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Immunotoxicity hazard identification of chemicals aims to evaluate the potential for unintended effects
of chemical exposure on the immune system. Perfluorinated alkylate substances (PFAS), such as perflu-
orooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally disseminated envi-
ronmental contaminants known to be immunotoxic. Elevated PFAS exposure is associated with lower
antibody responses to vaccinations in children and in adults. In addition, some studies have reported a
correlation between PFAS levels in the body and lower resistance to disease, in other words an increased
risk of infections or cancers.
In this context, modelling and simulation platforms could be used to simulate the human immune sys-

tem with the aim to evaluate the adverse effects that immunotoxicants may have.
Here, we show the conditions under which a mathematical model developed for one purpose and

application (e.g., in the pharmaceutical domain) can be successfully translated and transferred to another
(e.g., in the chemicals domain) without undergoing significant adaptation. In particular, we demonstrate
that the Universal Immune System Simulator was able to simulate the effects of PFAS on the immune sys-
tem, introducing entities and new interactions that are biologically involved in the phenomenon. This
also revealed a potentially exploitable pathway for assessing immunotoxicity through a computational
model.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The immune system has evolved to protect us against harmful
substances, germs and transformed cells, thereby preserving the
integrity of the body. Immune cells are an integral part of many
systems, including the respiratory, dermal, gastrointestinal, neuro-
logical, cardiovascular, reproductive, and endocrine systems [1]. As
a consequence, exposure to immunotoxic compounds can have
serious adverse health consequences affecting responses to both
communicable and non-communicable diseases [2].
Immunotoxicology is the study of immune system dysfunction
that can result from exposure to a variety of chemicals or biologic
agents that alter the immune system, resulting in an adverse effect
for the host, which range from reduced resistance to infection and
neoplasia to allergic and autoimmune conditions. Immunotoxic
compounds can alter the number of cells (innate or adaptive),
the ability of the cells to produce cytokines, chemokines, antibod-
ies or growth factors, the composition of cell subpopulations occu-
pying the site of response, or the function of cells (i.e., killing of the
infected cells or cell proliferation). This could lead to an increased
incidence in infections or tumour burden. The potential for expo-
sure to immunotoxic compounds poses a serious concern for the
public as well as regulatory agencies. It is therefore important to
understand the immunotoxic potential of xenobiotics and the risk
they pose to humans [3].

Decades of research has resulted in the development of specific
animal assays and the identification of sensitive endpoints that

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.03.024&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2022.03.024
http://creativecommons.org/licenses/by/4.0/
mailto:andrew.worth@ec.europa.eu
https://doi.org/10.1016/j.csbj.2022.03.024
http://www.elsevier.com/locate/csbj


F. Pappalardo, G. Russo, E. Corsini et al. Computational and Structural Biotechnology Journal 20 (2022) 1764–1777
measure effects on the immune response [4,5], on the basis of
which many regulatory agencies have developed specific immuno-
toxicity testing guidelines [6,7].

Currently, the assessment of chemical immunotoxicity relies
mainly on animal models [7]. However, in recent decades consid-
erable progress has been made, and several in vitro methods have
been validated to assess inappropriate immunostimulation. While
the main achevements in using in vitro models to assess immuno-
toxicity have focused on chemical sensitization, and in particular,
on skin sensitization [8,9], important progress has also been made
in the identification of immunosuppressive compounds [10–12].
Considering the complexity of the immune system, it is likely that
several in vitro assays will be needed to identify immunotoxicants,
and a tiered approach is believed to be the most appropriate means
to assess immunotoxicity in vitro [13].

Any alteration in immune function (e.g., antigen presentation,
cytokine production, cell proliferation) that significantly deviates
from control values and can be linked to a downstream immuno-
toxic effect (i.e., immunosuppression, hypersensitivity, autoimmu-
nity) should be considered as an adversity. Several isolated
processes can be studied in vitro including antigen presentation,
lymphocyte proliferation, cytokine production, phagocytosis, lysis,
and even primary antibody production, offering the possibility to
assess immunotoxicity in vitro. In the future, based on the consid-
erable progress in 3D models with engineered immune tissues and
organs, we may foresee that it will be possible to identify any
direct immunotoxic substance in an integrated model of the whole
human immune system [14]. Currently, we have to rely on a com-
bination of different tests.

Per- and polyfluoroalkyl substances (PFAS), such as perfluooc-
tanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are
persistent, globally disseminated environmental contaminants.
They possess a strong carbon–fluorine bond, which leads to their
environmental persistence. The presence in the molecule of both
hydrophilic and hydrophobic portions makes these compounds
useful as surfactants and dispersants, and PFAS have been used
extensively in many commercial and industrial applications for
the last 70 years [15]. More than 200 use categories and subcate-
gories have been identified for more than 1400 individual PFAS
[15]. The Organisation for Economic Co-operation and Develop-
ment’s chemical inventory reports over 4000 substances that con-
tain at least one perfluoroalkyl moiety6.

