, we

used the mean gene expressions of stage 1 MYCN

nonamplified localized tumors as reference values. We

also excluded a stage 2 tumor sample from further

analysis as it had a TIN index value markedly out of

range compared to all other samples and was thus

considered to be an outlier (Fig. S1). The results of

this approach perfectly reflect and strengthen our

1650 Molecular Oncology 11 (2017) 1646–1658 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Transcription instability in neuroblastoma C. Zanon and G. P. Tonini

https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-161/E-MTAB-161.processed.1.zip
https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-161/E-MTAB-161.processed.1.zip
https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-161/E-MTAB-161.processed.1.zip
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1003633
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1003627
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM923441
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1532401
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1532408
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1532414
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1532415
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1532417
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM945241


previous observations regarding the correlation

between the TIN index and relevant clinical features

(Fig. 1) and allow us to use this reference throughout

our studies. Additionally, these results allowed us to

conclude that the transcriptome in localized tumors is

less perturbed than in the disseminated tumors of HR

patients.

To test the prognostic value of the TIN index, we

randomly divided the dataset samples into two parts: a

subset of 251 samples to be used as the training set

and a second set with 252 samples to be used as the

validation set. We evaluated the TIN index perfor-

mance as a classification tool and compared it to other

known clinical-based classifiers using ROC curves

(Fig. 3A). The TIN index shows an area under the

curve (AUC) of 0.88 compared to 0.81 for the risk

group, 0.82 for the clinical stage, 0.79 for the age at

diagnosis, and 0.62 for the MYCN status, showing the

potential of the TIN index as a prognostic marker.

The Kaplan–Meier analysis further supported the

prognostic value of all the tested factors (Fig. 3B). The

previous results were further investigated through a

multivariate analysis testing the above-mentioned

covariates for their independent contribution as prog-

nostic factors, with the TIN index ranking within the

top predictors, thus confirming its prognostic value

(Table S2). Overall, these results show that high TIN

index values are associated with unfavorable outcomes

of very aggressive neuroblastomas.

To rank genes by their individual contribution to

the TIN index, we next calculated the absolute

Pearson correlation between the TIN index and the

expression value of each gene in the previously

described training set. The top ranking genes identified

a TIN-signature that can discriminate between samples

from both groups into clinically meaningful clusters

(Fig. 2A,B and Table S3). The corresponding TIN-

signature ROC curve shows that its prognostic value is

comparable to the TIN index (Fig. 3A and Table S4).

The TIN-signature has not inferior potential for classi-

fying patients with respect to known clinically based

classifiers such as clinical stage, MYCN gene amplifica-

tion, or age at diagnosis (Oberthuer et al., 2015). The

corresponding survival curves confirm that the

TIN-signature is capable of discriminating between

good- and poor-outcome patients (Fig. 3B). Pathway

analyses on the TIN-signature genes revealed that the

corresponding statistically significant enrichments show

an almost exclusive connection to DNA replication-

related activities such as nucleotides metabolism, repli-

cation initiation and progression, replication stress

management along with cell cycle progression and

chromosome maintenance pathways (Tables S5–S8).
Furthermore, the pathway enrichment analysis per-

formed on the samples stratified by cluster groups, as

defined by the unsupervised clustering using the TIN-

signature genes, revealed that the ‘better outcome’

clusters (namely the ones labeled in red and black at

the top in Fig. 2) show a prevalent expression of genes

related to DNA damage response, whereas the ‘worse

outcome’ ones (labeled in blue and green) show a clear

enrichment for many cancer-related pathways

Fig. 3. ROC and survival curves. (A) ROC curves of the following prognostic factors: MYCN amplification status, tumor stage, age at

diagnosis, risk group, TIN-signature, and TIN index. The corresponding AUC values for each prognostic factor are reported for comparison in

the legend. (B) Panels showing the Kaplan–Meier plot of tumor stage, age at diagnosis, MYCN amplification status, and risk group (top row

and bottom left panels) in comparison with the TIN index and TIN-signature classifiers (bottom central and right panels). The TIN-signature

panel (bottom right) maintains the color code of the clusters identified by the unsupervised clustering as shown in the heatmaps (Fig. 2A,B).
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(Table S9). These results demonstrate that the TIN

index can be linked to a correlated gene expression sig-

nature with a prognostic value at least comparable to

the already-known neuroblastoma gene signatures (De

Preter et al., 2010; Oberthuer et al., 2010; Vermeulen

et al., 2009) and strongly associated with DNA

replication processes.

