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Abstract

Visible/near-infrared (Vis/NIR) hyperspectral imaging was employed to determine

the spatial distribution of total nitrogen in pepper plant. Hyperspectral images of

samples (leaves, stems, and roots of pepper plants) were acquired and their total

nitrogen contents (TNCs) were measured using Dumas combustion method. Mean

spectra of all samples were extracted from regions of interest (ROIs) in

hyperspectral images. Random frog (RF) algorithm was implemented to select

important wavelengths which carried effective information for predicting the TNCs in

leaf, stem, root, and whole-plant (leaf-stem-root), respectively. Based on full spectra

and the selected important wavelengths, the quantitative relationships between

spectral data and the corresponding TNCs in organs (leaf, stem, and root) and

whole-plant (leaf-stem-root) were separately developed using partial least-squares

regression (PLSR). As a result, the PLSR model built by the important wavelengths

for predicting TNCs in whole-plant (leaf-stem-root) offered a promising result of

correlation coefficient (R) for prediction (RP50.876) and root mean square error

(RMSE) for prediction (RMSEP50.426%). Finally, the TNC of each pixel within ROI

of the sample was estimated to generate the spatial distribution map of TNC in

pepper plant. The achievements of the research indicated that hyperspectral

imaging is promising and presents a powerful potential to determine nitrogen

contents spatial distribution in pepper plant.
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Introduction

Pepper (Capsicum annuum L) is one of the popular international spices in

cooking [1, 2]. At present, world production of pepper is about 19 million tons

fresh fruit from 1.5 million ha [3]. Nitrogen (N) is an essential element of

vegetative growth, flowering, and fruit bearing of pepper plants [4–8], as well as in

all metabolic processes of cellular structure and genetic coding [9]. In order to

strengthen and stabilize plant growth and yield production, farmers most of the

case will over-apply N fertilizer to ensure enough N for crop requirements. The

excessive N fertilizer could result in a series of problems, such as lodging, delayed

maturity, diseases, and weed [10, 11]. Therefore, it is crucial to investigate the N

status and obtain the real-time spatial distribution information of N content in

crops at different growth stages, so as to improve field management efficiency and

economic benefit from agricultural production, as well as contribute to

sustainable agriculture [12, 13].

Conventionally, measurement of total nitrogen content (TNC) in crops based

on chemical analysis is a destructive measurement, which is high-cost and time-

consuming [14]. Researchers demonstrated that TNC in plant was directly related

to the formation of chlorophyll [15, 16]. Therefore, chlorophyll content in leaves

can theoretically be considered as an indicator of the N status [17, 18]. The soil

and plant analyzer development (SPAD) reading, an indirect value representing

chlorophyll content, is measured by the SPAD meter with a ‘‘point-based’’ way

[19]. This method merely provides information on chlorophyll content in leaves

at one point, which is not sufficient to obtain the accurate chlorophyll

concentration of the whole leaf. Moreover, SPAD meter cannot provide the

chlorophyll information of other parts of the plant (e.g. buds, stems). In recent

years, spectroscopic technology, particularly visible and near-infrared (Vis/NIR)

spectroscopy, has been used for detection of the agricultural and sideline

products. For plants, several researchers [20–24] employed spectroscopy

technique to study and diagnose the nutrient status, N contents, and yield of

pepper. Unfortunately, spectroscopic techniques fail to provide information on

spatial distribution of quality parameters, which is essential to the analysis of

products’ features [25]. Remote sensing technique can provide chlorophyll

information of a large number of plants in an area with satellite or airplane

sensors scanning. Airborne visible/infrared imaging spectrometer (AVIRIS) in

NASA was used to determine forest canopy lignin, nitrogen, and ecosystem [26].

However, this approach is not suitable for providing chlorophyll information

about individual plants [27].

Hyperspectral imaging combines conventional spectroscopy with imaging

techniques to acquire both spectral and spatial information simultaneously for

detecting physical, chemical, and biological attributes of the samples [28–30].