Due to their widespread use and environmental persistence,
PFAS are an important class of environmental contaminants and
are of major toxicological concern [16,17]. They are found in water,
air, fish, and soil at locations across the globe, with concentrations
of PFAS in surface and groundwater ranging in value along the ng/
L-lg/L scale [16]. Moreover, exposure to PFAS has been linked to
harmful health effects in humans and animals (EFSA Opinion,
2020). PFAS are widespread despite some being phased out, and
have been detected in different continents irrespective of the level
of industrialization, indicating long-range atmospheric transport
as an important pathway of PFAS distribution [16].

Epidemiological studies have shown associations between
exposure to specific PFAS and a variety of health effects, including
altered immune and thyroid function, lipid and insulin dysregula-
tion, liver disease, kidney disease, reproductive and developmental
toxicity, and cancer [17]. Based on studies in animals and humans,
effects on the immune system have been considered by EFSA the
most critical for the risk assessment, with effects often observed
at lower exposure levels than those causing effects on the liver
and thyroid hormones [18]. There is evidence from both epidemi-
6 https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV
JM-MONO(2018)7&doclanguage=en).
-
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ology and laboratory studies that PFAS are immunotoxic, affecting
both cell-mediated and humoral immunity [19–21]. Overall in
humans, the evidence of PFAS immunosuppression shows strong
evidence of diminished vaccine efficacy, some indications of
increased risk of infections, and limited indication of allergies,
asthma and atopic dermatitis following in utero, infant, and early
childhood PFAS exposures [22,23].

In laboratory animals, reported effects of PFAS in laboratory ani-
mals include decreased spleen and thymus weights and cellularity,
altered cytokine production, reduced specific antibody production,
and reduced survival after influenza infection. Elevated PFAS blood
levels are associated with lower antibody responses to vaccina-
tions in children [24–27] and in adults [28]. In addition, some stud-
ies reported a correlation between PFAS levels in the body and
lower resistance to disease, in other words an increased risk of
infections or cancers [29–31]. A relationship between higher PFAS
levels and increased risk of asthma as well as increased adolescent
food allergies have been reported in some studies [32,33], but
overall the evidence is limited [22,23].

Regarding the underlying mechanisms, many PFAS are ligands
of the nuclear peroxisome proliferator-activated receptors (PPAR),
with different kinetics, patterns and potency among species [34].
These receptors regulate lipid homeostasis, inflammation, adipoge-
nesis, reproduction, wound healing, and carcinogenesis [35]. Bind-
ing to PPARs results in the modulation of the transcription of
downstream genes containing the peroxisome proliferator
response element, which leads to altered expression of genes
including those related to metabolism of sex steroids and thus
leading to abnormal physiological function of sex steroids [36]. In
addition, PFAS have been shown to interact with receptors and
transcription factors other than PPARa, including PPARc, CAR (con-
stitutive activated/androstane receptor), estrogen receptor alpha
(ERa), androgen receptor, glucocorticoid receptor,
pregnane X receptor, the transcription factor Nrf2 (nuclear factor
erythroid 2-related factor 2), and NF-kB [17]. All these are central
in immune cell activation, and their modulation by PFAS provides
a biological plausible link to the adverse effects observed. Reduced
antibody production has been clearly associated with PFAS expo-
sure. Multiple cell types are involved in the T cell dependent anti-
body response. Initially, the antigen is recognized and presented by
antigen presenting cells in a MHC class II mediated mechanism to
naive T cells, and activation of B cells by T cells with antibody for-
mation, with cross talk between all involved cell types using recep-
tor/ligand and cytokine interactions. In experiments with selected
PFAS, namely PFOA, PFOS, PFBS, PFOSA, PFDA, and fluorotelomer,
we have observed different effects on LPS and PHA-induced cyto-
kine production (i.e., IL-6, IL-8, TNF-a, IL-4, IL-10 and IFN-c) [37].
Our results indicate that PFOA is the least active of the PFAS exam-
ined followed by PFBS, PFDA, PFOS, PFOSA and fluorotelomer.
Leukocytes obtained from female donors appear to be more sensi-
tive to the in vitro immunotoxic effects of PFCs when their
responses are compared to the results obtained using leukocytes
from male donors. Mechanistic investigations demonstrated that
inhibition of TNF-a release occurred at the transcriptional level.
All PFAS tested decreased LPS-induced NF-jB activation, while,
with the exception of PFOA, none of the PFAS tested was able to
activate PPARa driven transcription in transiently transfected
human promyelocytic THP-1 cells, indicating that PFAS directly
suppress cytokine secretion by immune cells, with different mech-
anisms of action. Most of the toxicity data available are for a hand-
ful of PFAS, mainly legacy PFAS such as PFOA and PFOA. It is,
therefore, clear that information on modes of action and adverse
outcome pathways must be expanded. Considering the profound
differences in PFAS toxicokinetic properties, additional studies
are necessary for a proper understanding of differences in
responses between the sexes and among species and life stages.
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In the current study, PFOA and PFOS have been selected as ref-
erence PFAS as they are two of the most widely used and studied
chemicals in the PFAS group. As mentioned above, several studies
document that PFAS exposure is associated with suppression in at
least one measure of the anti-vaccine antibody response with evi-
dence from developmental, childhood, and adult exposures [22].
The response to vaccination was therefore chosen as the immuno-
logical parameter. This was also identified as the critical parameter
for risk assessment by EFSA (EFSA opinion, 2020).