4.2. Chromatin domains and transcription

It is generally assumed that coexpressed/repressed

genes do not map randomly in the genome but tend to

cluster in specific regions within chromosomes

(Schoenfelder et al., 2010). A degree of correlated

expression is also evident among genes across chromo-

somes, possibly due to their functional relationships,

activity in the same pathway or protein complex, or

because of their physical proximity within the inter-

phase nucleus, as was recently shown by genome con-

formation capture (Hi-C) data (Fanucchi et al., 2013).

These observations lead to the notion that active

coregulated genes and their regulatory factors cooper-

ate preferentially via intra- and interchromosomal con-

formation interactions (Lieberman-Aiden et al., 2009;

Nora et al., 2013).

When we mapped the TIN index values for each

gene in the genome, we noticed a nonrandom distribu-

tion of clusters of contiguous genes showing similar

TIN indexes (Fig. S5). The resulting discrete clusters

with high TIN indexes are separated by regions with

lower TIN index values, indicating the presence of

domains with contiguous genes showing coordinated

expressions. We also calculated the absolute Pearson

correlation of the expression values of all gene pairs

across all samples. After ordering genes by chromo-

some and position, the correlation matrix revealed that

higher correlations preferentially involve pairs of

neighboring genes, confirming the presence of CEDs

separated by regions of low correlation giving rise to

‘plaid patterns’ (Sexton et al., 2012; de Wit and de

Laat, 2012) (red and blue intersperse regions near the

base of the triangular matrix, Fig. 4). Long-distance

intra- and interchromosomal correlations also emerged

(upper regions in the triangular matrix, Fig. 4). When

the expression correlation data are calculated within

clinically meaningful subsets, such as risk groups, a

more detailed and interesting picture emerges with

group-specific patterns of CEDs and insulator regions

(Fig. 4). The mean of intrachromosome gene pair

expression correlations decreases with the distance sep-

arating two genes (Fig. S6). The higher correlations,

those that define the CEDs, are confined to sub-mega-

base distances.

We also compared the expression distribution of sin-

gle genes between LIR and HR samples and noticed

that genes belonging to the CEDs that better discrimi-

nated the two groups of patients (Fig. S2 and

Table S10) had good discriminatory potential on their

own. Among these, the genes belonging to the TIN-

signature showed the greatest discerning capacity

(Fig. S7).

These observations suggest that a possible functional

relationship may underlie these gene connections at

both local and long-range distances.

4.3. Colocalizing genomic features

Hi-C experiments, a technique instrumental in reveal-

ing the megabase-level substructure of chromosomes,

also called ‘topologically associating domains’ (TAD),

facilitated the unveiling of an evolutionarily conserved

connection among subchromosome structures, func-

tional gene regulation, and genome instability

(Ciabrelli and Cavalli, 2015; Dixon et al., 2012).

Topologically associating domains are chromatin

domains hundreds of kbs in length that are character-

ized by a preferential physical self-interaction of the

intervening sequences. The linking of TADs to genome

instability also shed light on mechanisms underlying

some of the general features shared by most cancer

cells (Mortusewicz et al., 2013; Wilson et al., 2015).

With this in mind, we tested whether the expression

domains along with the TIN-signature genes are

ascribable to any of these structures using positional

association with known genomic features. The posi-

tions of TIN-signature genes were set as targets, and

genomic features as queries with the purpose of testing

for their physical colocalization. We ascertained the

positional correlation between the targets and queries

by counting the occurrences of overlaps between the

elements of the two series and then compared the

results to the number of intersections after randomly

shuffling the positions of the queries. We first evalu-

ated colocalizations between the CEDs and the TIN-

signature genes. Given that the CEDs are domains

separated by very short boundaries, we defined their

central region as CED cores and the remaining termi-

nal parts as CED edges, and we then checked for colo-

calization between these two portions of the CEDs

and the TIN-signature genes. The results show a

marked bias for the concurrence of TIN-signature

genes and CED edges (Fig. 5A). To further explore

the positional association of the TIN-signature genes

with transcriptionally active loops, we focused our

attention on chromatin structures associated with

loops such as CTCF/cohesin binding domains (Tang
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et al., 2015). We observed a clear distance relationship