Relying on this capability, hyperspectral imaging has witnessed tremendous

growth and been widely applied in agriculture [31]. Examples of nitrogen

analyzing in plant included: mapping of foliar nitrogen of mangroves and

explanation of spatial nitrogen variation in relation to local environmental
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variables [32], determination of nitrogen (N), phosphorus (P), and potassium (K)

content and visualization of chemical distribution in oilseed rape leaves [33],

estimation of leaf nitrogen accumulation in wheat [34], diagnostics of N

deficiency by virtue of chlorophyll content in cucumber leaf [19], assessment of

the leaf N content in wheat [35], estimation of canopy N concentration in

temperate forest [36]. A majority of studies have investigated the chemical

components in certain organ tissue (e.g. leaves) of crops. However, few studies on

TNCs spatial distribution of plants using hyperspectral imaging have been

reported.

In the current study, hyperspectral imaging technique was employed to map the

spatial distribution of total nitrogen in pepper plant. The specific objectives were

as follows: (1) to acquire hyperspectral images and measure TNCs of samples

(leaves, stems, and roots) using Dumas combustion method; (2) to extract the

spectral data and employ Random frog (RF) to select important wavelengths; (3)

to build multivariate calibration models for predicting TNCs in organs (leaf, stem,

and root) and whole-plant (leaf-stem-root) by partial least-squares regression

(PLSR) based on full spectra and the selected important wavelengths; (4) to apply

the optimal PLSR model to predict TNC of each pixel in samples and generate

spatial distribution of TNCs in whole pepper plant.

Materials and Methods

Samples preparation

A total of 40 pepper plants (Capsicum frutescens L. conoides (Mill.) Bailey) were

taken for this research. According to the crop management of National Farmers

Information Service (NAFIS) [37], pepper plants were planted in the same

environmental conditions and field management in greenhouses at Zhejiang

University, Hangzhou (120 0̊99E, 30 1̊49N), China.

After transplanting about 6 weeks, all pepper plants began to send forth flower

buds during early blooming stage. According to the growth status of the pepper

plants, several leaves (few yellow leaves in lower position and some small fresh

leaves in upper position) were excluded, and then the remaining 11 true leaves

with similar size were numbered from upper to lower (Fig. 1). In each pepper

plant, 2 leaves (petioles were removed) were randomly sampled from the upper

(1st–4th), middle (5th–8th), and lower (9th–11th) positions [38]. Each 2 leaves in

the sampled position were viewed as a sample for subsequent data analysis,

because the dry matter of one leaf failed to satisfy the demands of total nitrogen

measurement. Meanwhile, the whole stem was divided into 3 parts according to

positions (upper, middle, and lower) of petiole node. Lastly, root of each pepper

plant was dug out from the soil and impurities were cleaned up. The position of

sampled leaf, stem, and root is marked in Fig. 1. According to the preceding

process, a total of 280 samples containing 120 leaf samples, 120 stems, and 40

roots were collected from 40 pepper plants. These samples were then used for

hyperspectral data acquisition and TNCs measurement.
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Acquisition and calibration of hyperspectral images

Three-dimensional hyperspectral data of all samples were acquired by a

laboratorial hyperspectral imaging device with the reflectance mode. The

hyperspectral imaging device consists of: a mobile platform operated by a stepper

motor (IRCP0076, Isuzu Optics Crop, Taiwan, China); an assembled illumination

source with two 150-W quartz tungsten halogen lamps (Fiber-Lite DC950

Illuminator, Dolan Jenner Industries Inc., USA); an imaging spectrograph

(ImSpectorV10E, Spectral Imaging Ltd., Finland) covering the spectral range of

380–1,030 nm with 512 wavebands; a CCD camera (C8484-05, Hamamatsu city,

Japan) coupled with a zoom lens (OLES23, Specim, Spectral Imaging Ltd., Oulu,

Finland); and a computer with the spectral imaging system V10E software (Isuzu

Optics Corp, Taiwan, China), which is used to set and adjust the parameters of the

device, including exposure time, motor speed, imaging acquisition, wavelength

range, image correction. In all, the whole system (except the computer) was

assembled in a dark chamber to minimize the effects of ambient light during the

sample scanning.