Considering the hundreds of PFAS used, alternative approaches
to animals are essential to investigate their immunotoxicity.
Alongside animal models, ex vivo methods and in vitro methods,
immunotoxicology should take advantage of the progress made
in computational immunology. In this regard, the Universal
Immune System Simulator (UISS) may offer the opportunity to
estimate the immunotoxicity risk posed by immunotoxicants.
The UISS is a mechanistic computational platform that simulates
the human immune system, providing the possibility to investigate
the effects on vulnerable populations, like children and elderly
people. Nowadays, the possibility of replacing in vivo experiments
with in vitro methods and computer simulations is no longer a chi-
mera, providing the opportunity to establish new knowledge, and
approaches to protect health from potential immunotoxic com-
pounds. The UISS belongs to In Silico Trials (IST) modelling and
simulation. An IST refers to ‘the use of individualized computer
simulation in the development or regulatory evaluation of a medic-
inal product or medical device/medical intervention’ [38]. Different
modelling and simulation approaches applied to IST can span from
purely computer science techniques, such as agent-based
modelling (ABM) and machine learning (ML), to mathematical
approaches (i.e., differential equations, finite elements and regres-
sion analyses). The ABM paradigm is built on simulating the
dynamics of single interacting entities according to well-known
principles. This modelling technique thus captures emerging global
complex behaviour from local interactions. ABM has been widely
applied in a variety of biomedical scenarios, including precision
Fig. 1. Schematic representation of a proposed strategy for evaluatio
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medicine [39,40], 2D and 3D experimental cultures [41,42] and
vaccine development and immune system response prediction
[43,44]. Because ABM makes it simple to create individualized
models, its application to IST may be thought of as simulating vir-
tual patients who can help attain the numbers required for statis-
tical significance. Furthermore, the method can anticipate
medication effects in persons who are not typically included in
clinical studies (young and elderly patients or those affected by
immune system dysregulation). The UISS offers a more modern
and high-throughput approach, with the potential to accelerate
the gathering of toxicity information on emerging and legacy PFAS.
The UISS has been applied in several contexts of use, ranging from
disease dynamics assessment, medicinal product outcome predic-
tions, and dosage optimization. Recently, the UISS was used as an
in silico trial platform for predicting the immune system response
elicited by a therapeutic vaccine against tuberculosis (UISS-TB)
[45,46].

The idea behind this study was that a mathematical model,
extensively used in support of a policy and built to answer a
decision-making challenge, can be transferred to support resources
in areas where data are deficient, and modelling built for one scope
could be potentially applied to fill in the gaps. Hence, with the fol-
lowing strategy approach, we try to maximise this transition by the
application of UISS in silico solution to immunotoxicology. Reusing
by repurposing what is already available represents an efficient use
of resources, reducing the need for testing, and saving time in the
development and evaluation of the mathematical model.

The present work describes criteria for model repurposing. This
is not the first time that a specific mathematical model developed
in one field has been reused in another. However (to the best of our
knowledge), it is the first time that precise criteria have been sug-
gested to guide model repurposing. Noteworthy is the example of
Physiologically Based Kinetic (PBK) models. These models are
mathematical descriptions of the body that consider exposure,
absorption, distribution, metabolism, and excretion of a chemical.
They have been developed for more than 50 years in pharmacology
n of Model Translatability and Transferability of health models.
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(first reporting of such models dates to 1937). They are widely
used in drug development and for drug dossier submissions [47].
In recent decades, these models have been explored for their appli-
cability in chemical risk assessment. The use of these models in
this domain is mainly to support hazard characterization and fill
in data gaps without animal testing.

The first step in repurposing a mathematical model is to under-
stand the context of use; it is essential to have information from
both sides (primary/source use versus secondary/target) to identify
similarities and differences. This should be done by identifying the
model characteristics that drive the model development, charac-
terisation and performance. Identification of these characteristics
is essential for model transfer from one domain to another. These
characteristics will have their challenges and limitations, which
should be reported, such as model complexity, data quality, and
variability. In particular, for a model to be transferable a different
setting, the following three criteria need to be fulfilled (Fig. 1):

Criterion 1. Model Readiness (scientific component with moti-
vation to transfer, intent to use, goals, knowledge). UISS-TB already
contains all the entities, interactions, functions and hallmarks of the
human immune system. Physiology, disease and treatment mod-
elling and simulation layers deal with tuberculosis. So, from the
point of viewof readiness,UISS-TB is ready tobe switched to another
context of usedealingwithother external insults like environmental
chemicals that affect the immune system functionality (e.g., modi-
fied vaccine response in the presence of environmental chemicals).

Criterion 2. Model Transfer Design (application & goal settings
practice, modelling application, and review of valid credible con-
tent). Keeping the core of immune system implementation in UISS,
only the implementation of mechanisms of action of immunotoxi-
cants is needed for the model transfer design.

Criterion 3. Model Alignment (support for basic understand-
ing, support for decision making, competence & verification/qualifi
cation/validation context, and use dissemination). The Universal
Immune System Simulator for the evaluation of immunotoxicants
effects (UISS-TOX) can be used as a non-human expert risk assessor
for evaluating the impact of immunotoxicants on the immune sys-
tem function. In addition. components that are already validated
and qualified in terms of immune system modelling core, do not
need to undergo a revalidation/requalification process.