between the positions of TIN-signature genes and

CTCF/cohesin binding sites (Fig. 5B). This relation-

ship reaches a peak of statistical significance for colo-

calizations between 0.5 and 1.0 Mb, as would be

expected in the case of a structural link between them

in the context of active TADs. We then considered

widespread regulatory elements like SEs, recently

investigated for their altered activity in neuroblastoma,

and their local effects on the expression of neighboring

Fig. 4. Genome-wide correlation heatmap. Triangular heatmaps showing the Pearson correlations among gene expression values across the

entire genome. Genes are ordered from left to right by chromosome and position. Correlations are calculated for LIR (top panel) and HR

samples (middle panel), respectively. High correlation values (dark red) characterize blocks of neighboring genes emerging as small

triangular-shaped domains at the bottom of the heatmaps. Higher-order triangular-shaped patterns are also visible, identifying larger fields

within which the average correlations are higher compared to longer-range interactions. Blue values represent low correlations,

characterizing insulation regions separating high-correlation blocks. The bottom heatmap represents the arithmetic difference between the

HR and the LIR heatmaps (HR minus LIR); positive values (orange) identify blocks in which the expression correlation is higher in HR

samples compared to LIR samples. Negative values (cyan) show regions of higher interaction in LIR compared to HR ones.
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genes (Oldridge et al., 2015; Peifer et al., 2015; Valen-

tijn et al., 2015). SEs were initially identified and char-

acterized as regions with higher capability for

transcription activity compared to typical enhancers

(Hnisz et al., 2013). This increased potential for regu-

latory activity involves approximately 3% of the

known enhancers in the genome (Pott and Lieb, 2014).

SEs have been linked to the expression of key house-

keeping genes and have been proposed as master regu-

lators of tissue specificity determination and

maintenance (Niederriter et al., 2015; Seton-Rogers,

2014; Whyte et al., 2013). Their location has been

associated with histone markers such as H3K4me1,

HeK4me3, H3K27me3, and H3K27ac, with the latter

being prominent. Indeed, clusters of strong and closely

spaced acetylated H3K27 signals are considered to be

good proxies for the presence of SEs and are well

known to be associated with open and active chro-

matin. Overall, TIN-signature genes show a highly sig-

nificant (P < 10�6) enrichment for proximal SEs at all

distance ranges measured (Fig. 5C). On the other

hand, SE intersection with markers of compacted inac-

tive chromatin, such as the monomethylation of

H3K4, shows no significant association up to 1.0 Mb

where it becomes marginally significant (Fig. 5C).

Finally, we explored CED interactions with higher-

order chromatin structures like TADs. As replication

timing has been coupled to TADs (Pope et al., 2014),

we examined available data on replication timing cal-

culated for the SK-N-SH neuroblastoma cell line. We

detected colocalizations of CEDs with early-replicating

regions of the genome spanning distances within

1.0 Mb (Fig. 5D). This observation fits well with the

finding that early replication domains are generally

accessible and transcriptionally more active (Rivera-

Mulia et al., 2015; Wilson et al., 2015). Furthermore,

early-replicating regions could harbor conflicts between

replication and transcription activities resulting in an

increase in stalled/collapsed replication forks usually

resolved through double-strand break repair mecha-

nisms. One of the consequences of these repairing pro-

cesses frequently occurring within the same region is

the incidence of recurrent rearrangements giving rise

to fragile sites (Fungtammasan et al., 2012; Georgaki-

las et al., 2014). As for CEDs, genes of the TIN-signa-

ture are preferentially located within TADs transition

regions and replicated early during the S phase, where

copy number variation-related chromosomal breaks

tend to cluster (Debatisse et al., 2012; Donley and

Thayer, 2013; Yaffe et al., 2010). Taken together, these

results unfold a strong connection between TIN-signa-

ture genes and the proximity of functionally relevant

regulatory elements like SE.

5. Discussion

Although genome instability, as a hallmark of can-

cer, is primarily exemplified by the well-studied chro-

mosomal instability as its main paradigm, very little

is known about its counterpart: TIN. The aim of the

present work was the systematic investigation of TIN

as a genome-wide phenomenon related to cancer. In

neuroblastoma, pediatric cancer, both the localized

and the metastatic disease are mainly characterized

by the presence of genome instability-associated

chromosome alterations rather than point mutations.

Neuroblastoma tumors typically have numerical

chromosome changes at low stages and structural

changes at high stages. In the present work, we

examined the TIN using a publicly available large

cohort of neuroblastoma samples belonging to

patients of all clinical stages. We aimed to define

and measure TIN and to explore its correlations

with clinical and genomic features. This led to the

observation that neuroblastomas in HR patients have

elevated transcription variability compared to tumors

from LIR patients. To our knowledge, this is the

first systematic effort aimed at measuring and study-

ing the TIN of neuroblastoma tumors as an aspect

of cancer instability.