Fig. 1. Positions of sampled leaf, stem, and root samples in one exemplary pepper plant.

doi:10.1371/journal.pone.0116205.g001
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As Yu et al. [39] described, the hyperspectral imaging device was calibrated

before samples were scanned. Parameters of the device for image acquisition are

summarized in Table 1. Subsequently, a hyperspectral image which was named

‘‘hypercube’’ with dimension of (x, y, l) was generated with line scanning [39]. In

detail, a hypercube contained n-pixels in y-direction (depending on the size of the

sample), 672 pixels in x-direction, and 512 wavebands in l-direction. Then, the

raw hyperspectral images were calibrated with white and dark references using the

following (1) and this process was implemented by the hyperspectral imaging

analyzer software.

Icalibrated~
Iraw{Idark

Iwhite{Idark
ð1Þ

where

Icalibrated is the calibrated hyperspectral image of the sample;

Iraw is the raw hyperspectral image of the sample;

Iwhite is the white reference image with 99% reflectance acquired from a white

reference ceramic tile;

Idark is the dark reference image with 0% reflectance obtained by the camera

lens thoroughly covered with its opaque cap.

Measurement of TNCs using Dumas combustion method

The referenced method for TNC measurement was Dumas combustion using

Nitrogen Analyzer Rapid N cube (Elementar Analysensysteme GmbH, Hanau,

Germany). After hyperspectral images acquisition, all samples were dried

completely to the constant weight [40]. Then, the samples were grinded by a

Tissuelyser-48 (Jingxin Experimental Technology, Shanghai, China) operating in

70 Hz, 150 s. 50¡1 mg dry matter of each sample was used to determine the

TNC. After a series of processing (combustion, reduction, purification, detection,

etc.), TNCs (%) of samples were obtained through the Rapid N software. All the

measurements were carried out in a room at an approximate constant

temperature of 25 C̊ and a relative humidity of 20–30%.

Table 1. Parameters of hyperspectral imaging device for acquisition of images.

Parameters Corresponding values

Spectral range 380–1,030 nm

Spectral resolution 2.8 nm

Moving speed of the mobile platform 2.1 mm/s

Spatial dimension of images 6726512 (spatial 6 spectral) pixels

Exposure time 0.008 s

The distance from lens to sample 295 mm

doi:10.1371/journal.pone.0116205.t001
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Hyperspectral data processing and analyzing

Hyperspectral data extraction

By implementing the mask function in the ENVI software, the target region of

each sample was separated from hyperspectral image. The separated region was

identified as the region of interest (ROI) of the corresponding sample. The spectra

of each pixel in ROIs were then averaged and the average spectrum was considered

as the spectrum of a sample. The spectra of other samples were obtained in the

same way as mentioned above. Because of the low signal-to-noise ratio (SNR), the

reflectance in two regions (380–420 nm and 1,000–1,030 nm) was rather low.

Therefore, hyperspectral data were resized to the spectral range of 420–1,000 nm

with 460 wavebands.

Variable selection

Selection of important wavelength is of critical significance for removing the

redundant information from high-dimensional data and optimizing calibration

models for producing reliable results [41, 42]. Thus, identification of important

variables carrying the most valuable and authentic information is a challenging

task in the current hyperspectral data analysis [43].

In the present study, Random frog (RF) methodology was carried out to select

important wavelengths. RF is a novel and efficient technique for variable selection,

which borrows the framework of reversible jump Markov Chain Monte Carlo

(RJMCMC) methods [44, 45]. It is employed to perform feature extraction for

selecting a series of variables which describe the correlation between the predictor

variables and the response variables [46]. In interior of RF algorithm, partial least

squares regression (PLSR) is viewed as a modeling method. X (n 6 p) stands for

the spectral matrix consisting of n samples in rows and p variables in columns.

And Y (n61) denotes the property of interest.

Before running RF algorithm, five parameters (T, Q, h, v, and g, details were

listed in Table 2) should be assigned with proper values. As shown in Fig. 2,

random frog works in three steps [47]:

(1) A variable subset V0 consisting of Q variables is initialized randomly;

(2) A candidate variable subset V* is proposed based on Q* variables, accept V*

with a certain probability as V1 and replace V0 using V1;

(3) Selection probability of each variable after N iterations is computed. The

details of RF algorithm could be found in literature [44, 45].