The aims of the present paper are the following: 1. To develop a
module as part of the UISS to predict immune system perturba-
tions after exposure to chemicals (UISS-TOX). 2. To simulate the
class of PFAS as a case study. 3. Repurposing to understand the
capacity when a mathematical model developed for one purpose
is translated and transferred from one ‘‘language” (application) to
another without undergoing fundamental change. So that if the
mathematical model is valid in the field developed it can be
applied to another one.
2. Software and methods

In computer science, Agent-Based Models (ABMs) are a simula-
tion approach in which entities are followed individually, as
opposed to differential equation systems [48,49]. Complex emer-
gent behaviour can form in this fashion, leading to the prediction
of non-coded dynamics [50]. The entities, referred to as ‘‘agents,”
are often arranged in a simulation space (i.e., a lattice), with several
entities per lattice point [51]. Such agents can be heterogeneous,
have internal features (such as longevity, internal state, and
energy), and behave independently or as a result of interactions
with other agents (e.g., move, interact with other agents in their
neighbourhood, alter their internal state, or die) [52]. ABMs pro-
vide a number of benefits. They can be stochastic by definition
and incorporate both delays and a spatial description in their beha-
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viour. Furthermore, they provide a more accurate description of
the biological characteristics and behaviour of the entities involved
[53]. As a result, it is the biological information, rather than the
modelling methodology, that is frequently the limiting factor in
the correctness of the model description. Nonlinear behaviour, as
well as the ability to add more complexity and biological knowl-
edge, are not obstacles to solving the model [54]. Because such
methods are numerically stable as integer values and reflect the
majority of the variables involved, only a few complex floating-
point operations are necessary.

2.1. Universal immune system simulator

To assess the immunotoxicity of PFAS, we used the Universal
Immune System Simulator (UISS), a computer modelling and sim-
ulation platform that can replicate the major characteristics and
dynamics of immune system activities. It is based on the agent-
based model paradigm, which was created to reflect the immune
system’s response to general pathogens [44,45,55]. UISS is devel-
oped fully in the ANSI C-99 standard programming language,
allowing us to create a platform that is architecture-independent.
Both cellular and molecular entities are considered in UISS. Typi-
cally, cellular entities are studied separately and modelled as single
agents. Position, half-life, and an internal state from a certain set of
acceptable states are all characteristics of cell agents. State changes
are used to realize their dynamics. Instead, the concentration of
molecules per lattice-site is examined.

When a cell agent interacts with another agent, such as a cell, a
molecule, or both, a state shift occurs. The immune system’s most
significant cells are B lymphocytes, helper, cytotoxic, and regula-
tory T lymphocytes, and natural killer cells [56]. Monocytes are
also present, as well as macrophages and dendritic cells. B and T
lymphocytes, for example, have particular receptors for modelling
specificity [57,58], just like their real-life counterparts. The model
distinguishes between simple lowmolecular weight molecules like
interleukins or signalling molecules in general [59] and more com-
plicated molecules like immunoglobulins and antigens [60], for
which specificity must be represented. Immune system activities
are represented at the same level as entities. Both interactions
and functions are included.

Central immune system’s functions are referred to as functions.
The UISS is particularly concerned with the diversity of specific ele-
ments, restriction of major histocompatibility classes [61], clonal
selection by antigen affinity [62], thymus education of T cells
[63], antigen processing and presentation (both the cytosolic and
endocytic pathways are used) [64], cell–cell cooperation [65],
homeostasis of bone marrow-derived cells [66], hypermutation
of antibodies [67], cellular and humoral responses [68], and
immune memory [69]. Time is discrete in UISS, as it is in most
ABM techniques [70]. This means that all system actions are mon-
itored and measured using time intervals that are evenly sepa-
rated. All immune system activities, including interaction and
diffusion processes, are maintained at each time interval.

An interaction between two entities is a complex action that
eventually results in one or both entities’ states changing. To inter-
act, the entities must be ‘‘close enough.” The concept of the lattice-
site is used to model physical proximity in more detail [71]. All
interactions between cells and molecules occur in a single time
step within a lattice-site, hence there is no correlation between
entities residing at various sites at the same moment. Depending
on the task at hand, the simulation space in UISS can be repre-
sented as a 2D L � L hexagonal lattice (six neighbours) or as a
3D L � L � L cubic lattice, with periodic boundary conditions or
hard walls on the edges. Having the same diffusion coefficient,
all entities are permitted to travel with a uniform probability
between neighbouring lattices in the grid (Brownian motion) [72].
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This simulation area is used to depict three anatomical com-
partments: the thymus, bone marrow, and a component of a gen-
eric secondary organ, from a biological rather than a physical
standpoint. Interactions can be thought of as Bernoulli events
[73], with each interaction having a probability of p. Aspecific
and specific interactions are two types of interactions. When we
consider Toll-like receptors (TLRs), for example, we know that they
identify pathogen-associated molecular patterns (PAMPs)
expressed by pathogens with limited specificity [74]. These will
not be explicitly represented in UISS; instead, for all interactions
involving the same couple TLR-PAMP, a fixed probability p’ will
be employed. Cells from adaptive immunity that are equipped with
unique receptors are involved in distinct reactions.