The results we report show that global transcrip-

tional alteration is a good predictor of neuroblastoma

patient outcome. In particular, high TIN levels are sig-

nificantly associated with poor prognosis. The expres-

sion misregulation concerns not only a limited number

of functionally relevant transcription modules but also

a wider, seemingly stochastic, component involving a

large part of the transcriptome. This global fluctuation

of gene expression perturbs the tight transcriptional

control of the normal ‘regulome’ (Buenrostro et al.,

2015) of healthy cells, increasing their instability with

unpredictable consequences. Evidence that this deterio-

rating regulation of transcription has structural origins

is supported by the finding that the affected genes tend

to physically cluster along the genome in domains of

coordinated expression, mirroring the TAD substruc-

ture of the chromatin. This suggests a role for pre-exist-

ing structural or epigenetic alterations of chromatin

domains in fostering a generalized transcriptional

deregulation, which eventually leads to a natural selec-

tion for the altered expression of cancer-related tran-

scripts. Indeed, we found a preferential misexpression

of genes within domains harboring regulatory elements

such as SE specifically active in neuroblastoma cell

lines. Recent studies (Flavahan et al., 2016; Johann

et al., 2016) support the notion that the epigenetic land-

scape may provide crucial insights into our
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Fig. 5. Colocalization between TIN-signature genes and chromatin features. Colocalizations are defined as the co-occurrence of two

features within a given distance. (A) Counts of observed colocalizations of TIN-signature genes with CED cores (the central regions of

CEDs; red dots) and CED edges (the terminal edges of CEDs; blue dots) as a function of the distance between them. The boxplots

represent the distributions of expected colocalization counts for CED cores (red) and CED edges (blue) at various distances. Asterisks on

top of the boxplots show statistically significant deviations from expected to observed colocalizations: P-values *5 9 10�2, **1 9 10�2,

***1 9 10�3, and ****1 9 10�6. For distances up to 500 kb, the colocalization between TIN-signature genes and CED cores is not

significant, whereas their colocalizations with CED edges are markedly significant, indicating that TIN-signature genes are preferentially

located at CED edges. (B) Colocalizations of TIN-signature genes with CTCF (red) and cohesin complexes (blue dots). The colocalization

between TIN-signature genes and both CTCF and cohesin complexes is highly significant for distances ranging between 500 kb and 1.0 Mb,

but not outside this range. (C) Colocalizations of TIN-signature genes with H3K27ac peaks (marker of open-active chromatin; red) and

H3K4me1 (marker of condensed inactive chromatin; blue). At any distance, the colocalization between TIN-signature genes and SE

(H3K27ac) is highly significant; conversely, there is no significant colocalization of TIN-signature genes with markers of compacted inactive

chromatin (H3K4me1). (D) Colocalizations of TIN-signature genes with early (red)- and late (blue)-replicating genes. The colocalization

between TIN-signature genes and early-replicating genes is highly significant at all distance ranges; conversely, the lack of TIN-signature

genes colocalizing (observed counts lower than expected) with late-replicating genes becomes highly significant for distances between

100 kb and 1.0 Mb.
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understanding of the molecular basis of some cancers,

particularly pediatric cancers (Feinberg et al., 2016).

Pediatric cancers are prominently characterized by high

heterogeneity, at both the morphological and molecular

levels, with low rates of recurrent somatic alterations

and expression signatures of controversial efficacy. Part

of the still missing elements for refining the molecular

picture of pediatric cancers are therefore likely to be

found at the chromosome/chromatin structural and

regulatory levels.

6. Conclusion

The new approach to expression data analysis we are

proposing can be useful for re-evaluating transcription

data in cancer cells. This can further implement struc-

tural/regulatory information routinely produced by the

novel next-generation sequencing approaches. In this

respect, the potential benefit of gathering chromatin-

related regulatory information from the transcriptome

should not be underestimated, especially in diseases

for which the available amount of tumor tissue is often

a limiting factor, hindering a multidimensional molecu-

lar characterization of samples.

Overall, our observations strongly suggest that TIN

captures at the transcriptional level crucial regulatory

information of the chromatin structure in neuroblas-

toma samples. This approach of gene expression analy-

sis broadens the perspective of genome instability

investigations and contributes to bridging the gap

between its structural and functional aspects.
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