As Monte Carlo strategy is embedded in RF algorithm, the selection probability

of variables is unable to be reproduced exactly [44, 45]. Generally, RF is

implemented a couple of times (depending on the data) to minimize the influence

of this random factor [44, 45].

Spatial Distribution of Nitrogen

PLOS ONE | DOI:10.1371/journal.pone.0116205 December 30, 2014 6 / 19



Multivariate data analyses

Partial least-squares regression (PLSR), one of the reliable analytical tools for

modeling [48–51], has a wide application in multivariable data analysis and

regression. It possesses an advantage to solve the situation when the number of

variables is larger than that of samples, and when there is colinearity among

variables [52]. The PLSR model employs several latent variables (LVs) instead of

real variables and develops the calibration model applying leave-one-out cross-

validation (LOOCV) method [53, 54]. The LOOCV method is applied to validate

the performance and evaluate over-fitting of the calibration models. In this study,

Table 2. Parameters for running random frog.

Parameters Function Value

T number of iterations 10,000

Q number of variables in the initialized variable set 50

h control variance of a normal distribution 0.3

v a coefficient explained in step 2 3

g represent the upper bound of the probability 0.1

doi:10.1371/journal.pone.0116205.t002

Fig. 2. The flowchart of the Random frog algorithm from Li et al. [45].

doi:10.1371/journal.pone.0116205.g002
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the quantitative relationships between spectral reflectance values and TNCs of

samples were established by employing PLSR.

Evaluation of models

The performances of models were evaluated by correlation coefficient (R) and

root mean square error (RMSE) across the calibration (RC, RMSEC), cross-

validation (RCV, RMSECV), and prediction (RP, RMSEP) sets of samples.

Generally, an optimal model should provide high R values, low RMSE values, and

a small difference between calibration and prediction [40].

Chemical imaging

Chemical imaging is a technique for building visual color images to display the

spatial distribution of chemical components in heterogeneity [55]. The chemical

value of each pixel can be predicted by inputting its corresponding spectral

reflectance values into the established quantitative model [19]. Spatial distribution

of chemical components could be generated with the established quantitative

model combined with image processing. To observe the variance of TNCs in

whole pepper plant, distribution maps of TNCs were required. In particular, an

optimal model built using the mean spectra of important wavelengths was applied

to predict the TNC in each pixel. Subsequently, the spatial position of each pixel

along with its TNC was used to form the spatial distribution maps [52].

Software tools

The measured TNCs statistics and analysis of variance (ANOVA) was finished

using Microsoft Office Excel 2010 and IBM SPSS Statistics (version 20.0, IBM

Corporation, Armonk, New York, USA). Hyperspectral data was extracted with

ENVI software (Version 4.6, ITT Visual Information Solutions, Boulder, USA).

The processes of spectral data analyses were carried out by ‘‘The Unscrambler

X10.1’’ (CAMO PROCESS AS, Oslo, Norway). In addition, Random frog (version

2.0) toolbox and the developed program for building TNC spatial distribution

maps were worked in MATLAB 7.8 (R2009a) software (The MathWorks, Inc.,

Natick, MA, USA). OriginPro 8.0 SR0 (Origin Lab Corporation, Northampton,

MA, USA) software was employed to design the spectral curves. All processes were

run on a PC (CPU: Intel Core i3-3220 @3.30 GHz, RAM: 4.00 GB) operating with

Windows 7.

Results and Discussion

Statistics of the TNCs measured by Dumas combustion (TNCs-DC)

The statistical results of TNCs in pepper plant samples measured by Dumas

combustion are presented in Table 3. The results were similar to previous study of

Zhang et al. [33], Nelson et al. [56], and Stevenson [57]. The mean TNCs-DC in
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leaves (3.295%), roots (1.186%), and stems (0.992%) displayed a descending

tendency. Meanwhile, the TNCs-DC in groups of leaf and stem conveyed an

ascending trend in lower/middle/upper positions, ranging from 2.703% to

3.129%, then to 4.053% in leaves, and from 0.736% to 0.849%, then to 1.390% in

stems. Also in Table 3, results of analysis of variance (ANOVA) analyses of the

TNCs-DC in different samples revealed an apparent difference among leaf/stem/

root groups, as well as the leaf and stem groups in upper/middle/lower positions.