Specific interactions necessitate a period of recognition
between the two entities; in this situation, the probability p of con-
tact is determined by the outcome of the recognition phase, in
which the affinity between the implicated receptors plays a signif-
icant role. UISS models affinity by representing receptors and
ligands as binary strings and using a string-matching mechanism
[75]. Farmer and Packard [76] devised a simple technique to dupli-
cate the conventional chemical complementarity mechanism
between receptors. While this may appear to be a crude simulation
of the true biological event, millions of recognitions can be pro-
cessed quickly, allowing researchers to examine immune system
features on a massive scale. Furthermore, when models based on
this approach were benchmarked to experiment, they produced
accurate results, indicating that the abstraction captures essential
features of receptor/ligand binding and is not a limiting factor for
the study of many biological scenarios [77].

Using the Hamming distance [78], the string-matching proce-
dure’s binding rule simulates the complementarity process
between two receptors. The number of mismatched bits between
two strings is measured by this distance. As a result, repertoires
are represented as sets of strings in the model, and the set of lym-
phocyte receptors is represented as bit-strings of length h, forming
the so-called ‘‘shape space.” The same clonotypic receptor, i.e., the
same bit-string of length l, characterizes a clonal set of cells, and
the potential repertory of receptors scales as 2 l. The UISS is thus
defined as a polyclonal bit-string lattice technique. Polyclonal
refers to the ability to have many clones of lymphocytes of varied
specificity, while bit-string refers to the fact that molecules and
specificity among molecules are represented.

Finally, lattice denotes that the space is represented by a dis-
crete lattice. Haematopoiesis and thymus selection are two of the
most important mechanisms that control immune system activi-
ties. Haematopoiesis is a biological process that describes the pro-
duction of blood cells from hematopoietic stem cells, for example.
This process is included in the UISS to describe the creation of B
and T lymphocytes in the ‘‘bone marrow compartment.” Further-
more, thymus selection holds a further selection of T helper cells
(TH) and cytotoxic T cells in the ‘‘thymus compartment.” In the
absence of perturbations, haematopoiesis is represented as an Orn-
stein–Uhlenbeck mean-reverting process [79] to keep the system
in a metastable condition (cell homeostasis).

Thymus selection is utilized to ensure that a repertoire of MHC-
restricted self-tolerant T cells is accessible in the UISS. The treatment
employs a selective approach to imitate the actual biological events
that occur during T cell maturation in the thymus. This process is
made up of two sub-sequential stochastic procedures: a positive
selection and a negative selection. T cells with limited affinity to
MHC molecules alone (class I for cytotoxic T cells (TC) and class II
for Thelper cells (TH)) are eliminated in the initial phasebecause they
are ineffective. Cells that pass the first selection phase are subjected
to the second selection step, in which T cell receptors are compared
to an MHC-self-peptide complex. If there is a high affinity between
the two strings, such T cells are removed to prevent autoreactivity.
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Of course, receptors, MHC molecules, and (self) peptides are
always represented as binary strings, and the affinity is determined
as explained above. Many more biological processes that are part
of the immune system machinery are carried out. These include
the Hayflick limit on cell duplication [80], immunological memory
management [81], antibody hypermutation [82], bystander impact
[83], isotype switching [84], anergic [85], antigen digestion and
presentation [86], and B cell receptor mutation [87,88].

An initialization step is carried out prior to the start of the sim-
ulation. During this phase, the lattice is filled with the required
number of entities. The simulation is then run for a predetermined
number of time-steps.

Both interaction-driven and non-interaction-driven activities
(i.e., movement or internal processes) are completed at each time
step. It should be highlighted that, in an ideal world, all processes
within a time step should occur at the same moment. This is not a
problem for movement or internal dynamics that can be easily
replicated as serialized processes, but it could be a source of bias
for interaction dynamics. In real computers, huge parallel execu-
tion is difficult to achieve [89] especially when the number of enti-
ties is large. For this purpose, a distinct random interaction scheme
is constructed for each lattice-site, taking into account a random
order of the interaction rules as well as a random order in the list
of agents that may interact inside the same rule.

For a given rule that refers to two entity types A and B, every
entity of type A inside the same site is compared to all entities of
type B until a successful interaction occurs. The next type A object
is then compared to all type B entities. When the entities have had
chance to communicate, the next interaction rule is implemented.
The UISS employs a set of fundamental features to mimic the con-
ventional immune system apparatus and its reaction to a generic
pathogen. This core, which is made up of entities, processes, and
interactions, seldom changes unless novelties in biological knowl-
edge are discovered and evaluated according to the above-
mentioned Model and Transfer criteria. The set of fundamental fea-
tures is periodically expanded to simulate new disorders. While
the extensions may differ from one pathology to the next, the core
remains the same.

2.2. TOX module in UISS

To correctly reproduce the effects of PFOA/PFOS on the immune
system and hence to create the physiology/disease layers in the
UISS in silico trial computational platform, we retrieved from spe-
cialized literature all the entities, interactions and mechanisms of
action that play a role in the context of use of interest. After a tar-
geted and extensive search, we selected the papers that were best
suited for this purpose. The final outcome of this phase was the
development of the conceptual model that is depicted in Fig. 2.

In particular, it shows what we inserted into UISS to adapt it for
the context of use, namely PFOS/PFOA-induced immunotoxicity.
Specifically, after exposure to PFAS, thymus weight is reduced
and there is an atrophy of the gland. PFAS can reduce the levels
of many important cytokines, altering the activity of the immune
system. Probably by a mechanism mediated by PPAR-a, PFAS
reduce both IL-6 and TNF-alpha, but IL-4, IL-8, IL-18, IFN-c and
IL-10 levels also decrease.

IL-6 promotes differentiation of T lymphocytes into CD4 and
CD8, hence PFAS cause an alteration of T-cell populations, espe-
cially CD4 and CD8. IL-6 is also produced by Th2 lymphocytes, acti-
vated by IL-4. IL-4 also decreases after PFAS exposure. As
previously said, IL-4 activates Th2 lymphocytes but at the same
time, it is produced by Th2 lymphocytes themselves. Moreover,
IL-4 also stimulates the growth of mast cells, hence after PFAS
exposure, a reduction (from the qualitative point of view) of these
cells is expected. IL-4 also stimulates B lymphocytes to produce



Fig. 2. The PFAS – immune system interaction model. Conceptual description of the leading entities and interactions between PFAS and immune system. The main two
compartments, the thymus and the spleen are depicted. The representation describes both cellular and humoral responses after exposure to PFAS.

Table 1
Vector of features showing the entire set of input parameters to obtain a fully
personalized digital copy of the patient.

# Model Input Description UISS-TOX parameter name

1 PFOS in peripheral blood PFOA
2 CD4 T cell type 1 Th1
3 CD4 T cell type 2 Th2
4 Macrophages M
5 Dendritic cells DC
6 Specific IgG titers IgG
7 CD8 T cell TC
8 Interleukin 1 IL1
9 Interleukin 2 IL2
10 Interleukin 10 IL10
11 Interleukin 12 IL12
12 Interleukin 17 IL17A
13 Interleukin 23 IL23
14 Type 1 IFN a (IFNA1) IFN1A
15 Type 1 IFN b (IFNB1) IFN1B
16 IFN-c(*) IFNG
17 TNF-a(*) TNF
18 Vitamin D VitaminD
19 FoxP3 Treg
20 Interleukin 10 IL10
21 TGF-b TGFB
22 Age Age
23 Body Mass Index BMI
24 Disease model to be used UISS-TOX-X (where X is the disease

model module)
25 Vaccination VC
26 Mechanism of Action of the

Chemical
MoA (cellular and/or molecular)
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antibodies; in fact, one of the most important effects of PFAS on
humoral response is the decrease of antibody levels.

PFAS cause a reduction of IL-8, which activates neutrophils,
which have an important role in the immune response.

The decrease of IFN-c level has a key role in the case of viral
infections; IFN-c is also produced by NK cells, which are activated
by IL-18. So, PFAS act on IFN-c by two means: reducing both IL-18
and IFN-c itself. IFN-c promotes the growth of Th1 lymphocytes
and it activates macrophages, and both Th1 and macrophages
can produce IFN-c (through an autocrine mechanism). Macro-
phages also produce IL-6, which is one of the targets of PFAS.

The reduction of TNF-alpha levels is also relevant because this
cytokine stimulates the macrophages and produces IL-6. PFAS
can inhibit macrophage activity: by reducing both IFN-c and
TNF-alpha levels. However, on the other side, PFAS can stimulate
the macrophage cells because these compounds consequently
reduce IL-10 levels, which inhibits macrophages.

PFAS also affects the spleen: as in the thymus, PFAS cause atro-
phy of the spleen and reduce its weight. Here, one can notice their
effects on the humoral response: PFAS reduce the level of B lym-
phocytes in the spleen, causing a decrease in antibody production.

3. Results

To establish the expectations of predictive accuracy for a com-
puter modelling and simulation platform such as UISS-TOX, there
is a need to assess its predictive ability. To this end, three different
levels of observational depth can be envisaged:

d Level 1: we expect the model to predict any value among those
observed within a reference population, or in a set of controlled
experiments.

d Level 2: we expect the model to predict a median property (for
example the average value) of the distribution of values
observed in the reference population.
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d Level 3: we expect the model to predict each of the values
observed in the reference population or in the set of controlled
experiments, when properly parametrised with subject-specific
information.

To provide the most ambitious level of prediction i.e., level 3,
UISS-TOX requires to be fed with a full ‘‘vector of features” i.e.,
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specific input parameters that entirely personalize a patient. The
complete list of input parameters is shown in Table 1.