In this research, the SPXY (sample set partitioning based on joint x–y distances)

method proposed by Galvao et al. [58] was implemented to divide all samples into

calibration sets with 210 samples (90 leaves, 90 stems, and 30 roots) and

prediction sets with 70 samples (30 leaves, 30 stems, and 10 roots) for subsequent

hyperspectral TNC analyses. Table 4 shows a summary of statistical analysis on

the TNCs-DC of all samples in calibration and prediction sets. There was an

evident variation in TNCs-DC in the calibration set, ranging from 2.264% to

4.871% for leaf, 0.847% to 1.470% for root, 0.556% to 2.135% for stem, and

0.556% to 4.871% for whole-plant samples. Samples with a wide compositional

distribution of the TNCs-DC were collected, which was of great importance to

build stable calibration models.

Overview of spectral features

Fig. 3 demonstrates the mean spectral reflectance curves of samples covering the

range of 420–1,000 nm. In Fig. 3(a), there were similar profiles of curves of leaves

and stems in upper/middle/lower positions, however, the discrepancy of two

groups only appeared on the different spectral reflectance values. Moreover,

spectral reflectance of leaves and stems in lower/middle/upper positions displayed

Table 3. Statistic results of all samples’ TNCs-DC.

Samples Positions N.[1] Mean (%) ¡ S. D.[2]

Leaf Upper 40 4.053¡0.498a

Middle 40 3.129¡0.321b

Lower 40 2.703¡0.325c

Stem Upper 40 1.390¡0.366a

Middle 40 0.849¡0.175b

Lower 40 0.736¡0.102c

Leaf All 120 3.295¡0.686a

Stem All 120 0.992¡0.374c

Root All 40 1.186¡0.143b

Leaf-root-stem All 280 2.007¡1.231

Note: Different letters (a, b, c) in the same column indicate statistical significance at the 5% level by Tamhane’s T2 test.
[1]N.: Number of samples;
[2]S. D.: Standard deviation of the group.
One-way analysis of variance (ANOVA) was used to generate these results, which were obtained using IBM SPSS Statistics (Version 20.0, IBM Corporation,
Armonk, New York, USA). The results of TNCs-DC exhibited significant differences between groups (leaf, stem, and root) and within groups (leaves/stems in
different positions).

doi:10.1371/journal.pone.0116205.t003
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an ascending gradient. In detail, molecular vibration around 550 nm is caused by

chlorophyll, which related to N concentrations [20, 32]. Small valley of the curves

around 960 nm is attributed to the O-H second overtone, which is related to

water in plants [19, 39, 41, 55, 59]. The region of 680–750 nm with high

reflectance values generally refers to the ‘‘red edge’’ [60].

The mean spectral reflectance and standard deviation (SD) of leaf/stem/root

groups are illustrated in Fig. 3(b). The mean reflectance and SD of the stem was

consistently higher than that of the leaf across the whole tested range. There were

several intersections of means for each three groups (roots, stems, and leaves),

which was attributed to their different tissue structures. The spectra of organs

(leaf, stem, and root) resulted from a complex combination of scattering processes

and overlapping absorptions arising from water and biochemical components

[61]. In addition, the trend of the root curve was relatively flat and different from

Table 4. Summary of statistical analyses of TNCs-DC in calibration and prediction sets.

Samples Calibration set Prediction set

N.[1] Max.[3] (%) Min.[4] (%) Mean (%) ¡ S.D.[2] N.[1] Max.[3] (%) Min.[4] (%) Mean (%) ¡ S.D.[2]

Leaf 90 4.871 2.264 3.357¡0.701 30 4.731 2.398 3.108¡0.612

Root 30 1.470 0.847 1.183¡0.156 10 1.301 1.035 1.194¡0.103

Stem 90 2.135 0.556 1.040¡0.403 30 1.636 0.599 0.849¡0.218

All 210 4.871 0.556 2.114¡1.292 70 4.731 0.599 1.927¡1.218

Note:
[1]N.: Number of samples;
[2]S. D.: Standard deviation of the group;
[3]Max.: Maximum;
[4]Min.: Minimum;
Calibrations set with wide variation range of TNCs-DC could benefit for building robust models. Cross-validation set had the same results with the calibration
set, which were not motioned in this table. In this study, leave-one-out cross-validation (one sample randomly chosen from calibration set was retained at a
time and the rest of samples in calibration set were used to build the model) was used to verify the reproducibility and robustness of models.