As we were able to retrieve sufficient data to provide a level 2
validation, we skipped level 1. To this end, before starting the level
2 validation process, we preliminary tested the validity of UISS-
TOX from the point of view of its capability to predict the physio-
logical immune response to an initial challenge of chemicals. To
this end, the following input experiment scenario was designed.
The first step consisted of the generation of a virtual patient’s
cohort. To generate an in silico patient, each feature must be
assigned a single value. These values could be derived from indi-
vidual physical patients; however, if a cohort of digital patients is
to be created, a system for synthesizing as many diverse input vec-
tors as required that are biologically/physiologically realistic
should be in place. Formally, this necessitates characterizing the
population’s joint distribution of inputs. We have accumulated
typical values and standard deviations for each feature, allowing
us to create realistic values for each component individually. In
Fig. 3. Population averaged immune system dynamics for the PFOA exposed in silico
dynamics are represented.
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this manner, the biological relationships between features would
be ignored, and so a medically plausible input vector would not
be guaranteed. As a result, to avoid medical inappropriateness,
we must consider these relationships [90]. Two in silico cohorts
of 100 virtual patients have then been generated according to that
procedure, considering a properly functioning immune system,
and an age ranging from 18 to 60 years old. The first in silico cohort
(cA) was PFOA exposed at time 0 to reach a serum concentration of
10 ng/ml. The second one was not exposed (cB).

In both cohorts, HLA-I and HLA-II were varied using a uniform
distribution among Caucasian individuals. Each digital twin
received two generic bacterial challenges (the first one at day 20
and the second one at day 100), to appreciate the effects of PFOA
over the immune system responses. Figs. 3–5 show the population
averaged immune system dynamics for cA, while Figs. 6–8 depict
the population averaged immune system dynamics for cB. In par-
ticular, Figs. 3–5 show the well-known effects reported in the liter-
ature on immunoglobulins [91] and cytokines [92], as well as on T
cohort at time 0. UISS-TOX in silico prediction of T (panel A) and B (panel B) cell



Fig. 4. Population averaged immune system dynamics for the PFOA exposed in silico cohort at time 0. UISS-TOX in silico prediction of IL-2, IL-6, TNF-a and IL-17 dynamic
levels are shown.

Fig. 5. Population averaged immune system dynamics for the PFOA exposed in silico cohort at time 0. UISS-TOX in silico prediction of IgM and IgA dynamic levels are shown.
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and B cell dynamics, illustrating the level 2 predictive capability of
UISS-TOX.

From the comparison of the figures block 3–5 (cA, PFOA
exposed) with the figures block 6–8 (cB, PFOA not exposed) one
can appreciate that the peripheral blood serum concentration of
10 ng/ml of PFOA affects the immune system response both in cel-
lular and humoral response.

To strength the level 2 validation of UISS-TOX, retrospective
clinical data was gathered from different studies, showing pieces
of evidence related to the effects elicited in the human immune
1771
system (especially in response to different vaccinations) by PFAS
exposure [24,26,93].

The first in silico experiment was designed to let UISS-TOX
make predictions about the effects of PFOA elicited in anti-Hib,
anti-Tetanus, anti-Diphtheria antibodies, IL-10 and IFN-gamma in
children, like the ones observed in the study conducted by Abra-
ham et al. [26]. We generated a cohort of in silico children patients
(same numerosity of the real observational study) simulating a
two-vaccination schedule. Fig. 9 shows a predicted inverse correla-
tion between PFOA plasma concentration levels and vaccine anti-



Fig. 6. Population averaged immune system dynamics for the PFOA not exposed in silico cohort at time 0. UISS-TOX in silico prediction of T (panel A) and B (panel B) cell
dynamics are represented.
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bodies against Hib, tetanus, and diphtheria, as well as IFN-c
production.

The second in silico experiment compared UISS-TOX predic-
tions against the data on anti-H1N1 antibodies titers presented
in the study by Looker et al. A total of 411 digital twins were gen-
erated accordingly the inclusion criteria of the observational study.
All generated in silico patients received the influenza vaccination.
We then divided the virtual patients in 4 quartiles, depending on
the PFOA concentrations; finally, we compared the predicted
anti-H1N1 antibodies titers against the data presented in the paper
by Looker et al. [93], obtaining results reported in Fig. 10 that are in
good agreement with in vivo data.
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Similarly, good agreement was found when simulating the third
study by Grandjean et al. [24]. Fig. 11 shows how UISS-TOX is able
to predict negative correlations with antibody concentrations at
the age of 5 years, for which a 2-fold greater concentration of expo-
sure was associated with a difference of �39% (95% CI, �55% to
�17%) in the Diphtheria antibody concentration.
4. Discussion

Here, we describe how a mathematical model developed for a
primary context of use (design of tuberculosis vaccines), for which
it was developed and validated, can be repurposed and translated



)

Fig. 7. Population averaged immune system dynamics for the PFOA not exposed in silico cohort at time 0. UISS-TOX in silico prediction of IL-2, IL-6, TNF-a and IL-17 dynamic
levels are shown.

Fig. 8. Population averaged immune system dynamics for the PFOA not exposed in silico cohort at time 0. UISS-TOX in silico prediction of IgM and IgA dynamic levels are
shown.
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for a (‘‘new”) target context of use (assessing interaction of the
immune system with environmental contaminants, such as PFAS).

In Silico Trials are increasingly used for the assessment of
biomedical products with the aim to reduce, refine, or replace
in vitro, in vivo, or human experiments. Human experimentation
is the most ambitious target for In Silico Trials, with increasing dif-
ficulty going from the refinement of clinical trials to their reduc-
tion, and ultimately to their replacement. A huge
multidisciplinary effort is need to develop an in silico trial plat-
form, especially from scratch. A considerable part of this effort con-
cerns the retrieval, exploration and deep analysis of data provided
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by retrospective literature and/or experiments. A possible solution
to reduce the time-consuming part in the in silico trial is to divide
the modelling and simulation platform in three different, intercon-
nected, levels i.e., the physiology model, the disease model and the
treatment model. This allows all the efforts to be focused on a
specific layer. Also, for the credibility assessment of the in silico
trial platform, efficiencies are gained by incrementally establishing
the validity of the computational platform. This ‘‘three-level”
approach has another advantage - the possibility to explore a
context-switching from one disease to another, while keeping the
physiology layer.



Fig. 9. Inverse correlation between PFOA plasma concentration levels and vaccine antibodies against Hib, tetanus and diphtheria, as well as IFN-gamma production.

Fig. 10. Predicted anti-H1N1 antibodies titers of in silico patient cohorts exposed to different PFOA concentrations (1st, 2nd, 3rd and 4th quartile) after having received
influenza vaccination. These in silico predictions mirror the in vivo observed results depicted in Looker’s work.
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In the present work the focus was on the interaction of chemi-
cals with the immune system, but it must be considered that there
are processes that are not taken into account with the present
model, such as ADME/kinetic processes, and understanding PK pro-
files of a chemical.

In particular, we focused on PFAS, as they represent an environ-
mental relevant class of compounds of high concern. PFOA and
PFOS have been selected as reference PFAS, as they are two of
the most widely used and studied chemicals in the PFAS group,
with many human data available. Based on published data, and
the understanding of the underlying mechanisms of PFAS-
induced immunotoxicity, it was possible to feed the model with
immunological parameters altered by PFOA or PFAS, and in return,
the model was able to correctly predict the reduced antibody pro-
duction observed in humans. Several studies document that PFAS
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exposure is associated with suppression in at least one measure
of the anti-vaccine antibody response with evidence from develop-
mental, childhood, and adult exposures [22], therefore, as
immunological parameter, the response to vaccination was chosen.
UISS-TOX was able to reproduce such data.

An immediate use of the UISS-TOX could be to estimate the
benchmark dose, the dose or concentration that produces a prede-
termined change in the response rate of an adverse effect, for
example 5 or 10% reduction in antibody response [94]. Conversely,
we can ask the model to estimate the plasma concentration of
PFOA/PFOS associated with a 5 or 10% decrease in antibody
production.

Another use of UISS-TOX, could be to estimate the reduced
response to vaccination in a population or at the individual level
based on PFOA/PFAS plasma levels, e.g., in a polluted area. This



Fig. 11. Predicted negative correlation with anti-Diphtheria antibodies titers of in silico children patient cohorts (at age of 5 years) exposed to different PFOS and PFOA
concentrations after diphtheria immunization. These in silico predictions mirror the in vivo observed results depicted in Grandjean’s work, indicating that elevated exposures
to perfluorinated compounds are associated with reduced humoral immune response to routine childhood immunizations.
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may help the health authorities/policy makers to estimate,
for example, the possible cases of infections, due to a lack of
vaccine protection, and the related costs in a PFAS-contaminated
area.

UISS-TOX may also be used to predict the immunotoxic poten-
tial of other PFAS. Considering the hundreds of PFAS used, alterna-
tive approaches to the use of the animals are essential to
investigate their immunotoxicity. As no in vivo or in vitro data
are available for the majority of PFAS, we can imagine to perform
ad hoc in vitro studies to obtain useful data to be input to the
model, e.g., cytokine production, effects on lymphocyte subpopula-
tions (see parameters listed in Table 1), to obtain a prediction of
antibody production. Experiments are ongoing to verify this work-
ing hypothesis. Similarly, other classes of compounds, for which
in vivo data are limited to a few compounds, represent the ideal
situation to take advantage of the UISS-TOX.

A potential limitation of our approach is represented by the dif-
ficulties in predicting the immune response to an unknown sub-
stance. However, the computational framework is able to take
advantage from in vitro experiments. Hence, considering that
UISS-TOX includes all the main cells involved in the specific
immune response, it is conceivable that by knowing the biological
processes modified by any immunotoxic substance, the corre-
sponding input parameter can be easily inserted into the model,
which as output will tell whether or not there is a risk of
reduced response to vaccination.

We have demonstrated that the UISS-TOX may offer the oppor-
tunity to estimate the immunotoxicity risk posed by PFAS. Thus,
the integration of in vitro methods and computer simulations pro-
vides a means of establishing new knowledge and approaches to
protect health from potential immunotoxicants, while also avoid-
ing in vivo experiments.

To make the presented model strategy more robust, the applica-
bility of UISS-TOX will also be tested in a follow-up project using
bisphenols and skin sensitizing chemicals, considering that the
immune system response, especially in animals, is the most sensi-
tive indicator of dioxin toxicity (TCCD, for example).

Finally, the interoperability of the UISS-TOX with Physiological
Based Kinetic models should be explored as an integrated approach
in modelling the mode of action of chemicals from exposure to
effect, allowing for different time and spatial scales.
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