doi:10.1371/journal.pone.0116205.t004

Fig. 3. Spectral curves of all pepper plant samples covering the range of 420–1,000 nm. (a) mean spectral reflectance curves of all leaves and stems in
upper, middle, and lower positions; (b) mean spectral reflectance and standard deviation (SD) of leaves, stems, and roots across all samples.

doi:10.1371/journal.pone.0116205.g003
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those of leaf and stem, both of which were similar to the study reported by San

Juan Martı́nez [21]. Actually, some soil particles adhered to the surface of root,

resulting in spectrum similar to the soil where the plant grew [21, 62].

Selection of important wavelengths using Random frog algorithm

In this research, RF was executed 50 times and the average value over these 50

runs was taken as the criterion for estimating the importance of each variable. The

selection probability (SP) of wavelengths is shown in Fig. 4. From these SP curves,

it could be found that a small number of wavelengths exhibited an extremely high

SP, whereas the SP of most wavelengths was relatively low. This indicated that the

majority of wavelengths provided a weak relevance to the TNCs predicted by

hyperspectral imaging (TNCs-HSI). All the variables were ranked in descending

order, according to the SP. To investigate the influence of the number of

wavelengths in the model, as well as to seek an optimal number of variables [45],

different wavelengths for benefiting the TNCs-HSI in organs (leaves, stems, and

roots) and the whole-plant (leaf-stem-root) are collected in Table 5.

The selected important wavelengths of leaves were mainly scattered in three

regions (around 650, 790, and 970 nm), in agreement with previous researches

[22, 23, 33, 31]. The important wavelengths for TNCs-HSI in stems were

principally clustered in 790 and 980 nm. However, the important wavelengths of

root were largely distributed around the regions of 445 and 580 nm, which were

similarly related to the wavelengths characteristic for soil [21, 63]. For whole-plant

(leaf-stem-root), the selected important wavelengths at 756, 749, and 759 nm

were assigned to the third overtones of N-H stretching around 785 nm

[31, 64, 65]. The selected important wavelength at 992 nm was close to the second

overtones O-H stretching near 970 nm [39], and the remaining selected

important wavelengths at 918, 909, 921, and 912 nm were ascribed to the third

overtones of free monomer C-H stretching (934 nm) in carboxylic acid [31].

Establishment of the PLSR models

The PLSR predictive models of the TNCs-HSI in organs (leaf, stem, and root) and

whole-plant (leaf-stem-root) were separately established based on the full spectra

and the selected important wavelengths. The results of these models are

enumerated in Table 6. Organ prediction methods provided more accurate TNC

estimates, compared with the whole-plant model. Meanwhile, PLSR models based

on both full spectra and the selected important wavelengths showed indeed only

minute changes between the calibration and the respective cross-validation values.

However, organ prediction methods needed three models to accrue TNCs-HSI in

different organs, which enhanced the complexity of determining the TNCs-HSI of

whole-plant. Furthermore, the pepper plant should be taken as a whole

experimental subject. Hence, the whole-plant models with more samples (the sum

of roots, stems, and leaves) were introduced to obtain TNCs-HSI in pepper plant

and obtain good performance.

Spatial Distribution of Nitrogen

PLOS ONE | DOI:10.1371/journal.pone.0116205 December 30, 2014 11 / 19



From the results of whole-plant models (Table 6), the PLSR model based on

full spectra (F-PLSR) with 6 latent variables (LVs) provided relatively robust

results to benefit the TNCs-HIS, compared with PLSR model built using

important wavelengths selected by RF (RF-PLSR). When switching from F-PLSR

model (406 variables) to RF-PLSR model (8 variables), 98.26% of variables were

eliminated. Meanwhile, the correlation coefficients of calibration, cross-valida-

tion, and prediction (RC, RCV, and RP) only showed a slight reduction of 0.026,

0.019, and 0.032, while their respective errors RMSEC, RMSECV, and RMSEP

exhibited small changes of 0.063, 0.059, and 0.075. It meant that the predictive

power of the RF-PLSR model would slightly drop for the whole-plant TNCs-HSI

Fig. 4. Selection probability (SP) of each wavelength averaged over 50 runs of Random frog for TNCs-HSI prediction of (a) leaves, (b) stems, (c)
roots, and (d) whole-plant samples (leaf-stem-root).

doi:10.1371/journal.pone.0116205.g004

Table 5. Important wavelengths for predicting TNCs in leaves, stems, roots, and whole-plant (leaf-stem-root) based on Random frog (RF).

Samples Important wavelength (nm)

Leaves 980, 848, 928, 941, 647, 649, 648, 794, 973, 965

Stems 475, 932, 788, 844, 804, 792, 987, 759, 951

Roots 445, 495, 444, 575, 448, 446, 580

Whole-plant 992, 756, 749, 918, 909, 921, 759, 912

doi:10.1371/journal.pone.0116205.t005
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prediction in comparison with the F-PLSR model. However, the F-PLSR model

with 460 wavelengths (varieties) would bring about a time-consuming data

process [51, 53], and failed to offer a simple and effective linear for predicting the

TNCs-HSI. In addition, several models were less over-fitted, which might be

caused by the improper values of LVs. The above results revealed that the RF-

PLSR model of whole-plant proved best-suited for gaining the TNCs-HSI in

pepper plants.

The promising quantitative relationship between the spectral reflectance values

and the TNCs-DC of samples was established through the RF-PLSR model. A

multi-linear function for the TNCs-HSI prediction of the whole-plant (leaf-stem-

root) was obtained:

YTNC~6:2720:912l992 nm{1:251l756 nm{1:248l749 nm{1:345l918 nm

{1:362l909 nm{1:333l921 nm{1:255l758 nm{1:356l912 nm

ð2Þ

where

li nm is the spectral reflectance value at the wavelength of i nm;

YTNC is the TNCs-HSI estimate of whole pepper plant.

Spatial distribution maps of TNCs in pepper plant

The linear function (2) obtained from the RF-PLSR model was employed to

predict the TNC of each pixel within the leaf, stem, and root images. Pixels with

similar spectral patterns in raw hyperspectral images would produce similar

predicted values of the TNCs-HSI, and then would appear in similar colors in the

resulting chemical images [55]. As a result, the spatial distribution maps of the

TNCs-HSI in 10 samples (6 leaves and 3 stems in upper, middle, and lower

positions and a root) of pepper plant were generated in Fig. 5. The TNCs-DC

Table 6. Results of PLSR models for TNCs-HSI analysis based on full spectra (F-PLSR) and the selected important wavelengths (RF-PLSR).

Samples Models N.[1] LVs Calibration Cross-Validation Prediction

RC RMSEC (%) RCV RMSECV (%) RP RMSEP (%)

Leaf F-PLSR[5] 460 17 0.974 0.156 0.924 0.269 0.934 0.223

RF-PLSR[6] 10 3 0.817 0.401 0.798 0.420 0.828 0.356

Stem F-PLSR 460 16 0.987 0.063 0.917 0.168 0.930 0.084

RF-PLSR 9 5 0.820 0.229 0.773 0.254 0.724 0.157

Root F-PLSR 460 11 0.992 0.020 0.931 0.064 0.915 0.045

RF-PLSR 7 7 0.773 0.097 0.592 0.130 0.797 0.068

Whole-plant F-PLSR 460 6 0.904 0.388 0.893 0.409 0.908 0.351

RF-PLSR 8 4 0.878 0.451 0.874 0.468 0.876 0.426

Note:
[1]N.: Number of wavelengths used for analysis;
[5]F-PLSR models meant the PLSR models established by using full spectra;
[6]RF-PLSR models represented the PLSR models built by important wavelengths selected by RF algorithm. LVs, RC, RMSEC, RCV, RMSECV, RP, and
RMSEP could be found in the text.

doi:10.1371/journal.pone.0116205.t006
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covered a broad range from 0.75% (stem in lower) to 4.76% (leaf in upper). Pixels

providing similar spectral information in original hyperspectral images would

result in similar results of the TNCs-HSI [51, 55], thus producing similar colors in

the resultant chemical images. Indeed some samples (stems in middle/lower and

root) with the relatively low TNCs-DC might show similar color, which was hard

to distinguish based on the pixels of high or low TNCs. Hence, in the predictive

map, three color scales described the ranges of the TNCs-HSI in each spot of the

leaves, stems, and root samples, respectively. Compared with the images of

original samples, the difference of the TNCs-HSI coloring within a sample could

be easily identified by the naked eyes.

As shown in Fig. 5, three linear color scales in different colors from red to blue

represented the different TNCs-HSI from high to low, respectively. The 10

resulting images of samples revealed the changing spatial tendency of the TNCs-

HSI. Nitrogen status showed a decreasing trend from upper to lower positions in

leaves and stems, which was in alignment with the measured nitrogen variation

shown in Table 3 and the respective TNC-DC values of those samples. This

Fig. 5. Spatial distribution maps of TNCs-HSI in samples of an exemplary tested pepper plant included six leaves, three stems, and one root,
respectively. TNCs-HSI of samples in hyperspectral images were computed based on linear function (2) and TNCs-HSI distribution was achieved in
MATLAB software. The numbers accompanying each sample map denote the respective TNC-DC value.

doi:10.1371/journal.pone.0116205.g005
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phenomenon could be explained as follows: N is a removable and active element

and exists in the form of organic matter in a living plant. It can be reabsorbed

from older leaves to young leaves [19]. Meanwhile, N and other nutrients in plant

are transported from roots to growth center (fresh leaves) with the xylem sap in

stems under the transpiration pull [66, 67], resulting in the high TNCs in fresh

leaves. In addition, TNC distribution is related to seasons, plant age, and photon

flux density of leaves in different positions [68].

According to plant physiology [69–72], N element is absorbed on the root

surface in the form of ammonium (NH4+) or nitrate (NO32) by the movement of

water in the soil [73]. Then, N ions enter the conduit of xylem in the root tissues

through the apoplast pathway. The sap ascending in the xylem of nitrogen-fixing

legumes carries nitrogen compounds originating from inorganic soil nitrogen

(mainly NO32 absorbed by the roots). Early growth of the leaf depends largely on

phloem for intake of nitrogen and other nutrients that transported with xylem. At

last, nutriments are transported from roots to various organs and tissues through

the xylem sap under the physiological activities.

It is worth noticing that the maps of the upper and middle leaves displayed a

relatively even color within the mesophyll part of individual images. In the images

of the lower leaves (Fig. 5), pixels in the midrib part with light blue implied the

relatively high TNCs-HSI. For stems, petiole nodes with orange showed the

relatively low TNCs-HSI. In the map of root, hair parts colored blue revealed the

extremely low TNCs-HSI, as well as in stems and leaves.

Furthermore, colors in the contour of stem samples were distinctly different in

other regions, which might be caused by its tridimensional structure. Samples

with the planar or tridimensional structure might result in different spectral

characteristics [74]. This issue would be deliberated in further work.

Conclusions

In this research, RF method was employed to select eight important wavelengths

(992, 756, 749, 918, 909, 921, 758, and 912 nm) for successful prediction of

whole-plant (leaf-stem-root) total nitrogen contents. After that, PLSR was

employed to build the quantitative relationship between the spectral reflectance

and TNCs-DC of samples based on full spectra and important wavelengths. The

RF-PLSR model of whole-plant with results of RP50.876 and RMSEP50.426%

was considered the optimal model for the TNCs-HSI prediction in pepper plants.

Lastly, the TNCs-HSI of all pixels in samples were calculated by applying the

optimal PLSR model. Meanwhile, spatial distribution maps of the TNCs-HSI in

pepper plant samples were constructed by using a developed image processing

procedure. It could be inferred that the differences in TNCs within pepper plant

could provide important information for monitoring nutrient distribution.

In further research, more varieties of pepper plant with different geographical

locations, ages, time, and broader chemical values should be taken into account

for developing more adequate and accurate TNC prediction models, which could

provide a theoretical guidance for crop nutrient diagnosis and field management.

Spatial Distribution of Nitrogen
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